
EDB Postgres Advanced Server
Version 13

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. Built at 2024-11-21T19:09:53

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
41
42
43
45
46
49
52
55
58
61
64
67
70
71
74
77
80
81
82
84
95
96
97

100
104
108
109

1 EDB Postgres Advanced Server
2 EDB Postgres Advanced Server Release Notes
2.1 EDB Postgres Advanced Server 13.18.00 release notes
2.2 EDB Postgres Advanced Server 13.16.22 release notes
2.3 EDB Postgres Advanced Server 13.15.21 release notes
2.4 EDB Postgres Advanced Server 13.14.20 release notes
2.5 EDB Postgres Advanced Server 13.13.19 release notes
2.6 EDB Postgres Advanced Server 13.12.18 release notes
2.7 Version 13.12.17
2.8 Version 13.11.15
2.9 Version 13.10.14
2.10 Version 13.9.13
2.11 Version 13.8.12
2.12 Version 13.7.11
2.13 Version 13.6.10
2.14 Version 13.5.9
2.15 Version 13.4.8
2.16 Version 13.3.7
2.17 Version 13.3.6
2.18 Version 13.2.5
2.19 Version 13.1.4
3 Supported Platforms
4 Limitations
5 Installing EDB Postgres Advanced Server
5.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)
5.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64
5.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64
5.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64
5.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64
5.1.5 Installing EDB Postgres Advanced Server on SLES 15 x86_64
5.1.6 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64
5.1.7 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64
5.1.8 Installing EDB Postgres Advanced Server on Debian 11 x86_64
5.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)
5.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le
5.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le
5.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le
5.3 Installing EDB Postgres Advanced Server on Windows
5.3.1 Requirements overview
5.3.2 Installing Advanced Server with the interactive installer
5.3.2.1 Performing a graphical installation on Windows
5.3.2.2 Invoking the graphical installer from the command line
5.3.2.2.1 Performing an unattended installation
5.3.2.2.2 Performing an installation with limited privileges
5.3.2.2.3 Reference - Command line options
5.3.2.3 Using StackBuilder Plus
5.4 Linux installation details
5.4.1 Default component locations

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 2

111
117
131
132
134
135
136
137
138
139
140
141
142
143
144
145
146
147
149
156
157
158
159
160
163
165
166
167
169
170
171
172
175
188
189
190
191
193
195
197
198
199
200
201
202
212
213
214

5.4.2 Available native packages
5.4.3 Managing an Advanced Server installation
5.5 Windows installation details
5.5.1 Connecting to Advanced Server with the pgAdmin 4 client
5.5.2 Managing an Advanced Server installation
5.5.2.1 Using the Windows Services applet
5.5.2.2 Using pg_ctl to control Advanced Server
5.5.2.3 Controlling server startup behavior on Windows
5.5.3 Configuring Advanced Server
5.5.3.1 Setting Advanced Server environment variables
5.5.3.2 Connecting to Advanced Server with edb-psql
6 Upgrading EDB Postgres Advanced Server
6.1 Upgrade considerations
6.2 Upgrading an installation with pg_upgrade
6.2.1 Performing an upgrade
6.2.1.1 Linking versus copying
6.2.2 Invoking pg_upgrade
6.2.2.1 Command line options - Reference
6.2.3 Upgrading to Advanced Server 13
6.2.4 Upgrading a pgAgent installation
6.2.5 pg_upgrade troubleshooting
6.2.6 Reverting to the old cluster
6.3 Performing a minor version update of an RPM installation
6.4 Using StackBuilder Plus to perform a minor version update
6.5 Migration to Version 13
7 Uninstalling EDB Postgres Advanced Server
7.1 Uninstalling Advanced Server on Linux
7.2 Uninstalling Advanced Server on Windows
8 Troubleshooting an installation
8.1 Linux installation troubleshooting
8.2 Windows installation troubleshooting
9 Quick Start Guide for RHEL/Rocky Linux/AlmaLinux 8
10 Quick Start Guide for Windows
11 Database Compatibility for Oracle Developers Guide
11.1 Configuration Parameters Compatible with Oracle Databases
11.1.1 edb_redwood_date
11.1.2 edb_redwood_raw_names
11.1.3 edb_redwood_strings
11.1.4 edb_stmt_level_tx
11.1.5 oracle_home
11.2 About the Examples Used in this Guide
11.3 SQL Tutorial
11.3.1 Sample Database
11.3.1.1 Sample Database Installation
11.3.1.2 Sample Database Description
11.3.2 Creating a New Table
11.3.3 Populating a Table With Rows
11.3.4 Querying a Table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 3

216
219
221
222
223
224
225
226
227
229
232
233
234
235
237
238
239
243
244
246
249
253
259
262
265
266
269
272
273
274
276
278
280
281
283
285
290
291
294
297
298
302
303
304
305
306
307
308

11.3.5 Joins Between Tables
11.3.6 Aggregate Functions
11.3.7 Updates
11.3.8 Deletions
11.3.9 The SQL Language
11.4 Advanced Concepts
11.4.1 Views
11.4.2 Foreign Keys
11.4.3 The ROWNUM Pseudo-Column
11.4.4 Synonyms
11.4.5 Hierarchical Queries
11.4.5.1 Defining the Parent/Child Relationship
11.4.5.2 Selecting the Root Nodes
11.4.5.3 Organization Tree in the Sample Application
11.4.5.4 Node Level
11.4.5.5 Ordering the Siblings
11.4.5.6 Retrieving the Root Node with CONNECT_BY_ROOT
11.4.5.7 Retrieving a Path with SYS_CONNECT_BY_PATH
11.4.6 Multidimensional Analysis
11.4.6.1 ROLLUP Extension
11.4.6.2 CUBE Extension
11.4.6.3 GROUPING SETS Extension
11.4.6.4 GROUPING Function
11.4.6.5 GROUPING_ID Function
11.5 Profile Management
11.5.1 Creating a New Profile
11.5.1.1 Creating a Password Function
11.5.2 Altering a Profile
11.5.3 Dropping a Profile
11.5.4 Associating a Profile with an Existing Role
11.5.5 Unlocking a Locked Account
11.5.6 Creating a New Role Associated with a Profile
11.5.7 Backing up Profile Management Functions
11.6 Optimizer Hints
11.6.1 Default Optimization Modes
11.6.2 Access Method Hints
11.6.3 Specifying a Join Order
11.6.4 Joining Relations Hints
11.6.5 Global Hints
11.6.6 Using the APPEND Optimizer Hint
11.6.7 Parallelism Hints
11.6.8 Conflicting Hints
11.7 dblink_ora
11.7.1 dblink_ora Functions and Procedures
11.7.1.1 dblink_ora_connect()
11.7.1.2 dblink_ora_status()
11.7.1.3 dblink_ora_disconnect()
11.7.1.4 dblink_ora_record()

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 4

309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
325
326
327
329
331
332
336
337
338
339
340
341
344
350
354
355
362
378
379
383
390
392
396
397
398
405
408
409
413
414
415
422
424

11.7.1.5 dblink_ora_call()
11.7.1.6 dblink_ora_exec()
11.7.1.7 dblink_ora_copy()
11.7.2 Calling dblink_ora Functions
11.8 Open Client Library
11.9 Oracle Catalog Views
11.10 Tools and Utilities
11.11 ECPGPlus
11.12 System Catalog Tables
12 Database Compatibility for Oracle Developers Reference Guide
12.1 The SQL Language
12.1.1 SQL Syntax
12.1.1.1 Lexical Structure
12.1.1.2 Identifiers and Key Words
12.1.1.3 Constants
12.1.1.4 Comments
12.1.2 Data Types
12.1.2.1 Numeric Types
12.1.2.2 Character Types
12.1.2.3 Binary Data
12.1.2.4 Date/Time Types
12.1.2.5 Boolean Types
12.1.2.6 XML Type
12.1.3 Functions and Operators
12.1.3.1 Logical Operators
12.1.3.2 Comparison Operators
12.1.3.3 Mathematical Functions and Operators
12.1.3.4 String Functions and Operators
12.1.3.5 Pattern Matching String Functions
12.1.3.6 Pattern Matching Using the LIKE Operator
12.1.3.7 Data Type Formatting Functions
12.1.3.8 Date/Time Functions and Operators
12.1.3.9 Sequence Manipulation Functions
12.1.3.10 Conditional Expressions
12.1.3.11 Aggregate Functions
12.1.3.12 Subquery Expressions
12.2 System Catalog Tables
13 Database Compatibility for Oracle Developers Built-in Package Guide
13.1 Packages
13.1.1 Package Components
13.1.2 Creating Packages
13.1.3 Referencing a Package
13.1.4 Using Packages With User Defined Types
13.1.5 Dropping a Package
13.2 Built-In Packages
13.2.1 DBMS_ALERT
13.2.2 DBMS_AQ
13.2.2.1 ENQUEUE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 5

427
430
432
434
436
437
438
440
442
443
444
445
446
447
448
450
452
453
454
455
456
457
459
460
461
462
463
464
465
467
468
470
471
472
474
476
477
478
479
480
481
482
483
484
485
486
487
488

13.2.2.2 DEQUEUE
13.2.2.3 REGISTER
13.2.2.4 UNREGISTER
13.2.3 DBMS_AQADM
13.2.3.1 ALTER_QUEUE
13.2.3.2 ALTER_QUEUE_TABLE
13.2.3.3 CREATE_QUEUE
13.2.3.4 CREATE_QUEUE_TABLE
13.2.3.5 DROP_QUEUE
13.2.3.6 DROP_QUEUE_TABLE
13.2.3.7 PURGE_QUEUE_TABLE
13.2.3.8 START_QUEUE
13.2.3.9 STOP_QUEUE
13.2.4 DBMS_CRYPTO
13.2.4.1 DECRYPT
13.2.4.2 ENCRYPT
13.2.4.3 HASH
13.2.4.4 MAC
13.2.4.5 RANDOMBYTES
13.2.4.6 RANDOMINTEGER
13.2.4.7 RANDOMNUMBER
13.2.5 DBMS_JOB
13.2.5.1 BROKEN
13.2.5.2 CHANGE
13.2.5.3 INTERVAL
13.2.5.4 NEXT_DATE
13.2.5.5 REMOVE
13.2.5.6 RUN
13.2.5.7 SUBMIT
13.2.5.8 WHAT
13.2.6 DBMS_LOB
13.2.6.1 APPEND
13.2.6.2 COMPARE
13.2.6.3 CONVERTTOBLOB
13.2.6.4 CONVERTTOCLOB
13.2.6.5 COPY
13.2.6.6 ERASE
13.2.6.7 GET_STORAGE_LIMIT
13.2.6.8 GETLENGTH
13.2.6.9 INSTR
13.2.6.10 READ
13.2.6.11 SUBSTR
13.2.6.12 TRIM
13.2.6.13 WRITE
13.2.6.14 WRITEAPPEND
13.2.7 DBMS_LOCK
13.2.8 DBMS_MVIEW
13.2.8.1 GET_MV_DEPENDENCIES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 6

489
491
492
494
503
504
505
507
508
510
511
513
514
515
516
517
520
539
544
562
573
575
576
579
581
583
585
586
587
588
589
590
591
593
594
595
596
598
600
601
602
603
605
606
608
610
611
613

13.2.8.2 REFRESH
13.2.8.3 REFRESH_ALL_MVIEWS
13.2.8.4 REFRESH_DEPENDENT
13.2.9 DBMS_OUTPUT
13.2.10 DBMS_PIPE
13.2.10.1 CREATE_PIPE
13.2.10.2 NEXT_ITEM_TYPE
13.2.10.3 PACK_MESSAGE
13.2.10.4 PURGE
13.2.10.5 RECEIVE_MESSAGE
13.2.10.6 REMOVE_PIPE
13.2.10.7 RESET_BUFFER
13.2.10.8 SEND_MESSAGE
13.2.10.9 UNIQUE_SESSION_NAME
13.2.10.10 UNPACK_MESSAGE
13.2.10.11 Comprehensive Example
13.2.11 DBMS_PROFILER
13.2.12 DBMS_RANDOM
13.2.13 DBMS_REDACT
13.2.14 DBMS_RLS
13.2.15 DBMS_SCHEDULER
13.2.15.1 Using Calendar Syntax to Specify a Repeating Interval
13.2.15.2 CREATE_JOB
13.2.15.3 CREATE_PROGRAM
13.2.15.4 CREATE_SCHEDULE
13.2.15.5 DEFINE_PROGRAM_ARGUMENT
13.2.15.6 DISABLE
13.2.15.7 DROP_JOB
13.2.15.8 DROP_PROGRAM
13.2.15.9 DROP_PROGRAM_ARGUMENT
13.2.15.10 DROP_SCHEDULE
13.2.15.11 ENABLE
13.2.15.12 EVALUATE_CALENDAR_STRING
13.2.15.13 RUN_JOB
13.2.15.14 SET_JOB_ARGUMENT_VALUE
13.2.16 DBMS_SESSION
13.2.17 DBMS_SQL
13.2.17.1 BIND_VARIABLE
13.2.17.2 BIND_VARIABLE_CHAR
13.2.17.3 BIND_VARIABLE_RAW
13.2.17.4 CLOSE_CURSOR
13.2.17.5 COLUMN_VALUE
13.2.17.6 COLUMN_VALUE_CHAR
13.2.17.7 COLUMN_VALUE_RAW
13.2.17.8 DEFINE_COLUMN
13.2.17.9 DEFINE_COLUMN_CHAR
13.2.17.10 DEFINE_COLUMN_RAW
13.2.17.11 DESCRIBE_COLUMNS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 7

614
615
617
619
620
623
624
626
641
642
643
644
645
646
647
648
649
650
652
654
671
691
696
701
710
714
715
745
750
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797

13.2.17.12 EXECUTE
13.2.17.13 EXECUTE_AND_FETCH
13.2.17.14 FETCH_ROWS
13.2.17.15 IS_OPEN
13.2.17.16 LAST_ROW_COUNT
13.2.17.17 OPEN_CURSOR
13.2.17.18 PARSE
13.2.18 DBMS_UTILITY
13.2.19 UTL_ENCODE
13.2.19.1 BASE64_DECODE
13.2.19.2 BASE64_ENCODE
13.2.19.3 MIMEHEADER_DECODE
13.2.19.4 MIMEHEADER_ENCODE
13.2.19.5 QUOTED_PRINTABLE_DECODE
13.2.19.6 QUOTED_PRINTABLE_ENCODE
13.2.19.7 TEXT_DECODE
13.2.19.8 TEXT_ENCODE
13.2.19.9 UUDECODE
13.2.19.10 UUENCODE
13.2.20 UTL_FILE
13.2.21 UTL_HTTP
13.2.22 UTL_MAIL
13.2.23 UTL_RAW
13.2.24 UTL_SMTP
13.2.25 UTL_URL
14 Database Compatibility for Oracle Developers Tools and Utilities Guide
14.1 EDB*Loader
14.2 EDB*Wrap
14.3 Dynamic Runtime Instrumentation Tools Architecture (DRITA)
15 Database Compatibility for Oracle Developers Catalog Views Guide
15.1 ALL_ALL_TABLES
15.2 ALL_CONS_COLUMNS
15.3 ALL_CONSTRAINTS
15.4 ALL_COL_PRIVS
15.5 ALL_DB_LINKS
15.6 ALL_DEPENDENCIES
15.7 ALL_DIRECTORIES
15.8 ALL_IND_COLUMNS
15.9 ALL_INDEXES
15.10 ALL_JOBS
15.11 ALL_OBJECTS
15.12 ALL_PART_KEY_COLUMNS
15.13 ALL_PART_TABLES
15.14 ALL_POLICIES
15.15 ALL_QUEUES
15.16 ALL_QUEUE_TABLES
15.17 ALL_SEQUENCES
15.18 ALL_SOURCE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 8

798
799
800
801
803
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
838
840
841
842
843
844
845
846
847
848
849

