anthropic_tokenizer
Adapted from the Griptape AI Framework documentation.
Bases:
BaseTokenizer
Source Code in griptape/tokenizers/anthropic_tokenizer.py
@define() class AnthropicTokenizer(BaseTokenizer): MODEL_PREFIXES_TO_MAX_INPUT_TOKENS = {"claude-3": 200000, "claude-2.1": 200000, "claude": 100000} MODEL_PREFIXES_TO_MAX_OUTPUT_TOKENS = {"claude": 4096} client: Anthropic = field( default=Factory(lambda: import_optional_dependency("anthropic").Anthropic()), kw_only=True, ) def count_tokens(self, text: str | list[BetaMessageParam]) -> int: types = import_optional_dependency("anthropic.types.beta") # TODO: Refactor all Tokenizers to support Prompt Stack as an input. messages = [types.BetaMessageParam(role="user", content=text)] if isinstance(text, str) else text usage = self.client.beta.messages.count_tokens( model=self.model, messages=messages, ) return usage.input_tokens
MODEL_PREFIXES_TO_MAX_INPUT_TOKENS = {'claude-3': 200000, 'claude-2.1': 200000, 'claude': 100000}
class-attribute instance-attributeMODEL_PREFIXES_TO_MAX_OUTPUT_TOKENS = {'claude': 4096}
class-attribute instance-attributeclient = field(default=Factory(lambda: import_optional_dependency('anthropic').Anthropic()), kw_only=True)
class-attribute instance-attribute
count_tokens(text)
Source Code in griptape/tokenizers/anthropic_tokenizer.py
def count_tokens(self, text: str | list[BetaMessageParam]) -> int: types = import_optional_dependency("anthropic.types.beta") # TODO: Refactor all Tokenizers to support Prompt Stack as an input. messages = [types.BetaMessageParam(role="user", content=text)] if isinstance(text, str) else text usage = self.client.beta.messages.count_tokens( model=self.model, messages=messages, ) return usage.input_tokens
- On this page
- count_tokens(text)
Could this page be better? Report a problem or suggest an addition!