15.19 ALL_SUBPART_KEY_COLUMNS
15.20 ALL_SYNONYMS
15.21 ALL_TAB_COLUMNS
15.22 ALL_TAB_PARTITIONS
15.23 ALL_TAB_SUBPARTITIONS
15.24 ALL_TAB_PRIVS
15.25 ALL_TABLES
15.26 ALL_TRIGGERS
15.27 ALL_TYPES
15.28 ALL_USERS
15.29 ALL_VIEW_COLUMNS
15.30 ALL_VIEWS
15.31 DBA_ALL_TABLES
15.32 DBA_CONS_COLUMNS
15.33 DBA_CONSTRAINTS
15.34 DBA_COL_PRIVS
15.35 DBA_DB_LINKS
15.36 DBA_DIRECTORIES
15.37 DBA_DEPENDENCIES
15.38 DBA_IND_COLUMNS
15.39 DBA_INDEXES
15.40 DBA_JOBS
15.41 DBA_OBJECTS
15.42 DBA_PART_KEY_COLUMNS
15.43 DBA_PART_TABLES
15.44 DBA_POLICIES
15.45 DBA_PROFILES
15.46 DBA_QUEUES
15.47 DBA_QUEUE_TABLES
15.48 DBA_ROLE_PRIVS
15.49 DBA_ROLES
15.50 DBA_SEQUENCES
15.51 DBA_SOURCE
15.52 DBA_SUBPART_KEY_COLUMNS
15.53 DBA_SYNONYMS
15.54 DBA_TAB_COLUMNS
15.55 DBA_TAB_PARTITIONS
15.56 DBA_TAB_SUBPARTITIONS
15.57 DBA_TAB_PRIVS
15.58 DBA_TABLES
15.59 DBA_TRIGGERS
15.60 DBA_TYPES
15.61 DBA_USERS
15.62 DBA_VIEW_COLUMNS
15.63 DBA_VIEWS
15.64 USER_ALL_TABLES
15.65 USER_CONS_COLUMNS
15.66 USER_CONSTRAINTS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 9

850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
868
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
887
888
889
891
892
893
897
898
899
900
904
905
906
908

15.67 USER_COL_PRIVS
15.68 USER_DB_LINKS
15.69 USER_DEPENDENCIES
15.70 USER_INDEXES
15.71 USER_JOBS
15.72 USER_OBJECTS
15.73 USER_PART_TABLES
15.74 USER_POLICIES
15.75 USER_QUEUES
15.76 USER_QUEUE_TABLES
15.77 USER_ROLE_PRIVS
15.78 USER_SEQUENCES
15.79 USER_SOURCE
15.80 USER_SUBPART_KEY_COLUMNS
15.81 USER_SYNONYMS
15.82 USER_TAB_COLUMNS
15.83 USER_TAB_PARTITIONS
15.84 USER_TAB_SUBPARTITIONS
15.85 USER_TAB_PRIVS
15.86 USER_TABLES
15.87 USER_TRIGGERS
15.88 USER_TYPES
15.89 USER_USERS
15.90 USER_VIEW_COLUMNS
15.91 USER_VIEWS
15.92 V$VERSION
15.93 PRODUCT_COMPONENT_VERSION
16 Database Compatibility Stored Procedural Language Guide
16.1 Basic SPL Elements
16.1.1 Case Sensitivity
16.1.2 Identifiers
16.1.3 Qualifiers
16.1.4 Constants
16.1.5 User-Defined PL/SQL Subtypes
16.1.6 Character Set
16.2 SPL Programs
16.2.1 SPL Block Structure
16.2.2 Anonymous Blocks
16.2.3 Procedures Overview
16.2.3.1 Creating a Procedure
16.2.3.2 Calling a Procedure
16.2.3.3 Deleting a Procedure
16.2.4 Functions Overview
16.2.4.1 Creating a Function
16.2.4.2 Calling a Function
16.2.4.3 Deleting a Function
16.2.5 Procedure and Function Parameters
16.2.5.1 Positional vs. Named Parameter Notation

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 10

910
911
913
914
917
919
921
928
929
932
942
944
945
946
947
948
949
955
956
957
960
961
963
964
965
966
968
969
972
974
975
976
977
978
979
980
982
984
985
987
988
990
992
993
995
997
998
999

16.2.5.2 Parameter Modes
16.2.5.3 Using Default Values in Parameters
16.2.6 Subprograms – Subprocedures and Subfunctions
16.2.6.1 Creating a Subprocedure
16.2.6.2 Creating a Subfunction
16.2.6.3 Block Relationships
16.2.6.4 Invoking Subprograms
16.2.6.5 Using Forward Declarations
16.2.6.6 Overloading Subprograms
16.2.6.7 Accessing Subprogram Variables
16.2.7 Compilation Errors in Procedures and Functions
16.2.8 Program Security
16.2.8.1 EXECUTE Privilege
16.2.8.2 Database Object Name Resolution
16.2.8.3 Database Object Privileges
16.2.8.4 Definer’s vs. Invokers Rights
16.2.8.5 Security Example
16.3 Variable Declarations
16.3.1 Declaring a Variable
16.3.2 Using %TYPE in Variable Declarations
16.3.3 Using %ROWTYPE in Record Declarations
16.3.4 User-Defined Record Types and Record Variables
16.4 Basic Statements
16.4.1 Assignment
16.4.2 DELETE
16.4.3 INSERT
16.4.4 NULL
16.4.5 Using the RETURNING INTO Clause
16.4.6 SELECT INTO
16.4.7 UPDATE
16.4.8 Obtaining the Result Status
16.5 Control Structures
16.5.1 IF Statement
16.5.1.1 IF-THEN
16.5.1.2 IF-THEN-ELSE
16.5.1.3 IF-THEN-ELSE IF
16.5.1.4 IF-THEN-ELSIF-ELSE
16.5.2 RETURN Statement
16.5.3 GOTO Statement
16.5.4 CASE Expression
16.5.4.1 Selector CASE Expression
16.5.4.2 Searched CASE Expression
16.5.5 CASE Statement
16.5.5.1 Selector CASE Statement
16.5.5.2 Searched CASE Statement
16.5.6 Loops
16.5.6.1 LOOP
16.5.6.2 EXIT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 11

1000
1001
1002
1003
1005
1007
1009
1011
1012
1014
1018
1026
1028
1029
1030
1031
1033
1034
1035
1036
1037
1038
1039
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1058
1061
1062
1066
1070
1072
1073
1074
1076
1077

16.5.6.3 CONTINUE
16.5.6.4 WHILE
16.5.6.5 FOR (integer variant)
16.5.7 Exception Handling
16.5.8 User-defined Exceptions
16.5.9 PRAGMA EXCEPTION_INIT
16.5.10 RAISE_APPLICATION_ERROR
16.6 Transaction Control
16.6.1 COMMIT
16.6.2 ROLLBACK
16.6.3 PRAGMA AUTONOMOUS_TRANSACTION
16.7 Dynamic SQL
16.8 Static Cursors
16.8.1 Declaring a Cursor
16.8.2 Opening a Cursor
16.8.3 Fetching Rows From a Cursor
16.8.4 Closing a Cursor
16.8.5 Using %ROWTYPE With Cursors
16.8.6 Cursor Attributes
16.8.6.1 %ISOPEN
16.8.6.2 %FOUND
16.8.6.3 %NOTFOUND
16.8.6.4 %ROWCOUNT
16.8.6.5 Summary of Cursor States and Attributes
16.8.7 Cursor FOR Loop
16.8.8 Parameterized Cursors
16.9 REF CURSORs and Cursor Variables
16.9.1 REF CURSOR Overview
16.9.2 Declaring a Cursor Variable
16.9.2.1 Declaring a SYS_REFCURSOR Cursor Variable
16.9.2.2 Declaring a User Defined REF CURSOR Type Variable
16.9.3 Opening a Cursor Variable
16.9.4 Fetching Rows From a Cursor Variable
16.9.5 Closing a Cursor Variable
16.9.6 Usage Restrictions
16.9.7 Examples
16.9.7.1 Returning a REF CURSOR From a Function
16.9.7.2 Modularizing Cursor Operations
16.9.8 Dynamic Queries With REF CURSORs
16.10 Collections
16.10.1 Associative Arrays
16.10.2 Nested Tables
16.10.3 Varrays
16.11 Collection Methods
16.11.1 COUNT
16.11.2 DELETE
16.11.3 EXISTS
16.11.4 EXTEND

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 12

1080
1081
1082
1083
1084
1085
1086
1087
1088
1090
1092
1093
1096
1097
1098
1101
1102
1103
1104
1105
1109
1110
1111
1113
1114
1115
1116
1117
1120
1121
1126
1127
1128
1129
1130
1131
1132
1133
1136
1138
1139
1140
1141
1143
1145
1147
1148
1149

16.11.5 FIRST
16.11.6 LAST
16.11.7 LIMIT
16.11.8 NEXT
16.11.9 PRIOR
16.11.10 TRIM
16.12 Working with Collections
16.12.1 TABLE()
16.12.2 Using the MULTISET UNION Operator
16.12.3 Using the FORALL Statement
16.12.4 Using the BULK COLLECT Clause
16.12.4.1 SELECT BULK COLLECT
16.12.4.2 FETCH BULK COLLECT
16.12.4.3 EXECUTE IMMEDIATE BULK COLLECT
16.12.4.4 RETURNING BULK COLLECT
16.12.5 Errors and Messages
16.13 Triggers
16.13.1 Overview
16.13.2 Types of Triggers
16.13.3 Creating Triggers
16.13.4 Trigger Variables
16.13.5 Transactions and Exceptions
16.13.6 Compound Triggers
16.13.7 Trigger Examples
16.13.7.1 Before Statement-Level Trigger
16.13.7.2 After Statement-Level Trigger
16.13.7.3 Before Row-Level Trigger
16.13.7.4 After Row-Level Trigger
16.13.7.5 INSTEAD OF Trigger
16.13.7.6 Compound Triggers
16.14 Packages
16.15 Object Types and Objects
16.15.1 Basic Object Concepts
16.15.1.1 Attributes
16.15.1.2 Methods
16.15.1.3 Overloading Methods
16.15.2 Object Type Components
16.15.2.1 Object Type Specification Syntax
16.15.2.2 Object Type Body Syntax
16.15.3 Creating Object Types
16.15.3.1 Member Methods
16.15.3.2 Static Methods
16.15.3.3 Constructor Methods
16.15.4 Creating Object Instances
16.15.5 Referencing an Object
16.15.6 Dropping an Object Type
17 Database Compatibility for Oracle Developers SQL Guide
17.1 ALTER DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 13

1150
1152
1153
1156
1159
1160
1161
1163
1165
1167
1169
1173
1175
1176
1177
1179
1180
1182
1183
1184
1195
1197
1202
1205
1207
1209
1214
1220
1223
1225
1228
1229
1230
1233
1235
1242
1243
1252
1259
1262
1263
1265
1266
1268
1269
1270
1272
1273

17.2 ALTER INDEX
17.3 ALTER PROCEDURE
17.4 ALTER PROFILE
17.5 ALTER QUEUE
17.6 ALTER QUEUE TABLE
17.7 ALTER ROLE… IDENTIFIED BY
17.8 ALTER ROLE - Managing Database Link and DBMS_RLS Privileges
17.9 ALTER SEQUENCE
17.10 ALTER SESSION
17.11 ALTER SYNONYM
17.12 ALTER TABLE
17.13 ALTER TRIGGER
17.14 ALTER TABLESPACE
17.15 ALTER USER… IDENTIFIED BY
17.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES
17.17 CALL
17.18 COMMENT
17.19 COMMIT
17.20 CREATE DATABASE
17.21 CREATE PUBLIC DATABASE LINK
17.22 CREATE DIRECTORY
17.23 CREATE FUNCTION
17.24 CREATE INDEX
17.25 CREATE MATERIALIZED VIEW
17.26 CREATE PACKAGE
17.27 CREATE PACKAGE BODY
17.28 CREATE PROCEDURE
17.29 CREATE PROFILE
17.30 CREATE QUEUE
17.31 CREATE QUEUE TABLE
17.32 CREATE ROLE
17.33 CREATE SCHEMA
17.34 CREATE SEQUENCE
17.35 CREATE SYNONYM
17.36 CREATE TABLE
17.37 CREATE TABLE AS
17.38 CREATE TRIGGER
17.39 CREATE TYPE
17.40 CREATE TYPE BODY
17.41 CREATE USER
17.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES
17.43 CREATE VIEW
17.44 DELETE
17.45 DROP DATABASE LINK
17.46 DROP DIRECTORY
17.47 DROP FUNCTION
17.48 DROP INDEX
17.49 DROP PACKAGE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 14

1274
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1295
1298
1300
1303
1304
1305
1306
1316
1317
1318
1319
1320
1322
1323
1324
1325
1326
1329
1331
1332
1336
1337
1338
1339
1340
1342
1350
1352
1354
1355

1359
1361
1356

17.50 DROP PROCEDURE
17.51 DROP PROFILE
17.52 DROP QUEUE
17.53 DROP QUEUE TABLE
17.54 DROP SYNONYM
17.55 DROP ROLE
17.56 DROP SEQUENCE
17.57 DROP TABLE
17.58 DROP TABLESPACE
17.59 DROP TRIGGER
17.60 DROP TYPE
17.61 DROP USER
17.62 DROP VIEW
17.63 EXEC
17.64 GRANT
17.65 INSERT
17.66 LOCK
17.67 REVOKE
17.68 ROLLBACK
17.69 ROLLBACK TO SAVEPOINT
17.70 SAVEPOINT
17.71 SELECT
17.72 SET CONSTRAINTS
17.73 SET ROLE
17.74 SET TRANSACTION
17.75 TRUNCATE
17.76 UPDATE
18 Database Compatibility Table Partitioning Guide
18.1 Selecting a Partition Type
18.1.1 Interval Range Partitioning
18.1.2 Automatic List Partitioning
18.2 Using Partition Pruning
18.2.1 Example - Partition Pruning
18.3 Partitioning Commands Compatible with Oracle Databases
18.3.1 CREATE TABLE...PARTITION BY
18.3.1.1 Example - PARTITION BY LIST
18.3.1.2 Example - AUTOMATIC LIST PARTITION
18.3.1.3 Example - PARTITION BY RANGE
18.3.1.4 Example - INTERVAL RANGE PARTITION
18.3.1.5 Example - PARTITION BY HASH
18.3.1.6 Example - PARTITION BY HASH...PARTITIONS num...
18.3.1.7 Example - PARTITION BY RANGE, SUBPARTITION BY LIST
18.3.2 ALTER TABLE...ADD PARTITION
18.3.2.1 Example - Adding a Partition to a LIST Partitioned Table
18.3.2.2 Example - Adding a Partition to a RANGE Partitioned Table
18.3.2.3 Example - Adding a Partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION
18.3.3 ALTER TABLE...ADD SUBPARTITION
18.3.3.1 Example - Adding a Subpartition to a LIST/RANGE Partitioned Table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 15

1363
1364
1366
1368
1370
1374
1376
1378
1381
1383
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1398
1399
1400
1401
1402
1403
1404
1406
1407
1409
1410
1412
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1432
1439
1449
1464
1469
1499

18.3.3.2 Example - Adding a Subpartition to a RANGE/LIST Partitioned Table
18.3.4 ALTER TABLE...SPLIT PARTITION
18.3.4.1 Example - Splitting a LIST Partition
18.3.4.2 Example - Splitting a RANGE Partition
18.3.4.3 Example - Splitting a RANGE/LIST Partition
18.3.5 ALTER TABLE...SPLIT SUBPARTITION
18.3.5.1 Example - Splitting a LIST Subpartition
18.3.5.2 Example - Splitting a RANGE Subpartition
18.3.6 ALTER TABLE...EXCHANGE PARTITION
18.3.6.1 Example - Exchanging a Table for a Partition
18.3.7 ALTER TABLE...MOVE PARTITION
18.3.7.1 Example - Moving a Partition to a Different Tablespace
18.3.8 ALTER TABLE...RENAME PARTITION
18.3.8.1 Example - Renaming a Partition
18.3.9 ALTER TABLE...SET INTERVAL
18.3.9.1 Example - Setting an Interval Range Partition
18.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC
18.3.10.1 Example - Setting an AUTOMATIC List Partition
18.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE
18.3.11.1 Example - Setting a SUBPARTITION TEMPLATE
18.3.12 DROP TABLE
18.3.13 ALTER TABLE...DROP PARTITION
18.3.13.1 Example - Deleting a Partition
18.3.14 ALTER TABLE...DROP SUBPARTITION
18.3.14.1 Example - Deleting a Subpartition
18.3.15 TRUNCATE TABLE
18.3.15.1 Example - Emptying a Table
18.3.16 ALTER TABLE...TRUNCATE PARTITION
18.3.16.1 Example - Emptying a Partition
18.3.17 ALTER TABLE...TRUNCATE SUBPARTITION
18.3.17.1 Example - Emptying a Subpartition
18.4 Handling Stray Values in a LIST or RANGE Partitioned Table
18.5 Specifying Multiple Partitioning Keys in a RANGE Partitioned Table
18.6 Retrieving Information about a Partitioned Table
18.6.1 Table Partitioning Views - Reference
18.6.1.1 ALL_PART_TABLES
18.6.1.2 ALL_TAB_PARTITIONS
18.6.1.3 ALL_TAB_SUBPARTITIONS
18.6.1.4 ALL_PART_KEY_COLUMNS
18.6.1.5 ALL_SUBPART_KEY_COLUMNS
19 ECPGPlus Guide
19.1 ECPGPlus - Overview
19.2 Using Embedded SQL
19.3 Using Descriptors
19.4 Building and Executing Dynamic SQL Statements
19.5 Error Handling
19.6 Reference
19.7 Supported Platforms

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 16

1500
1501
1502
1511
1514
1515
1516
1517
1520
1530
1535
1540
1541
1544
1553
1554
1555
1556
1565
1571
1572
1573
1576
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1610
1611
1612
1613
1615

20 EDB Postgres Language Pack Guide
20.1 Supported Database Server Versions
20.2 Installing and Configuring Language Pack
20.3 Using the Procedural Languages
20.4 Uninstalling Language Pack
21 EDB Postgres Advanced Server Security Features Guide
21.1 Protecting Against SQL Injection Attacks
21.1.1 SQL/Protect Overview
21.1.2 Configuring SQL/Protect
21.1.3 Common Maintenance Operations
21.1.4 Backing Up and Restoring a SQL/Protect Database
21.2 Virtual Private Database
21.3 sslutils
21.4 Data Redaction
22 EDB Postgres Advanced Server Guide
22.1 Introduction
22.1.1 Conventions Used in this Guide
22.1.2 About the Examples Used in this Guide
22.2 Enhanced Compatibility Features
22.3 Database Administration
22.3.1 Configuration Parameters
22.3.1.1 Setting Configuration Parameters
22.3.1.2 Summary of Configuration Parameters
22.3.1.3 Configuration Parameters by Functionality
22.3.1.3.1 Top Performance Related Parameters
22.3.1.3.1.1 shared_buffers
22.3.1.3.1.2 work_mem
22.3.1.3.1.3 maintenance_work_mem
22.3.1.3.1.4 wal_buffers
22.3.1.3.1.5 checkpoint_segments
22.3.1.3.1.6 checkpoint_completion_target
22.3.1.3.1.7 checkpoint_timeout
22.3.1.3.1.8 max_wal_size
22.3.1.3.1.9 min_wal_size
22.3.1.3.1.10 bgwriter_delay
22.3.1.3.1.11 seq_page_cost
22.3.1.3.1.12 random_page_cost
22.3.1.3.1.13 effective_cache_size
22.3.1.3.1.14 synchronous_commit
22.3.1.3.1.15 edb_max_spins_per_delay
22.3.1.3.1.16 pg_prewarm.autoprewarm
22.3.1.3.1.17 pg_prewarm.autoprewarm_interval
22.3.1.3.2 Resource Usage / Memory
22.3.1.3.3 Resource Usage / EDB Resource Manager
22.3.1.3.4 Query Tuning
22.3.1.3.5 Query Tuning / Planner Method Configuration
22.3.1.3.6 Reporting and Logging / What to Log
22.3.1.3.7 Auditing Settings

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 17

1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1631
1633
1641
1650
1653
1654
1655
1657
1660
1665
1666
1667
1670
1671
1673
1687
1692
1698
1699
1701
1702
1709
1729
1738
1755
1765
1786
1791
1796
1798

22.3.1.3.7.1 edb_audit
22.3.1.3.7.2 edb_audit_directory
22.3.1.3.7.3 edb_audit_filename
22.3.1.3.7.4 edb_audit_rotation_day
22.3.1.3.7.5 edb_audit_rotation_size
22.3.1.3.7.6 edb_audit_rotation_seconds
22.3.1.3.7.7 edb_audit_connect
22.3.1.3.7.8 edb_audit_disconnect
22.3.1.3.7.9 edb_audit_statement
22.3.1.3.7.10 edb_audit_tag
22.3.1.3.7.11 edb_audit_destination
22.3.1.3.7.12 edb_log_every_bulk_value
22.3.1.3.8 Client Connection Defaults / Locale and Formatting
22.3.1.3.9 Client Connection Defaults / Statement Behavior
22.3.1.3.10 Client Connection Defaults / Other Defaults
22.3.1.3.11 Compatibility Options
22.3.1.3.12 Customized Options
22.3.1.3.13 Ungrouped
22.3.2 Index Advisor
22.3.2.1 Index Advisor Components
22.3.2.2 Index Advisor Configuration
22.3.2.3 Using Index Advisor
22.3.2.4 Reviewing the Index Advisor Recommendations
22.3.2.5 Index Advisor Limitations
22.3.3 SQL Profiler
22.3.4 pgsnmpd
22.3.5 EDB Audit Logging
22.3.5.1 Audit Logging Configuration Parameters
22.3.5.2 Selecting SQL Statements to Audit
22.3.5.3 Enabling Audit Logging
22.3.5.4 Audit Log File
22.3.5.5 Using Error Codes to Filter Audit Logs
22.3.5.6 Using Command Tags to Filter Audit Logs
22.3.5.7 Redacting Passwords from Audit Logs
22.3.6 Unicode Collation Algorithm
22.4 EDB Resource Manager
22.5 libpq C Library
22.6 Debugger
22.7 Performance Analysis and Tuning
22.8 EDB Clone Schema
22.9 Enhanced SQL and Other Miscellaneous Features
22.10 System Catalog Tables
22.11 Advanced Server Exceptions
23 EDB pgAdmin4 Quickstart Linux Guide

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 18

1 EDB Postgres Advanced Server

With EDB Postgres Advanced Server, EnterpriseDB leads as the only worldwide company to deliver innovative and low cost open-source-derived database
solutions with commercial quality, ease of use, compatibility, scalability, and performance for small or large-scale enterprises.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 19

http://www.postgresql.org/
http://www.postgresql.org/
https://www.enterprisedb.com/docs/ocl_connector/latest/
https://www.enterprisedb.com/docs/edb_plus/latest/
https://www.enterprisedb.com/docs/language_pack/latest/

2 EDB Postgres Advanced Server Release Notes

EDB Postgres Advanced Server 13 is built on open-source PostgreSQL 13, which introduces myriad enhancements that enable databases to scale up and
scale out in more efficient ways. PostgreSQL 13 has significant performance improvements, which includes an improved indexing and lookup system, a
level up on query planning when using extended statistics, improved performance for queries that use aggregates or partitioned tables, and providing more
ways to monitor activity within a PostgreSQL database. And along with highly requested features like parallelized vacuuming, incremental sorting,
PostgreSQL 13 has a multitude of other new features and capabilities.

The EDB Postgres Advanced Server (Advanced Server) documentation describes the latest version of Advanced Server 13 including minor releases and
patches. The release notes in this section provide information on what was new in each release.

Version Release Date Upstream Merges

13.18.00 21 Nov 2024 13.18

13.16.22 08 Aug 2024 13.16

13.15.21 09 May 2024 13.15

13.14.20 08 Feb 2024 13.14

13.13.19 09 Nov 2023 13.13

13.12.18 25 Sep 2023

13.12.17 21 Aug 2023 13.12

13.11.15 11 May 2023 13.11

13.10.14 10 Feb 2023 13.10

13.9.13 10 Nov 2022 13.9

13.8.12 11 Aug 2022 13.8

13.7.11 23 May 2022 13.7

13.6.10 10 Feb 2022 13.6

13.5.9 11 Nov 2021 13.5

13.4.8 28 Sep 2021 13.4

13.3.7 25 May 2021 NA

13.3.6 14 May 2021 13.3

13.2.5 02 Feb 2021 13.2

13.1.4 12 Dec 2020 13, 13.1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 20

https://www.postgresql.org/docs/release/13.18/
https://www.postgresql.org/docs/release/13.16/
https://www.postgresql.org/docs/release/13.15/
https://www.postgresql.org/docs/release/13.14/
https://www.postgresql.org/docs/release/13.13/
https://www.postgresql.org/docs/release/13.12/
https://www.postgresql.org/docs/release/13.11/
https://www.postgresql.org/docs/release/13.10/
https://www.postgresql.org/docs/release/13.9/
https://www.postgresql.org/docs/release/13.8/
https://www.postgresql.org/docs/release/13.7/
https://www.postgresql.org/docs/13/release-13-6.html
https://www.postgresql.org/docs/13/release-13-5.html
https://www.postgresql.org/docs/13/release-13-4.html
https://www.postgresql.org/docs/13/release-13-3.html
https://www.postgresql.org/docs/13/release-13-2.html
https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/13/release-13-1.html

2.1 EDB Postgres Advanced Server 13.18.00 release notes

Released: 21 Nov 2024

EDB Postgres Advanced Server 13.18.00 includes the following enhancements and bug fixes:

Type Description Addresses

Upstream
merge

Merged with community PostgreSQL 13.18. This release includes a fix for CVE-2024-10978. See the PostgreSQL 13.18
Release Notes for more information.

CVE-2024-
10978

Bug fix Fixed an issue for Auditing. With edb_audit , now you can audit the initial connection process or authentication
messages as well.

#39540

Bug fix Fixed an issue for EDB*Loader. Now the negative bitmapset member not allowed error is resolved for
partitioned tables.

#39562

Bug fix Fixed an issue for Oracle Proc*c and ecpg with PROC . Corrected the macro definition in sqlda-proc.h
to fix the compilation errors when used.

#40573

Bug fix Fixed an issue for replication. Now the login of locked account on the physical replica is not allowed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 21

https://www.postgresql.org/support/security/CVE-2024-10978/
https://www.postgresql.org/docs/release/13.18/
https://www.postgresql.org/support/security/CVE-2024-10978/

2.2 EDB Postgres Advanced Server 13.16.22 release notes

Released: 8 Aug 2024

EDB Postgres Advanced Server 13.16.22 includes the following enhancements and bug fixes:

Type Description Addresses

Upstream
merge

Merged with community PostgreSQL 13.16. This release includes a fix for CVE-2024-7348. See the PostgreSQL 13.16
Release Notes for more information.

CVE-2024-
7348

Bug fix Fixed an issue for EDB*Loader. Now when multiple duplicate key errors occur during the load it doesn't slow down and
memory doesn't overflow.

#37017

Bug fix Fixed an issue for replication connections. Now it correctly displays the authentication failure error message. #101591

Bug fix Fixed an issue for ecpg . Now it supports do..while() in Pro*C mode (-C PROC). #35988

Bug fix Fixed an issue for edb_dblink_oci . Now it correctly push downs ANY and ALL operators when used with scalar
array.

Bug fix Fixed an issue for to_number() function. Now it correctly accepts the "+" sign. #92903

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 22

https://www.postgresql.org/support/security/CVE-2024-7348/
https://www.postgresql.org/docs/release/13.16/
https://www.postgresql.org/support/security/CVE-2024-7348/

2.3 EDB Postgres Advanced Server 13.15.21 release notes

Released: 9 May 2024

EDB Postgres Advanced Server 13.15.21 includes the following enhancements and bug fixes:

Type Description Addresses

Upstream
merge

Merged with community PostgreSQL 13.15. See the PostgreSQL 13.15 Release Notes for more information.

Bug fix Fixed an issue for edb_filter_log . Now it correctly redacts the password when the tab is used before the
keyword.

#36220

Bug fix
Fixed an issue for edb_audit on Windows. Now it correctly rotates the log files based on days configured in
edb_audit_rotation_day .

#99282

Bug fix Fixed an issue to fetch all the attributes correctly from the sub link in CONNECT BY processing to avoid the server
crash.

#102746

Bug fix Added conditional free path in add_path() to avoid the rare possible server crashes when the free path is still in
use, specially in the FDWs.

#86497

Bug fix Fixed a crash issue for edbldr . Now edbldr loads data into multiple tables with different encodings from the
target database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 23

https://www.postgresql.org/docs/release/14.15/

2.4 EDB Postgres Advanced Server 13.14.20 release notes

Released: 8 Feb 2024

EDB Postgres Advanced Server 13.14.20 includes the following enhancements and bug fixes:

Type Description Categ
ory

Upstream
merge

Merged with community PostgreSQL 13.14. Important: this release includes a CVE with a score of 8.0. See the PostgreSQL
13.14 Release Notes for more information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 24

https://www.postgresql.org/docs/release/13.14/

2.5 EDB Postgres Advanced Server 13.13.19 release notes

Released: 09 Nov 2023

EDB Postgres Advanced Server 13.13.19 includes the following enhancements and bug fixes:

Type Description Addresses

Bug fix Fixed a high memory usage issue due to the re-transformation of a DECODE expression.

Bug fix Fixed split partition failure issue due to case-sensitive partition name in edb_partition . #97109

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 25

2.6 EDB Postgres Advanced Server 13.12.18 release notes

Released: 22 Sep 2023

EDB Postgres Advanced Server 13.12.18 includes the following enhancements and bug fixes:

Type Description Addresses

Bug fix Hexadecimal values are now allowed as record and field delimiter in EDB*Loader. #91832

Bug fix Fixed memory leak in sub-transaction with usage of EXCEPTION in package. #94255

Bug fix Fixed the cache lookup error for event triggers with proper initialization of the variables in SPL.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 26

2.7 Version 13.12.17

Released: 21 Aug 2023

Updated: 30 Aug 2023

UpgradingUpgrading

After you upgrade to this version of EDB Postgres Advanced Server, you need to run edb_sqlpatch on all your databases to complete the
upgrade. This application checks that your databases system objects are up to date with this version. See the EDB SQL Patch documentation for
more information on how to deploy this tool.

After applying patchesAfter applying patches

Users making use of the UTL_MAIL package now require EXECUTE permission on the UTL_SMTP and UTL_TCP packages in addition to EXECUTE
permission on UTL_MAIL.

Users making use of the UTL_SMTP package now require EXECUTE permission on the UTL_TCP packages in addition to EXECUTE permission on
UTL_SMTP.

EDB Postgres Advanced Server 13.12.17 includes the following enhancements and bug fixes:

Type Description Addresses

Security fix EDB Postgres Advanced Server (EPAS) SECURITY DEFINER functions and procedures may be hijacked via
search_path.

CVE-2023-41117

Security fix EDB Postgres Advanced Server (EPAS) dbms_aq helper function may run arbitrary SQL as a superuser. CVE-2023-41119

Security fix EDB Postgres Advanced Server (EPAS) permissions bypass via accesshistory() CVE-2023-41113

Security fix EDB Postgres Advanced Server (EPAS) UTL_FILE permission bypass CVE-2023-41118

Security fix EDB Postgres Advanced Server (EPAS) permission bypass for materialized views CVE-2023-41116

Security fix EDB Postgres Advanced Server (EPAS) authenticated users may fetch any URL CVE-2023-41114

Security fix EDB Postgres Advanced Server (EPAS) permission bypass for large objects CVE-2023-41115

Security fix EDB Postgres Advanced Server (EPAS) DBMS_PROFILER data may be removed without permission CVE-2023-41120

Bug fix Allowed subtypes in INDEX BY clause of the packaged collection. #1371

Bug fix Fixed %type resolution when pointing to a packaged type field. #1243

Bug fix Profile: Fixed upgrade when REUSE constraints were ENABLED / DISABLED . #92739

Bug fix Set correct collation for packaged cursor parameters. #92739

Bug fix Rolled back autonomous transaction creating pg_temp in case of error. #91614

Bug fix Added checks to ensure required WAL logging in EXCHANGE PARTITION command.

AddressesAddresses

Entries in the Addresses column are either CVE numbers or, if preceded by #, a customer case number.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 27

https://www.enterprisedb.com/docs/tools/edb_sqlpatch
https://www.enterprisedb.com/docs/security/advisories/cve202341117/
https://www.enterprisedb.com/docs/security/advisories/cve202341119/
https://www.enterprisedb.com/docs/security/advisories/cve202341113/
https://www.enterprisedb.com/docs/security/advisories/cve202341118/
https://www.enterprisedb.com/docs/security/advisories/cve202341116/
https://www.enterprisedb.com/docs/security/advisories/cve202341114/
https://www.enterprisedb.com/docs/security/advisories/cve202341115/
https://www.enterprisedb.com/docs/security/advisories/cve202341120/

2.8 Version 13.11.15

EDB Postgres Advanced Server 13.11.15 includes the following enhancements:

Type Description Categ
ory

Upstream
merge

Merged with community PostgreSQL 13.11.15. See the community Release Notes for details.

Enhancement SQL Profiler and Index Advisor are now extensions and can be downloaded from EDB Repos.

Bug fix Fixed an issue in which "PASSWORD EXPIRE AT" was dumped when the password status wasn't expired. This fix prevents
marking the user account as expired after an upgrade.

Profil
e

Bug fix Fixed the password profile behavior after the password grace time has changed.

Bug fix Fixed unexpected error for edb_enable_pruning parameter. [Support ticket: #89863]

Bug fix Fixed an issue when a user enters Ctrl-c (SIGINT) to cancel the load in EDB*Loader. [Support ticket: #88734]

Bug fix Set correct object descriptions for redaction policy to make pg_dump work cleanly with --clean and --if-exists
options.

Bug fix Fixed pg_dump to dump password verify function for the user profile.

Bug fix Fixed assertion failure while terminating the process within the autonomous transaction.

Bug fix Fixed corner-case uninitialized-variable issues in SPL.

Bug fix Fixed memory leakage in anonymous blocks that use cast expressions. [Support ticket: #88816]

Bug fix Fixed EOF error from newly created dynamic partition when using edb_partition .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 28

https://www.postgresql.org/docs/release/13.11/
https://repos.enterprisedb.com/

2.9 Version 13.10.14

EDB Postgres Advanced Server 13.10.14 includes the following enhancements:

Type Description

Upstream merge Merged with community PostgreSQL 13.10.14. See the community Release Notes for details.

Bug fix Fix possible server crash with autonomous transaction and temp table. [Support tickets: #89602 and #82695]

Bug fix Allow the password expiry feature to work with SCRAM authentication. [Support ticket: #89340]

Bug fix Fix Bulk API for update on an invisible tuple. [Support ticket: #86900]

Bug fix Fix command tag for the partition objects. [Support ticket: #86598]

Bug fix Fix dynamic partitioning to avoid duplicate partitions in high concurrency. [Support ticket: #89194]

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 29

https://www.postgresql.org/docs/release/13.10/

2.10 Version 13.9.13

EDB Postgres Advanced Server 13.9.13 includes the following enhancements:

Type Description ID

C
a
t
e
g
o
r
y

Upstream
merge

Merged with community PostgreSQL 13.9.13. See the community Release Notes for details.

Enhancement
Enhance edb_filter_log.redact_password_commands so that passwords used in the CREATE/ALTER ROLE,
CREATE/ALTER USER, and CREATE/ALTER GROUP syntax will get redacted when using optional parameters. [Support
Ticket: #86366]

DB-
1984

Enhancement Improve an error when you alter the table column dependent on the package variable. [Support Ticket: #85027] DB-
1950

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 30

https://www.postgresql.org/docs/release/13.9/

2.11 Version 13.8.12

EDB Postgres Advanced Server 13.8.12 includes the following bug fixes:

Type Description ID Cate
gory

Upstream
merge

Merged with community PostgreSQL 13.8.12. See the community Release Notes for details.

Bug fix For the re-entrant block, initialize all variables of type collection declared in that block to NULL to avoid incorrect results
when the block is executed in a loop. [Support Ticket: #83856]

DB-
1870

Bug fix Disable index_advisor if it is a physical replica. [Support Ticket: #83312] DB-
1819

Bug fix Fix unexpected failure when the PLpgSQL procedure with OUT parameters is called twice. [Support Ticket: #83289] DB-
1818

Bug fix Fix unexpected behavior of autonomous transactions with explicit COMMIT command in SPL block. [Support Ticket:
#82695]

DB-
1787

Bug fix Correct check to forbid UPDATE of declarative partitioned tables. DB-
237

edbl
dr

Bug fix Fix the reindexdb test by skipping the SYS schema. DB-
1783

Bug fix Restore the portal-level snapshot after the procedure COMMIT/ROLLBACK in CALL statement execution in PL to avoid a
server crash.

DB-
1820

Bug fix Fix invalid results from ecpg with NOT. [Support Ticket: #83334] DB-
1822

ecpg

Bug fix Fix the server crash that fast pruning can cause in partition-wise join. [Support Ticket: #79071] DB-
1751

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 31

https://www.postgresql.org/docs/release/13.8/

2.12 Version 13.7.11

EDB Postgres Advanced Server 13.7.11 includes the following bug fixes:

Type Description ID Category

Upstream
merge

Merged with community PostgreSQL 13.7.11. See the community Release Notes for details.

Bug fix Add syntax check for TABLE(...) clause. [Support Ticket: #81624] DB-
1752

Bug fix Add an appropriate cast for const TIMESTAMP and TIMESTAMPTZ to the query pushed to the remote servers.
[Support Ticket: #72928]

DB-
1493

oci_dblink

Bug fix Do not push expressions to remote servers involving INTERVAL data type since representation in
EPAS/PostgreSQL is different.

DB-
1493

oci_dblink

Bug fix Fix NLS_TIMESTAMP_TZ_FORMAT setting in the remote connection so that timestamptz data gets the correct
representation.

DB-
1493

oci_dblink

Bug fix Add logic of encoding conversion at the time of writing the data on the remote servers. DB-
181

dblink_ora

Bug fix Force NO SCROLL for SPL's implicit cursors [Support Ticket: #79231]. DB-
1700

Bug fix Fix possible server crash in the partition-wise join when PARALLEL hint is used [Support Ticket: #81246]. DB-
1741

Bug fix Fix failing EXCHANGE ... PARTITION command for the newly added table when both are in the same
transaction [Support Ticket: #80298].

DB-
1721

edb_partitio
ning

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 32

https://www.postgresql.org/docs/release/13.7/

2.13 Version 13.6.10

EDB Postgres Advanced Server 13.6.10 includes the following bug fixes:

Type Description ID Category

Upstream
Merge

Merged with community PostgreSQL 13.6. See the community Release Notes for details.

Bug Fix Fix encoding conversion at the time of writing data to a remote server. [Support Ticket: #76625] DB-
1617

dblink_o
ci

Bug Fix Add pg_dump support for security-relevant columns of edb_policy. DB-
1438

Bug Fix Prevent possible crash after implicit rollback handling Bind and Describe messages. DB-
1451

Bug Fix Fix ENQUEUE, DROP QUEUE, DROP QUEUE TABLE when default_with_rowids is enabled. [Support Ticket:
#74632]

DB-
1500

dbms_aq:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 33

https://www.postgresql.org/about/news/postgresql-142-136-1210-1115-and-1020-released-2402/

2.14 Version 13.5.9

EDB Postgres Advanced Server 13.5.9 includes the following bug fixes:

Type Description ID
Cat
egor
y

Upstream
Merge

Merged with community PostgreSQL 13.5. See the community Release Notes for details.

Bug Fix Obey the AM meridian indicator correctly in to_timestamp() . [Support Ticket: #74035] DB-
149

Bug Fix
Fix dbms_job.upgrade.script.sql script to replace CREATE EXTENSION ... FROM ... with CREATE
EXTENSION ... VERSION unpackaged . [Support Ticket: #73176]

DB-
1461

Bug Fix Prevent possible crash after implicit rollback handling Parse protocol message. [Support Ticket: #72626] DB-
1449

Bug Fix Fix possible server crash when the package is dropped from another session DB-
1403

SPL

Bug Fix Allow dynamic partition creation to non-owner insert queries. [Support Ticket: #1277884] DB-
1230

Bug Fix Populate the event type for missing node type.
DB-
1184

edb
_au
dit

Bug Fix Fix server crash when the package is re-compiled in the same session. [Support Ticket: #1181417] DB-
1038

SPL

Bug Fix Fix edbldr to dynamically look for to_char() and to_date() functions, so that it can be used for non-redwood
mode. [Support Ticket: #1161302]

DB-
950

edbl
dr

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 34

https://www.postgresql.org/about/news/postgresql-141-135-129-1114-1019-and-9624-released-2349/

2.15 Version 13.4.8

EDB Postgres Advanced Server 13.4.8 includes the following bug fixes:

Type Description ID Category

Upstream Merge Merged with community PostgreSQL 13.4. See the community Release Notes for
details.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 35

https://www.postgresql.org/about/news/postgresql-134-128-1113-1018-9623-and-14-beta-3-released-2277/

2.16 Version 13.3.7

EDB Postgres Advanced Server 13.3.7 includes the following bug fixes:

Type Description ID

Bug
Fix

Fix pg_upgrade to allow the system catalog composite type used in user tables. DB-
1237

Bug
Fix

Fix possible misbehavior when aborting an autonomous transaction and also fix interaction of autonomous transactions with
edb_stmt_level_tx=on .

DB-
1034

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 36

2.17 Version 13.3.6

EDB Postgres Advanced Server 13.3.6 includes the following bug fixes:

Type Description ID Category

Upstream
Merge

Merged with community PostgreSQL 13.3. See the community Release Notes for details.

Bug Fix Prevent some uses of COMMIT and ROLLBACK in stored procedures that were unsafe and could cause
crashes. [Support Ticket: #1234722]

DB-
1183

Bug Fix Prevent index_advisor from interfering with materialized view creation. [Support Ticket: #1189859] DB-
1154

Bug Fix Support password redaction in edb_filter_log with the extended protocol, specially used with
connectors. [Support Ticket: #1234131]

DB-
1139

Bug Fix Correct QUEUE object handling in EVENT TRIGGER . DB-
1129

Bug Fix Correct REDACTION COLUMN object handling in EVENT TRIGGER . DB-
1129

Bug Fix Correct mishandling of CREATE and DROP views with autonomous transactions. DB-
1116

Bug Fix Fix pg_upgrade to not fail when a custom configuration file directory is used. [Support Ticket: #1200560] DB-
1084

Bug Fix Refrain from dropping trigger on parent table through partitioning dependency. [Support Ticket: #1187215] DB-
1063

Bug Fix Free temporary memory to avoid PGA memory accumulation and exceeds errors. [Support Ticket: #1129386] DB-
1061

dblink_ora

Bug Fix Fix possible server crash with partition-wish join push-down code path. DB-
1042

edb_dblink
_oci

Bug Fix Fix SPL plancache reference leak warning with parallel query. DB-
871

Bug Fix Fix incorrect error message in edbldr . [Support Ticket: #1104048] DB-
826

Bug Fix Allow partition creation with ROWIDS option. DB-
731

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 37

https://www.postgresql.org/about/news/postgresql-133-127-1112-1017-and-9622-released-2210/

2.18 Version 13.2.5

EDB Postgres Advanced Server 13.2.5 includes the following bug fixes:

Type Description ID Category

Upstream
Merge

Merged with community PostgreSQL 13.2. See the community Release Notes for details.

Bug Fix Use correct relation information while loading into multiple tables with a single control file to avoid unexpected
behavior. [Support Ticket: #1165964]

DB-
973

edbldr

Bug Fix For nested subprocedures, verify that a set-returning function is called in a valid place or not. DB-
946

Bug Fix Skip fetching hidden columns in IMPORT FOREIGN SCHEMA . [Support Ticket: #1151273] DB-
945

postgres_
fdw

Bug Fix
Skip parallel mode check in nextval() when it's been called for rowid during CREATE TABLE AS
SELECT . (#1115113)

DB-
937

Bug Fix Skip SQL Protect-related files when running pg_checksums or pg_verify_checksums . [Support Ticket:
#1140841]

DB-
919

Bug Fix Forbid CONNECT_BY_ROOT and SYS_CONNECT_BY_PATH in join expressions. DB-
914

Bug Fix Correct start position handling with multibyte encodings in INSTR . [Support Ticket: #1133262] DB-
911

Bug Fix Remove obsolete function overloading check condition in pg_dump . [Support Ticket: #1133344] DB-
892

Bug Fix Fix handling of whitespaces when the delimiter is whitespace. [Support Ticket: #1060286] DB-
739

edbldr

Bug Fix Resolution for server crash on executing the cached plan for an expression in a temporary expression state. DB-
650

SPL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 38

https://www.postgresql.org/about/news/postgresql-132-126-1111-1016-9621-and-9525-released-2165/

2.19 Version 13.1.4

New features, enhancements, bug fixes, and other changes in EDB Postgres Advanced Server 13 include:

Type Description

Upstream
Merges

Merged with community PostgreSQL 13 and 13.1. See the community Release Notes of 13 and 13.1 for details.

Feature
Automatic LIST Partitioning is an extension to LIST partitioning that allows a database to automatically create a partition for any new
distinct value of the LIST partitioning key. A new partition is created when data is inserted into the LIST partitioned table and the inserted
value does not match any of the existing table partitions.

Feature Additional smallint , int , bigint , and numeric variants in the MEDIAN aggregate function.

Feature Added support for CREATE INDEX syntax that contains a column name and number, i.e. (col_name,1) .

Feature Added support to alter the owner of the directory - ALTER DIRECTORY <dir_name> OWNER TO <role_name> .

Feature CSV and XML audit logs have been made consistent. It has been observed that there is a difference in terms of number of fields in the CSV
and XML formatted audit logs. Now the audit log is consistent across both formats.

Feature
Default behaviour for dbms_output made compatible with Redwood. By default, the dbms_output behaviour is off in Oracle; in
EPAS it is always on . In this release, EPAS adds a GUC to control the default behaviour for DBMS_OUTPUT package.

Feature
You can log the number of processed statements with edb_log_every_bulk_value .
Currently, during bulk execution EPAS did not identify the number of rows processed when edb_log_every_bulk_value was off .
This feature allows EPAS to log it both in the audit log file and server log file. This will help you analyze the logs for such cases.

Feature
Previously, EDB Loader would abort the whole operation if any record insertion fails due to a unique constraint violation. This is fixed by
using speculative insertion to insert rows. This behavior is enforced if handle_conflicts (a new parameter) is true and indexes
are present.

Feature
SYSDATE now behaves in a more compatible manner. SYSDATE output changes at every nesting level, so multiple copies of SYSDATE

in the same SQL query will return the same value each time. SYSDATE changes on successive statements in the same procedure or
within a nested function call.

Feature
PARALLEL [n] | NOPARALLEL option for CREATE TABLE and INDEX . Advanced Server now supports the PARALLEL [n] |
NOPARALLEL clause in the CREATE TABLE , ALTER TABLE , CREATE INDEX , and ALTER INDEX commands to enable or
disable parallelism on an index or a table.

Feature PARTITION [n] or SUBPARTITION [n] while creating a table. This feature allows you to automatically create [n] hash
partitions at a subpartition level.

Feature EDB Loader supports any connection parameters. You can use the EDB Loader -c or CONNSTR options to specify any connection
parameters supported by libpq. This includes SSL connection parameters.

Feature
The STATS_MODE function takes a set of values as an argument and returns the value that occurs with the highest frequency. If multiple
values appear with the same frequency, the STATS_MODE function arbitrarily chooses the first value and returns only that one value.

Feature
Added support for DBMS_SQL function/procedures (DEFINE_COLUMN_LONG , COLUMN_VALUE_LONG and
LAST_ERROR_POSITION).

Feature Added support for function to_timestamp_tz() .

Feature Added support for function/procedure specification inside package body.

Feature Added support for FM format in to_number function.

Feature Added support for AES192 and AES256 in the DBMS_CRYPTO package.

Feature Added support for the spell mode in to_char(timestamptz, text) function.

Feature Allow creating a compound trigger having WHEN clause with NEW/OLD variables and STATEMENT level triggering events. Enhanced
Redwood compatible view.

Feature
Log matched line of pg_hba.conf on successful client authentication. Enhanced pg_catcheck to test for and raise an error if a
relation's relfilenode is missing from the data directory.

Feature
Added support for utl_http.end_of_body exception. This feature declares the end_of_body exception into utl_http
package and throws the same from read_line , read_text , and read_raw package procedures when no data is left in the
response body.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 39

https://www.postgresql.org/docs/13/release-13.html
https://www.postgresql.org/docs/release/13.1/

Feature The UNIQUE and PRIMARY KEY constraint clauses now have a CREATE INDEX statement. This new syntax allows users to specify
explicit index details like fillfactor, etc. Columns specified in the constraint and the columns specified in the index must be the same.

Type Description

For information about Advanced Server features that are compatible with Oracle databases, see the Oracle Compatibility Guides.

Component Certification

The following components are included in the EDB Postgres Advanced Server v13 release:

EPAS 13.1.4
BART 2.6
Cloneschema 1.14
Connectors JDBC 42.2.12.3, ODBC 12.02.0000.02, .NET 4.1.5.1, OCL 13.1.4.1
EDB_Wait_States 1.0 (formerly known as Edb-Modules)
EDBPlus 39.0.0
EFM 4.0
Hdfs_fdw 2.0.7
Mongo_fdw 5.2.8
MySQL_fdw 2.5.5
MTK 54.0.0
Parallel Clone 1.8
PEM 7.16
PgAdmin 4.27
PgAgent 4.2.0
PgBouncer 1.14
PgPool 4.1.2
PostGIS 3.0.2
Procedural Language Packs – PL/Perl 5.26, PL/Python 3.7, PL/TCL 8.6
Slony 2.2.8

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 40

3 Supported Platforms

EDB Postgres Advanced Server v13 installers Linux and Windows server platforms. See Platform Compatibility for additional information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 41

https://www.enterprisedb.com/platform-compatibility#epas

4 Limitations

The following limitations apply:

EDB recommends you don't store the data directory of a production database on an NFS file system. If you plan to go against this
recommendation, see the 19.2.2.1. NFS section in the PostgreSQL documentation for guidance about configuration.
The LLVM JIT package is supported on RHEL x86 only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 42

https://www.postgresql.org/docs/14/creating-cluster.html#CREATING-CLUSTER-FILESYSTEM

5 Installing EDB Postgres Advanced Server

Select a link to access the applicable installation instructions:

Linux x86-64 (amd64)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

Oracle Linux (OL) 9, Oracle Linux (OL) 8

Rocky Linux 9, Rocky Linux 8

AlmaLinux 9, AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 22.04, Ubuntu 20.04

Debian 11

Linux IBM Power (ppc64le)

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9, RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 43

Windows

Windows Server 2019

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 44

5.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL) and derivatives

RHEL 9

RHEL 8

Oracle Linux (OL) 9

Oracle Linux (OL) 8

Rocky Linux 9

Rocky Linux 8

AlmaLinux 9

AlmaLinux 8

SUSE Linux Enterprise (SLES)

SLES 15

Debian and derivatives

Ubuntu 22.04

Ubuntu 20.04

Debian 11

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 45

5.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

If you are also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-9-${ARCH}-rpms"

NoteNote

If you are using a public cloud RHEL image, subscription manager may not be enabled and enabling it may incur unnecessary
charges. Equivalent packages may be available under a different name such as codeready-builder-for-rhel-9-rhui-rpms .
Consult the documentation for the RHEL image you are using to determine how to install codeready-builder .

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 46

https://www.enterprisedb.com/repos-downloads

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 47

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 48

5.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

If you're also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

NoteNote

If you're using a public cloud RHEL image, subscription manager might not be enabled. Enabling it might incur unnecessary
charges. Equivalent packages might be available under a different name, such as codeready-builder-for-rhel-8-rhui-rpms .
To determine how to install codeready-builder , consult the documentation for the RHEL image you're using.

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 49

https://www.enterprisedb.com/repos-downloads

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 50

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 51

5.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled crb

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 52

https://www.enterprisedb.com/repos-downloads

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 53

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 54

5.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install epel-release

Enable additional repositories to resolve dependencies:

sudo dnf config-manager --set-enabled powertools

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 55

https://www.enterprisedb.com/repos-downloads

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 56

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 57

5.1.5 Installing EDB Postgres Advanced Server on SLES 15 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.4/x86_64

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 13, the package name would
be edb-as13-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 58

https://www.enterprisedb.com/repos-downloads

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 59

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 60

5.1.6 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 61

https://www.enterprisedb.com/repos-downloads

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 62

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 63

5.1.7 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 64

https://www.enterprisedb.com/repos-downloads

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 65

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 66

5.1.8 Installing EDB Postgres Advanced Server on Debian 11 x86_64

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

apt-cache search enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the package

sudo apt-get -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo apt-get -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Initial configuration

This section steps you through getting started with your cluster including logging in, ensuring the installation was successful, connecting to your cluster,
and creating the user password.

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 67

https://www.enterprisedb.com/repos-downloads

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 68

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 69

5.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)

Operating system-specific install instructions are described in the corresponding documentation:

Red Hat Enterprise Linux (RHEL)

RHEL 9

RHEL 8

SUSE Linux Enterprise (SLES)

SLES 15

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 70

5.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-9.noarch.rpm

Refresh the cache:

sudo dnf makecache

If you are also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-9-${ARCH}-rpms"

NoteNote

If you are using a public cloud RHEL image, subscription manager may not be enabled and enabling it may incur unnecessary
charges. Equivalent packages may be available under a different name such as codeready-builder-for-rhel-9-rhui-rpms .
Consult the documentation for the RHEL image you are using to determine how to install codeready-builder .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 71

https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 72

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 73

5.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

dnf repolist | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Install the EPEL repository:

sudo dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Refresh the cache:

sudo dnf makecache

If you're also installing PostGIS, enable additional repositories to resolve dependencies:

ARCH=$(/bin/arch) subscription-manager repos --enable "codeready-builder-for-rhel-8-${ARCH}-rpms"

NoteNote

If you're using a public cloud RHEL image, subscription manager might not be enabled. Enabling it might incur unnecessary
charges. Equivalent packages might be available under a different name, such as codeready-builder-for-rhel-8-rhui-rpms .
To determine how to install codeready-builder , consult the documentation for the RHEL image you're using.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 74

https://www.enterprisedb.com/repos-downloads

Install the package

sudo dnf -y install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced Server you're installing. For example, if you're installing version 13, the package name is edb-
as13-server .

To install an individual component:

sudo dnf -y install <package_name>

Where package_name can be any of the available packages from the available package list.

Installing the server package creates an operating system user named enterprisedb. The user is assigned a user ID (UID) and a group ID (GID). The user has
no default password. Use the passwd command to assign a password for the user. The default shell for the user is bash , and the user's home directory
is /var/lib/edb/as13 .

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 75

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 76

5.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le

Prerequisites

Before you begin the installation process:

Set up the EDB repository.

Setting up the repository is a one-time task. If you have already set up your repository, you don't need to perform this step.

To determine if your repository exists, enter this command:

zypper lr -E | grep enterprisedb

If no output is generated, the repository isn't installed.

To set up the EDB repository:

1. Go to EDB repositories.

2. Select the button that provides access to the EDB repository.

3. Select the platform and software that you want to download.

4. Follow the instructions for setting up the EDB repository.

Activate the required SUSE module:

sudo SUSEConnect -p PackageHub/15.4/ppc64le

Refresh the metadata:

sudo zypper refresh

Install the package

sudo zypper -n install edb-as<xx>-server

Where <xx> is the version of the EDB Postgres Advanced server you are installing. For example, if you are installing version 13, the package name would
be edb-as13-server .

To install an individual component:

sudo zypper -n install <package_name>

Where package_name can be any of the available packages from the available package list.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 77

https://www.enterprisedb.com/repos-downloads

Initial configuration

Getting started with your cluster involves logging in, ensuring the installation and initial configuration was successful, connecting to your cluster, and
creating the user password.

First, you need to initialize and start the database cluster. The edb-as-13-setup script creates a cluster in Oracle-compatible mode with the edb
sample database in the cluster. To create a cluster in Postgres mode, see Initializing the cluster in Postgres mode.

sudo PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

sudo systemctl start edb-as-13

To work in your cluster, log in as the enterprisedb user. Connect to the database server using the psql command-line client. Alternatively, you can use a
client of your choice with the appropriate connection string.

sudo su - enterprisedb

psql edb

The server runs with the peer or ident permission by default. You can change the authentication method by modifying the pg_hba.conf file.

Before changing the authentication method, assign a password to the database superuser, enterprisedb. For more information on changing the
authentication, see Modifying the pg_hba.conf file.

Experiment

Now you're ready to create and connect to a database, create a table, insert data in a table, and view the data from the table.

First, use psql to create a database named hr to hold human resource information.

output
CREATE DATABASE

Connect to the hr database inside psql:

\c hr

output
psql (13.0.0, server 13.0.0)
You are now connected to database "hr" as user "enterprisedb".

Create columns to hold department numbers, unique department names, and locations:

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

ALTERALTER ROLEROLE enterprisedb IDENTIFIEDIDENTIFIED BYBY passwordpassword;

running inin psql
CREATECREATE DATABASEDATABASE
hr;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 78

output
CREATE TABLE

Insert values into the dept table:

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

output
INSERT 0 1

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

output
INSERT 0 1

View the table data by selecting the values from the table:

SELECT * FROM dept;

output
deptno | dname | loc
--------+------------+----------
10 | ACCOUNTING | NEW YORK
20 | RESEARCH | DALLAS
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 79

5.3 Installing EDB Postgres Advanced Server on Windows

This section provides comprehensive information about installing EDB Postgres Advanced Server (Advanced Server), including:

Software prerequisites for Advanced Server 13 installation on Windows.
Graphical installation options available through the interactive setup wizard on Windows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 80

5.3.1 Requirements overview

For information about the platforms and versions supported by Advanced Server, see Platform Compatibility.

LimitationLimitation

The data directory of a production database should not be stored on an NFS file system.

Windows installation prerequisites

User privilegesUser privileges

To perform an Advanced Server installation on a Windows system, you must have administrator privileges. If you are installing Advanced Server on a
Windows system that is configured with User Account Control enabled, you can assume sufficient privileges to invoke the graphical installer by
right clicking on the name of the installer and selecting Run as administrator from the context menu.

Windows-specific software requirementsWindows-specific software requirements

You should apply Windows operating system updates before invoking the Advanced Server installer. If (during the installation process) the installer
encounters errors, exit the installation, and ensure that your version of Windows is up-to-date before restarting the installer.

Migration Toolkit or EDB*Plus installation pre-requisitesMigration Toolkit or EDB*Plus installation pre-requisites

Before using StackBuilder Plus to install Migration Toolkit or EDB*Plus, you must first install Java (version 1.8 or later). If you are using Windows, Java
installers and instructions are available online at:

http://www.java.com/en/download/manual.jsp

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 81

https://www.enterprisedb.com/platform-compatibility#epas
http://www.java.com/en/download/manual.jsp

5.3.2 Installing Advanced Server with the interactive installer

You can use the Advanced Server interactive installer to install Advanced Server on Windows. The interactive installer is available from the EDB website at:

https://www.enterprisedb.com/advanced-downloads

You can invoke the graphical installer in different installation modes to perform an Advanced Server installation:

For information about using the graphical installer, see Performing a Graphical Installation on Windows.
For information about performing an unattended installation, see Performing an Unattended Installation.
For information about performing an installation with limited privileges, see Performing an Installation with Limited Privileges.
For information about the command line options you can include when invoking the installer, see Reference - Command Line Options.

During the installation, the graphical installer copies a number of temporary files to the location specified by the TEMP environment variable. You can
optionally specify an alternate location for the temporary files by modifying the TEMP environment variable.

If invoking the installer from the command line, you can set the value of the variable on the command line. Use the command:

SET TEMP=temp_file_location

Where temp_file_location specifies the alternate location for the temporary files and must match the permissions with the TEMP environment
variable.

NoteNote

If you are invoking the installer to perform a system upgrade, the installer will preserve the configuration options specified during the previous
installation.

Setting Cluster Preferences during a Graphical InstallationSetting Cluster Preferences during a Graphical Installation

During an installation, the graphical installer invokes the PostgreSQL initdb utility to initialize a cluster. If you are using the graphical installer, you can
use the INITDBOPTS environment variable to specify your initdb preferences. Before invoking the graphical installer, set the value of INITDBOPTS
at the command line, specifying one or more cluster options. For example:

SET INITDBOPTS= -k -E=UTF-8

If you specify values in INITDBOPTS that are also provided by the installer (such as the –D option, which specifies the installation directory), the value
specified in the graphical installer will supersede the value if specified in INITDBOPTS .

For more information about using initdb cluster configuration options, see the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-initdb.html

In addition to the cluster configuration options documented in the PostgreSQL core documentation, Advanced Server supports the following initdb
options:

--no-redwood-compat

--no-redwood-compat instructs the server to create the cluster in PostgreSQL mode. When the cluster is created in PostgreSQL mode, the name of
the database superuser is postgres and the name of the default database is postgres . A small subset of Advanced Server features compatible with
Oracle databases are available with this mode. However, we recommend using the Advanced Server in redwood compatibility mode to have access to all its
Oracle compatibility features.

--redwood-like

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 82

https://www.enterprisedb.com/advanced-downloads
https://www.postgresql.org/docs/current/static/app-initdb.html

--redwood-like instructs the server to use an escape character (an empty string ('')) following the LIKE (or PostgreSQL compatible ILIKE)
operator in a SQL statement that is compatible with Oracle syntax.

--icu-short-form

--icu-short-form creates a cluster that uses a default ICU (International Components for Unicode) collation for all databases in the cluster. For more
information about Unicode collations, see Basic Unicode collation algorithm concepts.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 83

5.3.2.1 Performing a graphical installation on Windows

A graphical installation is a quick and easy way to install Advanced Server 13 on a Windows system. Use the wizard's dialogs to specify information about
your system and system usage; when you have completed the dialogs, the installer performs an installation based on the selections made during the setup
process.

To invoke the wizard, you must have administrator privileges. Assume administrator privileges, and double-click the edb-as13-server-13.x.x-x-
windows-x64 executable file.

NoteNote

To install Advanced Server on some versions of Windows, you may be required to right click on the file icon and select Run as
Administrator from the context menu to invoke the installer with Administrator privileges.

Fig. 1: The Advanced Server installer Welcome window

Click Next to continue.

The EnterpriseDB License Agreement opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 84

Fig. 2: The EnterpriseDB License Agreement

Carefully review the license agreement before highlighting the appropriate radio button; click Next to continue.

The Installation Directory window opens.

Fig. 3: The Installation Directory window

By default, the Advanced Server installation directory is:

C:\Program Files\edb\as13

You can accept the default installation location, and click Next to continue, or optionally click the File Browser icon to open the Browse For
Folder dialog to choose an alternate installation directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 85

NoteNote

The data directory of a production database should not be stored on an NFS file system.

Fig. 4: The Select Components window

The Select Components window contains a list of optional components that you can install with the Advanced Server Setup wizard. You can omit a
module from the Advanced Server installation by deselecting the box next to the components name.

The Setup wizard can install the following components while installing Advanced Server 13:

EDB Postgres Advanced ServerEDB Postgres Advanced Server

Select the EDB Postgres Advanced Server option to install Advanced Server 13.

pgAdmin 4pgAdmin 4

Select the pgAdmin 4 option to install the pgAdmin 4 client. pgAdmin 4 provides a powerful graphical interface for database management and
monitoring.

StackBuilder PlusStackBuilder Plus

The StackBuilder Plus utility is a graphical tool that can update installed products, or download and add supporting modules (and the resulting
dependencies) after your Advanced Server setup and installation completes. See Using StackBuilder Plus for more information about StackBuilder Plus.

Command Line ToolsCommand Line Tools

The Command Line Tools option installs command line tools and supporting client libraries including:

libpq
psql
EDB*Loader
ecpgPlus
pg_basebackup, pg_dump, and pg_restore
pg_bench
and more.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 86

NoteNote

The Command Line Tools are required if you are installing Advanced Server or pgAdmin 4.

After selecting the components you wish to install, click Next to open the Additional Directories window.

Fig. 5: The Additional Directories window

By default, the Advanced Server data files are saved to:

C:\Program Files\edb\as13\data

The default location of the Advanced Server Write-Ahead Log (WAL) Directory is:

C:\Program Files\edb\as13\data\pg_wal

Advanced Server uses write-ahead logs to promote transaction safety and speed transaction processing; when you make a change to a table, the change is
stored in shared memory and a record of the change is written to the write-ahead log. When you perform a COMMIT , Advanced Server writes contents of
the write-ahead log to disk.

Accept the default file locations, or use the File Browser icon to select an alternate location; click Next to continue to the Advanced Server
Dialect window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 87

Fig. 6: The Advanced Server Dialect window

Use the drop-down listbox on the Advanced Server Dialect window to choose a server dialect. The server dialect specifies the compatibility
features supported by Advanced Server.

By default, Advanced Server installs in Compatible with Oracle mode; you can choose between Compatible with Oracle and
Compatible with PostgreSQL installation modes.

Compatible with OracleCompatible with Oracle

If you select Compatible with Oracle , the installation will include the following features:

Data dictionary views that is compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Schemas (dbo and sys) compatible with Oracle databases added to the SEARCH_PATH .
Support for the following Oracle built-in packages:

Package Functionality compatible with Oracle Databases

dbms_aler
t

Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_outp
ut

Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_util
ity

Provides various utility programs.

dbms_aqad
m

Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 88

dbms_prof
iler

Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance
profiling session.

dbms_rand
om

Provides a number of methods to generate random values.

dbms_reda
ct

Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_sche
duler

Provides a way to create and manage jobs, programs, and job schedules.

dbms_cryp
to

Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to
generate cryptographically strong random values.

dbms_mvie
w

Provides a way to manage and refresh materialized views and their dependencies.

dbms_sess
ion

Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encod
e

Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

Package Functionality compatible with Oracle Databases

This is not a comprehensive list of the compatibility features for Oracle included when Advanced Server is installed in Compatible with Oracle
mode; for more information, see the Database Compatibility for Oracle Developers Built-in Package Guide available from the EDB website at:

https://www.enterprisedb.com/docs

If you choose to install in Compatible with Oracle mode, the Advanced Server superuser name is enterprisedb .

Compatible with PostgreSQLCompatible with PostgreSQL

If you select Compatible with PostgreSQL , Advanced Server will exhibit compatibility with PostgreSQL version 13. If you choose to install in
Compatible with PostgreSQL mode, the default Advanced Server superuser name is postgres .

For detailed information about PostgreSQL functionality, visit the official PostgreSQL website at:

http://www.postgresql.org

After specifying a configuration mode, click Next to continue to the Password window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 89

https://www.enterprisedb.com/docs
http://www.postgresql.org

Fig. 7: The Password window

Advanced Server uses the password specified on the Password window for the database superuser. The specified password must conform to any security
policies existing on the Advanced Server host.

After you enter a password in the Password field, confirm the password in the Retype Password field, and click Next to continue.

The Additional Configuration window opens.

Fig. 8: The Additional Configuration window

Use the fields on the Additional Configuration window to specify installation details:

Use the Port field to specify the port number that Advanced Server should listen to for connection requests from client applications. The default is
5444 .

If the Locale field is set to [Default locale] , Advanced Server uses the system locale as the working locale. Use the drop-down listbox
next to Locale to specify an alternate locale for Advanced Server.

By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 90

By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or
PostgreSQL) . Clear the check box next to Install sample tables and procedures if you do not wish to have sample data installed.

After verifying the information on the Additional Configuration window, click Next to open the Dynatune Dynamic Tuning: Server
Utilization window.

The graphical Setup wizard facilitates performance tuning via the Dynatune Dynamic Tuning feature. Dynatune functionality allows Advanced Server to
make optimal usage of the system resources available on the host machine on which it is installed.

Fig. 9: The Dynatune Dynamic Tuning: Server Utilization window

The edb_dynatune configuration parameter determines how Advanced Server allocates system resources. Use the radio buttons on the Server
Utilization window to set the initial value of the edb_dynatune configuration parameter:

Select Development to set the value of edb_dynatune to 33 . A low value dedicates the least amount of the host machine’s resources to the
database server. This is a good choice for a development machine.
Select General Purpose to set the value of edb_dynatune to 66 . A mid-range value dedicates a moderate amount of system resources to
the database server. This would be a good setting for an application server with a fixed number of applications running on the same host as
Advanced Server.
Select Dedicated to set the value of edb_dynatune to 100 . A high value dedicates most of the system resources to the database server. This
is a good choice for a dedicated server host.

After the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory
of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

Select the appropriate setting for your system, and click Next to continue to the Dynatune Dynamic Tuning: Workload Profile window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 91

Fig. 10: The Dynatune Dynamic Tuning: Workload Profile window

Use the radio buttons on the Workload Profile window to specify the initial value of the edb_dynatune_profile configuration parameter. The
edb_dynatune_profile parameter controls performance-tuning aspects based on the type of work that the server performs.

Select Transaction Processing (OLTP systems) to specify an edb_dynatune_profile value of oltp . Recommended when
Advanced Server is supporting heavy online transaction processing.
Select General Purpose (OLTP and reporting workloads) to specify an edb_dynatune_profile value of mixed .
Recommended for servers that provide a mix of transaction processing and data reporting.
Select Reporting (Complex queries or OLAP workloads) to specify an edb_dynatune_profile value of reporting .
Recommended for database servers used for heavy data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data
directory of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available from the EDB
website at:

https://www.enterprisedb.com/docs

Click Next to continue.

By default, Advanced Server is configured to start the service when the system boots. The Pre Installation Summary opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 92

https://www.enterprisedb.com/docs

Fig. 11: The Pre Installation Summary

The Pre Installation Summary provides an overview of the options specified during the Setup process. Review the options before clicking
Next ; click Back to navigate back through the dialogs and update any options.

The Ready to Install window confirms that the installer has the information it needs about your configuration preferences to install Advanced
Server. Click Next to continue.

Fig. 12: The Ready to Install window

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 93

Fig. 13: Installing Advanced Server

As each supporting module is unpacked and installed, the module’s installation is confirmed with a progress bar.

Before the Setup wizard completes the Advanced Server installation, it offers to Launch StackBuilder Plus at exit?

Fig. 14: The Setup wizard offers to Launch StackBuilder Plus at exit

You can clear the StackBuilder Plus check box and click Finish to complete the Advanced Server installation, or accept the default and proceed
to StackBuilder Plus.

EDB Postgres StackBuilder Plus is included with the installation of Advanced Server and its core supporting components. StackBuilder Plus is a graphical
tool that can update installed products, or download and add supporting modules (and the resulting dependencies) after your Advanced Server setup and
installation completes. See Using StackBuilder Plus for more information about StackBuilder Plus.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 94

5.3.2.2 Invoking the graphical installer from the command line

The command line options of the Advanced Server installer offer functionality for Windows systems that reside in situations where a graphical installation
may not work because of limited resources or privileges. You can:

Include the --mode unattended option when invoking the installer to perform an installation without user input.
Invoke the installer with the --extract-only option to perform a minimal installation when you don’t hold the privileges required to perform a
complete installation.

Not all command line options are suitable for all situations. For a complete reference guide to the command line options, see Reference - Command Line
Options.

NoteNote

If you are invoking the installer from the command line to perform a system upgrade, the installer will ignore command line options, and preserve
the configuration of the previous installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 95

5.3.2.2.1 Performing an unattended installation

To specify that the installer should run without user interaction, include the --mode unattended command line option. In unattended mode, the
installer uses one of the following sources for configuration parameters:

command line options (specified when invoking the installer)
parameters specified in an option file
Advanced Server installation defaults

You can embed the non-interactive Advanced Server installer within another application installer; during the installation process, a progress bar allows the
user to view the progression of the installation.

You must have administrative privileges to install Advanced Server using the --mode unattended option. If you are using the --mode
unattended option to install Advanced Server with a client, the calling client must be invoked with superuser or administrative privileges.

To start the installer in unattended mode, navigate to the directory that contains the executable file, and enter:

edb-as13-server-13.x.x-x-windows-x64.exe --mode unattended --superpassword
database_superuser_password --servicepassword system_password

When invoking the installer, include the --servicepassword option to specify an operating system password for the user installing Advanced Server.

Use the --superpassword option to specify a password that conforms to the password security policies defined on the host; enforced password policies
on your system may not accept the default password (enterprisedb) .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 96

5.3.2.2.2 Performing an installation with limited privileges

To perform an abbreviated installation of Advanced Server without access to administrative privileges, invoke the installer from the command line and
include the --extract-only option. The --extract-only option extracts the binary files in an unaltered form, allowing you to experiment with a
minimal installation of Advanced Server.

If you invoke the installer with the --extract-only options, you can either manually create a cluster and start the service, or run the installation
script. To manually create the cluster, you must:

Use initdb to initialize the cluster
Configure the cluster
Use pg_ctl to start the service

For more information about the initdb and pg_ctl commands, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/app-initdb.html

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

If you include the --extract-only option, the installer steps through a shortened form of the Setup wizard. During the brief installation process, the
installer generates an installation script that can be later used to complete a more complete installation. You must have administrative privileges to invoke
the installation script.

The installation script:

Initializes the database cluster if the cluster is empty.
Configures the server to start at boot-time.
Establishes initial values for Dynatune (dynamic tuning) variables.

The scripted Advanced Server installation does not create menu shortcuts or provide access to EDB Postgres StackBuilder Plus, and no modifications are
made to registry files.

To perform a limited installation and generate an installation script, download and unpack the Advanced Server installer. Navigate into the directory that
contains the installer, and invoke the installer with the command:

edb-as13-server-13.x.x-x-windows.exe --extract-only yes

A dialog opens, prompting you to choose an installation language. Select a language for the installation from the drop-down listbox, and click OK to
continue. The Setup Wizard opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 97

https://www.postgresql.org/docs/current/static/app-initdb.html
https://www.postgresql.org/docs/current/static/app-pg-ctl.html

Fig. 15: The Welcome window

Click Next to continue.

Fig. 16: Specify an installation directory

On Windows, the default Advanced Server installation directory is:

C:\Program Files\edb\as13

You can accept the default installation location and click Next to continue to the Ready to Install window, or optionally click the File
Browser icon to choose an alternate installation directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 98

Fig. 17: The Setup wizard is ready to install Advanced Server

Click Next to proceed with the Advanced Server installation. During the installation, progress bars and popups mark the installation progress. The
installer notifies you when the installation is complete.

Fig. 18: The Advanced Server installation is complete

After completing the minimal installation, you can execute a script to initialize a cluster and start the service. The script is (by default) located in:

C:\Program Files\edb

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 99

5.3.2.2.3 Reference - Command line options

You can optionally include the following parameters for an Advanced Server installation on the command line, or in a configuration file when invoking the
Advanced Server installer.

--create_samples { yes | no }

Use the --create_samples option to specify whether the installer should create the sample tables and procedures for the database dialect specified
with the --databasemode parameter. The default is yes .

--databasemode { oracle | postgresql }

Use the --databasemode parameter to specify a database dialect. The default is oracle .

--datadir data_directory

Use the --datadir parameter to specify a location for the cluster's data directory. data_directory is the name of the directory; include the
complete path to the desired directory.

--debuglevel { 0 | 1 | 2 | 3 | 4 }

Use the --debuglevel parameter to set the level of detail written to the debug_log file (see --debugtrace). Higher values produce more detail
in a longer trace file. The default is 2 .

--debugtrace debug_log

Use the --debugtrace parameter to troubleshoot installation problems. debug_log is the name of the file that contains troubleshooting details.

--disable-components component_list

Use the --disable-components parameter to specify a list of Advanced Server components to exclude from the installation. By default,
component_list contains '' (the empty string). component_list is a comma-separated list containing one or more of the following components:

dbserver

EDB Postgres Advanced Server 13.

pgadmin4

The EDB Postgres pgAdmin 4 provides a powerful graphical interface for database management and monitoring.

--enable_acledit { 1 | 0 }

The --enable_acledit 1 option instructs the installer to grant permission to the user specified by the --serviceaccount option to access the
Advanced Server binaries and data directory. By default, this option is disabled if --enable_acledit 0 is specified or if the --enable_acledit
option is completely omitted.

NoteNote

Specification of this option is valid only when installing on Windows. The --enable_acledit 1 option should be specified when a
discretionary access control list (DACL) needs to be set for allowing access to objects on which Advanced Server is to be

installed. See the following for information on a DACL: https://msdn.microsoft.com/en-us/library/windows/desktop/aa446597(v=vs.85).aspx

In order to perform future operations such as upgrading Advanced Server, access to the data directory must exist for the service account user specified

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 100

https://msdn.microsoft.com/en-us/library/windows/desktop/aa446597(v=vs.85).aspx

In order to perform future operations such as upgrading Advanced Server, access to the data directory must exist for the service account user specified
by the --serviceaccount option. By specifying the --enable_acledit 1 option, access to the data directory by the service account user is
provided.

--enable-components component_list

Although this option is listed when you run the installer with the --help option, the --enable-components parameter has absolutely no effect on
which components are installed. All components will be installed regardless of what is specified in component_list . In order to install only specific
selected components, you must use the --disable-components parameter previously described in this section to list the components you do not
want to install.

--extract-only { yes | no }

Include the --extract-only parameter to indicate that the installer should extract the Advanced Server binaries without performing a complete
installation. Superuser privileges are not required for the --extract-only option. The default value is no .

--help

Include the --help parameter to view a list of the optional parameters.

--installer-language { en | ja | zh_CN | zh_TW | ko }

Use the --installer-language parameter to specify an installation language for Advanced Server. The default is en .

en specifies English.

ja specifies Japanese

zh_CN specifies Chinese Simplified.

zh_TW specifies Traditional Chinese.

ko specifies Korean.

--install_runtimes { yes | no }

Include --install_runtimes to specify whether the installer should install the Microsoft Visual C++ runtime libraries. Default is yes .

--locale locale

Specifies the locale for the Advanced Server cluster. By default, the installer will use to the locale detected by initdb .

--mode { unattended }

Use the --mode unattended parameter to specify that the installer should perform an installation that requires no user input during the installation
process.

--optionfile config_file

Use the --optionfile parameter to specify the name of a file that contains the installation configuration parameters. config_file must specify
the complete path to the configuration parameter file.

--prefix installation_dir/as13

Use the --prefix parameter to specify an installation directory for Advanced Server. The installer will append a version-specific sub-directory (that is,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 101

Use the --prefix parameter to specify an installation directory for Advanced Server. The installer will append a version-specific sub-directory (that is,
as13) to the specified directory. The default installation directory is:

C:\Program Files\edb\as13

--serverport port_number

Use the --serverport parameter to specify a listener port number for Advanced Server.

If you are installing Advanced Server in unattended mode, and do not specify a value using the --serverport parameter, the installer will use port
5444 , or the first available port after port 5444 as the default listener port.

--server_utilization {33 | 66 | 100}

Use the --server_utilization parameter to specify a value for the edb_dynatune configuration parameter. The edb_dynatune
configuration parameter determines how Advanced Server allocates system resources.

A value of 33 is appropriate for a system used for development. A low value dedicates the least amount of the host machine’s resources to the
database server.
A value of 66 is appropriate for an application server with a fixed number of applications. A mid-range value dedicates a moderate amount of
system resources to the database server. The default value is 66.
A value of 100 is appropriate for a host machine that is dedicated to running Advanced Server. A high value dedicates most of the system resources
to the database server.

When the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory
of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for the changes to take effect.

--serviceaccount user_account_name

Use the --serviceaccount parameter to specify the name of the user account that owns the server process.

If --databasemode is set to oracle (the default), the default value of --serviceaccount is enterprisedb .
If --databasemode is postgresql , the default value of --serviceaccount is set to postgres .

Please note that for security reasons, the --serviceaccount parameter must specify the name of an account that does not hold administrator
privileges.

If you specify both the --serviceaccount option and the --enable_acledit 1 option when invoking the installer, the database service and
pgAgent will use the same service account, thereby having the required permissions to access the Advanced Server binaries and data directory.

NoteNote

If you do not include the --serviceaccount option when invoking the installer, the NetworkService account will own the database
service, and the pgAgent service will be owned by either enterprisedb or postgres (depending on the installation mode).

--servicename service_name

Use the --servicename parameter to specify the name of the Advanced Server service. The default is edb-as-13 .

--servicepassword user_password

Use --servicepassword to specify the OS system password. If unspecified, the value of --servicepassword defaults to the value of --
superpassword .

--superaccount super_user_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 102

Use the --superaccount parameter to specify the user name of the database superuser.

If --databasemode is set to oracle (the default), the default value of --superaccount is enterprisedb .
If --databasemode is set to postgresql , the default value of --superaccount is set to postgres .

--superpassword superuser_password

Use --superpassword to specify the database superuser password. If you are installing in non-interactive mode, --superpassword defaults to
enterprisedb .

--unattendedmodeui { none | minimal | minimalWithDialogs }

Use the --unattendedmodeui parameter to specify installer behavior during an unattended installation.

Include --unattendedmodeui none to specify that the installer should not display progress bars during the Advanced Server installation.

Include --unattendedmodeui minimal to specify that the installer should display progress bars during the installation process. This is the default
behavior.

Include --unattendedmodeui minimalWithDialogs to specify that the installer should display progress bars and report any errors encountered
during the installation process (in additional dialogs).

--version

Include the --version parameter to retrieve version information about the installer:

EDB Postgres Advanced Server 13.0.3-1 --- Built on 2020-10-23 00:12:44 IB: 20.6.0-202008110127

--workload_profile {oltp | mixed | reporting}

Use the --workload_profile parameter to specify an initial value for the edb_dynatune_profile configuration parameter.
edb_dynatune_profile controls aspects of performance-tuning based on the type of work that the server performs.

Specify oltp if the Advanced Server installation will be used to support heavy online transaction processing workloads.
The default value is oltp .
Specify mixed if Advanced Server will provide a mix of transaction processing and data reporting.
Specify reporting if Advanced Server will be used for heavy data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data
directory of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for the changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 103

https://www.enterprisedb.com/docs

5.3.2.3 Using StackBuilder Plus

The StackBuilder Plus utility provides a graphical interface that simplifies the process of updating, downloading, and installing modules that complement
your Advanced Server installation. When you install a module with StackBuilder Plus, StackBuilder Plus automatically resolves any software dependencies.

You can invoke StackBuilder Plus at any time after the installation has completed by selecting the StackBuilder Plus menu option from the Apps
menu. Enter your system password (if prompted), and the StackBuilder Plus welcome window opens.

Fig. 19: The StackBuilder Plus welcome window

Use the drop-down listbox on the welcome window to select your Advanced Server installation.

StackBuilder Plus requires Internet access; if your installation of Advanced Server resides behind a firewall (with restricted Internet access), StackBuilder
Plus can download program installers through a proxy server. The module provider determines if the module can be accessed through an HTTP proxy or an
FTP proxy; currently, all updates are transferred via an HTTP proxy and the FTP proxy information is not used.

If the selected Advanced Server installation has restricted Internet access, use the Proxy Servers on the Welcome window to open the Proxy
servers dialog.

Fig. 20: The Proxy Servers dialog

Enter the IP address and port number of the proxy server in the HTTP proxy on the Proxy Servers dialog. Currently, all StackBuilder Plus modules
are distributed via HTTP proxy (FTP proxy information is ignored). Click OK to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 104

Fig. 21: The StackBuilder Plus module selection window

The tree control on the StackBuilder Plus module selection window displays a node for each module category.

Expand a module, and highlight a component name in the tree control to review a detailed description of the component. To add one or more components
to the installation or to upgrade a component, check the box to the left of a module name and click Next .

StackBuilder Plus confirms the packages selected.

Fig. 22: A summary window displays a list of selected packages

Use the browse icon (...) to the right of the Download directory field to open a file selector, and choose an alternate location to store the downloaded
installers. Click Next to connect to the server and download the required installation files.

When the download completes, a window opens that confirms the installation files have been downloaded and are ready for installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 105

Fig. 23: Confirmation that the download process is complete

You can check the box next to Skip Installation , and select Next to exit StackBuilder Plus without installing the downloaded files, or leave the
box unchecked and click Next to start the installation process.

Each downloaded installer has different requirements. As the installers execute, they may prompt you to confirm acceptance of license agreements, to
enter passwords, and provide configuration information.

During the installation process, you may be prompted by one (or more) of the installers to restart your system. Select No or Restart Later until all
installations are completed. When the last installation has completed, reboot the system to apply all of the updates.

You may occasionally encounter packages that don’t install successfully. If a package fails to install, StackBuilder Plus will alert you to the installation
error with a popup dialog, and write a message to the log file at %TEMP% .

Fig. 24: StackBuilder Plus confirms the completed installation

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 106

When the installation is complete, StackBuilder Plus will alert you to the success or failure of the installations of the requested packages. If you were
prompted by an installer to restart your computer, reboot now.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 107

5.4 Linux installation details

If you need access to the EDB Postgres Advanced Server components after installation, see Default component locations.

For information on available native packages from the EDB repository, see Available native packages.

After installing, there are various procedures you may need for Managing the Advanced Server installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 108

5.4.1 Default component locations

The package managers for the various Linux variations install EDB Postgres Advanced Server components in different locations. If you need to access the
components after installation, see:

RHEL/Rocky Linux/AlmaLinux/SLES Locations
Debian/Ubuntu Locations

RHEL/Rocky Linux/AlmaLinux/SLES locations

The RPM installers place EDB Postgres Advanced Server components in the directories listed in the table below:

Component Location

Executables /usr/edb/as13/bin

Libraries /usr/edb/as13/lib

Cluster configuration files /var/lib/edb/as13

Documentation /usr/edb/as13/share/doc

Contrib /usr/edb/as13/share/contrib

Data /var/lib/edb/as13/data

Logs /var/log/edb/as13

Lock files /var/lock/edb/as13

Backup area /var/lib/edb/as13/backups

Templates /usr/edb/as13/share

Procedural Languages
/usr/edb/as13/lib or
/usr/edb/as13/lib64

Development Headers /usr/edb/as13/include

Shared data /usr/edb/as13/share

SGML Documentation /usr/edb/as13/share/doc

Debian/Ubuntu locations

The Debian package manager places EDB Postgres Advanced Server and supporting components in the directories listed in the following table:

Component Location

Server /usr/lib/edb-as/13/

Data and Configuration
Directory

/var/lib/edb-as/13/main

/etc/edb-as/13/main/

pgAgent /usr/lib/edb-as/13

Pgpool /usr/edb/pgpool4.1/

Postgis /usr/lib/edb-as/13/

PGSNMPD /usr/lib/edb-as/13

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 109

Slony Replication /usr/lib/edb-as/13

pgBouncer /usr/edb/pgbouncer1.13/

pgBouncer Configuration Files
/etc/edb/pgbouncer1.13/pgbouncer.ini

/etc/edb/pgbouncer1.13/userlist.txt

SQL-Profiler /usr/lib/edb-as/13/lib

SQL-Protect /usr/lib/edb-as/13/lib

SSLUTILS /usr/lib/edb-as/13/lib

PL-PERL /usr/lib/edb-as/13/lib

PL-PYTHON /usr/lib/edb-as/13/lib

PLTCL /usr/lib/edb-as/13/lib

EFM /usr/edb/efm-4.1/

JDBC /usr/edb/jdbc

MTK /usr/edb/migrationtoolkit/

Component Location

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 110

5.4.2 Available native packages

EDB provides a number of native packages in the EDB repository. The packages vary slightly for the various Linux variations, see:

RHEL/Rocky Linux/AlmaLinux/SLES Packages
Debian/Ubuntu Packages

RHEL/Rocky Linux/AlmaLinux/SLES Packages

EDB Postgres Advanced Server RPM Packages

The tables that follow list the RPM packages that are available from EDB. You can also use the yum search or dnf search command to access a list
of the packages that are currently available from your configured repository. Open a command line, assume superuser privileges, and enter:

On RHEL or Rocky Linux or AlmaLinux 8:

dnf search <package>

Where package is the search term that specifies the name (or partial name) of a package.

Note: The available package list is subject to change.

Package
name

Package installs

edb-as13-
server

This package installs core components of the EDB Postgres Advanced Server database server.

edb-as13-
server-client

Client programs and utilities that you can use to access and manage EDB Postgres Advanced Server.

edb-as13-
server-
contrib

Installs contributed tools and utilities that are distributed with EDB Postgres Advanced Server. Files for these modules are installed in:

Documentation: /usr/edb/as13/share/doc

Loadable modules: /usr/edb/as13/lib

Binaries: /usr/edb/as13/bin

edb-as13-
server-core

Includes the programs needed to create the core functionality behind the EDB Postgres Advanced Server database.

edb-as13-
server-devel

Installs the header files and libraries needed to compile C or C++ applications that directly interact with an EDB Postgres Advanced
Server server and the ecpg or ecpgPlus C preprocessor.

edb-as13-
server-docs

Installs the readme file.

edb-as13-
server-edb-
modules

Installs supporting modules for EDB Postgres Advanced Server

edb-as13-
server-
indexadvisor

Installs EDB Postgres Advanced Server's Index Advisor feature. The Index Advisor utility helps determine which columns you should
index to improve performance in a given workload.

edb-as13-
server-libs

Provides the essential shared libraries for any EDB Postgres Advanced Server client program or interface.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 111

edb-as13-
server-llvmjit

This package contains support for Just in Time (JIT) compiling parts of EDBAS queries.

edb-as13-
server-
pldebugger

This package implements an API for debugging PL/pgSQL functions on EDB Postgres Advanced Server.

edb-as13-
server-plperl

Installs the PL/Perl procedural language for EDB Postgres Advanced Server. The edb-as13-server-plperl package is
dependent on the platform-supplied version of Perl.

edb-as13-
server-
plpython3

Installs the PL/Python procedural language for EDB Postgres Advanced Server. The PL/Python2 support is no longer available from
EDB Postgres Advanced Server version 13 onwards.

edb-as13-
server-pltcl

Installs the PL/Tcl procedural language for EDB Postgres Advanced Server. The edb-as13-pltcl package is dependent on the
platform-supplied version of TCL.

edb-as13-
server-
sqlprofiler

This package installs EDB Postgres Advanced Server's SQL Profiler feature. SQL Profiler helps identify and optimize SQL code.

edb-as13-
server-
sqlprotect

This package installs EDB Postgres Advanced Server's SQL Protect feature. SQL Protect provides protection against SQL injection
attacks.

edb-as13-
server-
sslutils

This package installs functionality that provides SSL support.

edb-as13-
server-
cloneschema

This package installs the EDB Clone Schema extension. For more information about EDB Clone Schema, see the EDB Postgres
Advanced Server Guide.

edb-as13-
server-
parallel-
clone

This package installs functionality that supports the EDB Clone Schema extension.

edb-as13-
pgagent

Installs pgAgent; pgAgent is a job scheduler for EDB Postgres Advanced Server. Before installing this package, you must install EPEL;
for detailed information about installing EPEL, see Troubleshooting an installation.

edb-as13-
edbplus

The edb-edbplus package contains the files required to install the EDB*Plus command line client. EDB*Plus commands are
compatible with Oracle's SQL*Plus.

edb-as13-
pgsnmpd

SNMP (Simple Network Management Protocol) is a protocol that allows you to supervise an apparatus connected to the network.

edb-as13-
pgpool41-
extensions

This package creates pgPool extensions required by the server for use with pgpool.

edb-as13-
postgis3

Installs POSTGIS meta RPMs.

edb-as13-
postgis3-
core

This package provides support for geographic objects to the PostgreSQL object-relational database. In effect, PostGIS "spatially
enables" the PostgreSQL server, allowing it to be used as a backend spatial database for geographic information systems (GIS), much
like ESRI's SDE or Oracle's Spatial extension.

edb-as13-
postgis3-
docs

This package installs pdf documentation of PostGIS.

edb-as13-
postgis-jdbc

This package installs the essential jdbc driver for PostGIS.

edb-as13-
postgis3-
utils

This package installs the utilities for PostGIS.

edb-as13-
postgis3-gui

This package provides a GUI for PostGIS.

edb-as13-
slony-
replication

Installs the meta RPM for Slony-I.

Package
name

Package installs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 112

edb-as13-
slony-
replication-
core

Slony-I builds a primary-standby system that includes all features and capabilities needed to replicate large databases to a reasonably
limited number of standby systems.

edb-as13-
slony-
replication-
docs

This package contains the Slony project documentation (in pdf form).

edb-as13-
slony-
replication-
tools

This package contains the Slony altperl tools and utilities that are useful when deploying Slony replication environments. Before
installing this package, you must install EPEL; for detailed information about installing EPEL, see Troubleshooting an installation.

edb-as13-
libicu

These packages contain supporting library files.

Package
name

Package installs

The following table lists the packages for EDB Postgres Advanced Server 13 supporting components.

Package name Package installs

edb-pgpool41

This package contains the pgPool-II installer. The pgpool-II utility package acts as a middleman between client applications and
Server database servers. pgpool-II functionality is transparent to client applications; client applications connect to pgpool-II instead
of directly to EDB Postgres Advanced Server, and pgpool-II manages the connection. EDB supports the following pgpool-II features:
- Load balancing
- Connection pooling
- High availability
- Connection limits

pgpool-II runs as a service on Linux systems, and is not supported on Windows systems.

edb-jdbc The edb-jdbc package includes the .jar files needed for Java programs to access an EDB Postgres Advanced Server database.

edb-
migrationtoolkit

The edb-migrationtoolkit package installs Migration Toolkit, facilitating migration to an EDB Postgres Advanced Server
database from Oracle, PostgreSQL, MySQL, Sybase and SQL Server.

edb-oci The edb-oci package installs the EDB Open Client library, allowing applications that use the Oracle Call Interface API to connect
to an EDB Postgres Advanced Server database.

edb-oci-devel This package installs the OCI include files; install this package if you are developing C/C++ applications that require these files.

edb-odbc This package installs the driver needed for applications to access an EDB Postgres Advanced Server system via ODBC.

edb-odbc-devel This package installs the ODBC include files; install this package if you are developing C/C++ applications that require these files.

edb-
pgbouncer113

This package contains PgBouncer (a lightweight connection pooler). This package requires the libevent package.

ppas-xdb This package contains the xDB installer; xDB provides asynchronous cross-database replication.

ppas-xdb-
console

This package provides support for xDB.

ppas-xdb-libs This package provides support for xDB.

ppas-xdb-
publisher

This package provides support for xDB.

ppas-xdb-
subscriber

This package provides support for xDB.

edb-pem The edb-pem package installs Management Tool that efficiently manages, monitor, and tune large Postgres deployments from a
single remote GUI console.

edb-pem-agent This package is an agent component of Postgres Enterprise Manager.

edb-pem-docs This package contains documentation for various languages, which are in HTML format.

edb-pem-server This package contains server components of Postgres Enterprise Manager.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 113

edb-pgadmin4 This package is a management tool for PostgreSQL capable of hosting the Python application and presenting it to the user as a
desktop application.

edb-pgadmin4-
desktop-
common

This package installs the desktop components of pgAdmin4 for all window managers.

edb-pgadmin4-
desktop-gnome

This package installs the gnome desktop components of pgAdmin4

edb-pgadmin4-
docs

This package contains documentation of pgAdmin4.

edb-pgadmin4-
web

This package contains the required files to run pgAdmin4 as a web application.

edb-efm40 This package installs EDB Failover Manager that adds fault tolerance to database clusters to minimize downtime when a primary
database fails by keeping data online in high availability configurations.

edb-rs This package is a java-based replication framework that provides asynchronous replication across Postgres and EPAS database
servers. It supports primary-standby, primary-primary, and hybrid configurations.

edb-rs-client This package is a java-based command-line tool that is used to configure and operate a replication network via different commands
by interacting with the EPRS server.

edb-rs-
datavalidator

This package is a java-based command-line tool that provides row and column level data comparison of a source and target
database table. The supported RDBMS servers include PostgreSQL, EPAS, Oracle, and MS SQL Server.

edb-rs-libs This package contains certain libraries that are commonly used by ERPS Server, EPRS Client, and Monitoring modules.

edb-rs-monitor This package is a java-based application that provides monitoring capabilities to ensure a smooth functioning of the EPRS
replication cluster.

edb-rs-server This package is a java-based replication framework that provides asynchronous replication across Postgres and EPAS database
servers. It supports primary-standby, primary-primary, and hybrid configurations.

edb-bart This package installs the Backup and Recovery Tool (BART) to support online backup and recovery across local and remote
PostgreSQL and EDB EDB Postgres Advanced Servers.

libevent-edb This package contains supporting library files.

libiconv-edb This package contains supporting library files.

libevent-edb-
devel

This package contains supporting library files.

Package name Package installs

Debian/Ubuntu Packages

EDB Postgres Advanced Server Debian packages

The table that follows lists some of the Debian packages that are available from EDB. You can also use the apt list command to access a list of the
packages that are currently available from your configured repository. Open a command line, assume superuser privileges, and enter:

apt list edb*

NoteNote

The available package list is subject to change.

Package name Package installs

edb-as13-server Installs core components of the EDB Postgres Advanced Server database server.

edb-as13-
server-client

Includes client programs and utilities that you can use to access and manage EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 114

edb-as13-
server-core

Includes the programs needed to create the core functionality behind the EDB Postgres Advanced Server database.

edb-as13-
server-dev

The edb-as13-server-dev package contains the header files and libraries needed to compile C or C++ applications that
directly interact with an EDB Postgres Advanced Server server and the ecpg or ecpgPlus C preprocessor.

edb-as13-
server-doc

Installs the readme file.

edb-as13-
server-edb-
modules

Installs supporting modules for EDB Postgres Advanced Server.

edb-as13-
server-
indexadvisor

Installs EDB Postgres Advanced Server's Index Advisor feature. The Index Advisor utility helps determine which columns you should
index to improve performance in a given workload.

edb-as13-
server-
pldebugger

This package implements an API for debugging PL/pgSQL functions on EDB Postgres Advanced Server.

edb-as13-
server-
plpython3

Installs the PL/Python procedural language for EDB Postgres Advanced Server. PL/Python2 support is no longer available from EDB
Postgres Advanced Server version 13 onwards.

edb-as13-
server-pltcl

Installs the PL/Tcl procedural language for EDB Postgres Advanced Server. The edb-as13-pltcl package is dependent on the
platform-supplied version of TCL.

edb-as13-
server-
sqlprofiler

This package installs EDB Postgres Advanced Server's SQL Profiler feature. SQL Profiler helps identify and optimize SQL code.

edb-as13-
server-
sqlprotect

This package installs EDB Postgres Advanced Server's SQL Protect feature. SQL Protect provides protection against SQL injection
attacks.

edb-as13-
server-sslutils

This package installs functionality that provides SSL support.

edb-as13-
server-
cloneschema

This package installs the EDB Clone Schema extension. For more information about EDB Clone Schema, see the EDB Postgres
Advanced Server Guide.

edb-as13-
server-parallel-
clone

This package installs functionality that supports the EDB Clone Schema extension.

edb-as13-
edbplus

The edb-edbplus package contains the files required to install the EDB*Plus command line client. EDB*Plus commands are
compatible with Oracle's SQL*Plus.

edb-as13-
pgsnmpd

SNMP (Simple Network Management Protocol) is a protocol that allows you to supervise an apparatus connected to the network.

edb-as13-
pgadmin4

pgAdmin 4 provides a graphical management interface for EDB Postgres Advanced Server and PostgreSQL databases.

edb-as13-
pgadmin-
apache

Apache support module for pgAdmin 4.

edb-as13-
pgadmin4-
common

pgAdmin 4 supporting files.

edb-as13-
pgadmin4-doc

pgAdmin 4 documentation module.

edb-as13-
pgpool41-
extensions

This package creates pgPool extensions required by the server.

edb-as13-
postgis3

This package installs POSTGIS support for geospatial data.

edb-as13-
postgis3-scripts

This package installs POSTGIS support for geospatial data.

Package name Package installs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 115

edb-as13-
postgis3-doc

This package provides support for POSTGIS.

edb-as13-
postgis3-gui

This package provides a GUI for POSTGIS.

edb-as13-
postgis-jdbc

This package provides support for POSTGIS.

edb-as13-
postgis-scripts

This package provides support for POSTGIS.

edb-as13-
pgagent

This package installs pgAgent; pgAgent is a job scheduler for EDB Postgres Advanced Server. Before installing this package, you
must install EPEL; for detailed information about installing EPEL, see Troubleshooting an installation.

edb-as13-slony-
replication

This package installs the meta RPM for Slony-I.

edb-as13-slony-
replication-core

This package contains core portions of Slony-I to build a primary-standby system that includes all features and capabilities needed
to replicate large databases to a reasonably limited number of standby systems.

edb-as13-slony-
replication-docs

This package contains the Slony project documentation (in pdf form).

edb-as13-slony-
replication-
tools

This package contains the Slony altperl tools and utilities that are useful when deploying Slony replication environments. Before
installing this package, you must install EPEL; for detailed information about installing EPEL, see Troubleshooting an installation.

edb-as13-hdfs-
fdw

The Hadoop Data Adapter allows you to query and join data from Hadoop environments with your Postgres or EDB Postgres
Advanced Server instances. It is YARN Ready certified with HortonWorks, and provides optimizations for performance with predicate
pushdown support.

edb-as13-hdfs-
fdw-doc

Documentation for the Hadoop Data Adapter.

edb-as13-
mongo-fdw

This EDB EDB Postgres Advanced Server extension implements a Foreign Data Wrapper for MongoDB.

edb-as13-
mongo-fdw-doc

Documentation for the Foreign Data Wrapper for MongoDB.

edb-as13-
mysql-fdw

This EDB EDB Postgres Advanced Server extension implements a Foreign Data Wrapper for MySQL.

edb-pgpool41

This package contains the pgPool-II installer. The pgpool-II utility package acts as a middleman between client applications and
Server database servers. pgpool-II functionality is transparent to client applications; client applications connect to pgpool-II instead
of directly to EDB Postgres Advanced Server, and pgpool-II manages the connection. EDB supports the following pgpool-II features:
- Load balancing
- Connection pooling
- High availability
- Connection limits

pgpool-II runs as a service on Linux systems, and is not supported on Windows systems.

edb-jdbc The edb-jdbc package includes the .jar files needed for Java programs to access an EDB Postgres Advanced Server database.

edb-
migrationtoolkit

The edb-migrationtoolkit package installs Migration Toolkit, facilitating migration to an EDB Postgres Advanced Server
database from Oracle, PostgreSQL, MySQL, Sybase and SQL Server.

edb-
pgbouncer113

This package contains PgBouncer (a lightweight connection pooler). This package requires the libevent package.

edb-efm40 This package installs EDB Failover Manager that adds fault tolerance to database clusters to minimize downtime when a primary
database fails by keeping data online in high availability configurations.

Package name Package installs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 116

5.4.3 Managing an Advanced Server installation

Unless otherwise noted, the commands and paths noted in the following section assume that you have performed an installation using the native packages.

Starting and stopping Advanced Server and supporting components

A service is a program that runs in the background and requires no user interaction (in fact, a service provides no user interface); a service can be
configured to start at boot time, or manually on demand. Services are best controlled using the platform-specific operating system service control utility.
Many of the Advanced Server supporting components are services.

The following table lists the names of the services that control Advanced Server and services that control Advanced Server supporting components:

Advanced Server Component
Name

Linux Service Name Debian Service Name

Advanced Server edb-as-13 edb-as@13-main

pgAgent edb-pgagent-13 edb-as13-pgagent

PgBouncer edb-pgbouncer-1.14 edb-pgbouncer114

pgPool-II edb-pgpool-4.1 edb-pgpool41

Slony edb-slony-replication-13 edb-as13-slony-replication

EFM edb-efm-4.0 edb-efm-4.0

You can use the Linux command line to control Advanced Server's database server and the services of Advanced Server's supporting components. The
commands that control the Advanced Server service on a Linux platform are host specific.

Controlling a service on RHEL/Rocky Linux/AlmaLinux 8.x

If your installation of Advanced Server resides on RHEL/Rocky Linux/AlmaLinux 8.x, you must use the systemctl command to control the Advanced
Server service and supporting components.

The systemctl command must be in your search path and must be invoked with superuser privileges. To use the command, open a command line, and
enter:

systemctl <action> <service_name>

Where:

service_name specifies the name of the service.

action specifies the action taken by the service command. Specify:

start to start the service.
stop to stop the service.
restart to stop and then start the service.
status to discover the current status of the service.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 117

Controlling a service on Ubuntu 20.04

If your installation of Advanced Server resides on version 20.04 of Ubuntu, assume superuser privileges and invoke the following commands (using bundled
scripts) to manage the service. Use the following commands to:

Discover the current status of a service:

/usr/edb/as13/bin/epas_ctlcluster 13 main status

Stop a service:

/usr/edb/as13/bin/epas_ctlcluster 13 main stop

Restart a service:

/usr/edb/as13/bin/epas_ctlcluster 13 main restart

Reload a service:

/usr/edb/as13/bin/epas_ctlcluster 13 main reload

Control the component services:

systemctl restart edb-as@13-main

Using pg_ctl to control Advanced Server

You can use the pg_ctl utility to control an Advanced Server service from the command line on any platform. pg_ctl allows you to start, stop, or
restart the Advanced Server database server, reload the configuration parameters, or display the status of a running server. To invoke the utility, assume
the identity of the cluster owner, navigate into the home directory of Advanced Server, and issue the command:

./bin/pg_ctl -D <data_directory> <action>

data_directory is the location of the data controlled by the Advanced Server cluster.

action specifies the action taken by the pg_ctl utility. Specify:

start to start the service.
stop to stop the service.
restart to stop and then start the service.
reload sends the server a SIGHUP signal, reloading configuration parameters
status to discover the current status of the service.

For more information about using the pg_ctl utility or the command line options available, see the official PostgreSQL Core Documentation.

Choosing Between pg_ctl and the service CommandChoosing Between pg_ctl and the service Command

You can use the pg_ctl utility to manage the status of an Advanced Server cluster, but it is important to note that pg_ctl does not alert the operating
system service controller to changes in the status of a server, so it is beneficial to use the service command whenever possible.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 118

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

Configuring component services to AutoStart at System Reboot

After installing, configuring, and starting the services of Advanced Server supporting components on a Linux system, you must manually configure your
system to autostart the service when your system reboots. To configure a service to autostart on a Linux system, open a command line, assume superuser
privileges, and enter the following command.

On a Redhat-compatible Linux system, enter:

/sbin/chkconfig <service_name> on

Where service_name specifies the name of the service.

Connecting to Advanced Server with edb-psql

edb-psql is a command line client application that allows you to execute SQL commands and view the results. To open the edb-psql client, the
client must be in your search path. The executable resides in the bin directory, under your Advanced Server installation.

Use the following command and options to start the edb-psql client:

psql -d edb -U enterprisedb

Where:

-d specifies the database to which edb-psql will connect.

-U specifies the identity of the database user that will be used for the session.

edb-psql is a symbolic link to a binary called psql , a modified version of the PostgreSQL community psql , with added support for Advanced Server
features. For more information about using the command line client, see the PostgreSQL Core Documentation.

Configuring a package installation

The packages that install the database server component create service startup scripts.

Creating a database cluster and starting the service

The PostgreSQL initdb command creates a database cluster; when installing Advanced Server with an RPM package, the initdb executable is in
/usr/edb/asx.x/bin . After installing Advanced Server, you must manually configure the service and invoke initdb to create your cluster. When

invoking initdb , you can:

Specify environment options on the command line.
Include the systemd service manager on RHEL/Rocky Linux/AlmaLinux 8.x and use a service configuration file to configure the environment.

For more information, see the initdb documentation.

After specifying any options in the service configuration file, you can create the database cluster and start the service; these steps are platform specific.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 119

https://www.postgresql.org/docs/current/static/app-psql.html
https://www.postgresql.org/docs/current/static/app-initdb.html

On RHEL/Rocky Linux/AlmaLinux 8.x

To invoke initdb on a RHEL/Rocky Linux/AlmaLinux 8.x system, with the options specified in the service configuration file, assume the identity of the
operating system superuser:

su - root

To initialize a cluster with the non-default values, you can use the PGSETUP_INITDB_OPTIONS environment variable by invoking the edb-as-13-
setup cluster initialization script that resides under EPAS_Home/bin .

To invoke initdb export the PGSETUP_INITDB_OPTIONS environment variable with the following command:

PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

After creating the cluster, use systemctl to start, stop, or restart the service:

systemctl { start | stop | restart } edb-as-13

On Debian 10.x | 11 or Ubuntu 18.04 | 20.04

You can initialize multiple clusters using the bundled scripts. To create a new cluster, assume root privileges, and invoke the bundled script:

/usr/bin/epas_createcluster 13 main2

To start a new cluster, use the following command:

/usr/bin/epas_ctlcluster 13 main2 start

To list all the available clusters, use the following command:

/usr/bin/epas_lsclusters

NoteNote

The data directory is created under /var/lib/edb-as/13/main2 and configuration directory is created under /etc/edb-
as/13/main/ .

Specifying Cluster Options with INITDBOPTS

You can use the INITDBOPTS variable to specify your cluster configuration preferences. By default, the INITDBOPTS variable is commented out in the
service configuration file; unless modified, when you run the service startup script, the new cluster will be created in a mode compatible with Oracle
databases. Clusters created in this mode will contain a database named edb , and have a database superuser named enterprisedb .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 120

Initializing the Cluster in Oracle Mode

If you initialize the database using Oracle compatibility mode, the installation includes:

Data dictionary views compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Support for the following Oracle built-in packages.

Package Functionality compatible with Oracle Databases

dbms_aler
t

Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_outp
ut

Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_util
ity

Provides various utility programs.

dbms_aqad
m

Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for Advanced Server.

dbms_prof
iler

Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance
profiling session.

dbms_rand
om

Provides a number of methods to generate random values.

dbms_reda
ct

Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_sche
duler

Provides a way to create and manage jobs, programs, and job schedules.

dbms_cryp
to

Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to
generate cryptographically strong random values.

dbms_mvie
w

Provides a way to manage and refresh materialized views and their dependencies.

dbms_sess
ion

Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encod
e

Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 121

Initializing the Cluster in Postgres Mode

Clusters created in PostgreSQL mode do not include compatibility features. To create a new cluster in PostgreSQL mode, remove the pound sign (#) in front
of the INITDBOPTS variable, enabling the "--no-redwood-compat" option. Clusters created in PostgreSQL mode will contain a database named
postgres and have a database superuser named postgres .

You may also specify multiple initdb options. For example, the following statement:

INITDBOPTS="--no-redwood-compat -U alice --locale=en_US.UTF-8"

Creates a database cluster (without compatibility features for Oracle) that contains a database named postgres that is owned by a user named
alice ; the cluster uses UTF-8 encoding.

If you initialize the database using "--no-redwood-compat" mode, the installation includes the following package:

Package Functionality non-compatible with Oracle Databases

dbms_aqadm Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for Advanced Server.

edb_bulkload Provides direct/conventional data loading capability when loading huge amount of data into a database.

edb_gen Provides miscellaneous packages to run built-in packages.

edb_objects Provides Oracle compatible objects such as packages, procedures etc.

waitstates Provides monitor session blocking.

edb_dblink_libpq Provides link to foreign databases via libpq.

edb_dblink_oci Provides link to foreign databases via OCI.

snap_tables Creates tables to hold wait information. Included with DRITA scripts.

snap_functions Creates functions to return a list of snap ids and the time the snapshot was taken. Included with DRITA
scripts.

sys_stats Provides OS performance statistics.

In addition to the cluster configuration options documented in the PostgreSQL core documentation, Advanced Server supports the following initdb
options:

--no-redwood-compat

Include the --no-redwood-compat keywords to instruct the server to create the cluster in PostgreSQL mode. When the cluster is created in
PostgreSQL mode, the name of the database superuser will be postgres and the name of the default database will be postgres . The few Advanced
Server’s features compatible with Oracle databases will be available with this mode. However, we recommend using the Advanced server in redwood
compatibility mode to use all its features.

--redwood-like

Include the --redwood-like keywords to instruct the server to use an escape character (an empty string ('')) following the LIKE (or PostgreSQL-
compatible ILIKE) operator in a SQL statement that is compatible with Oracle syntax.

--icu-short-form

Include the --icu-short-form keywords to create a cluster that uses a default ICU (International Components for Unicode) collation for all databases
in the cluster. For more information about Unicode collations, refer to the EDB Postgres Advanced Server Guide available at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 122

https://www.enterprisedb.com/docs

For more information about using initdb , and the available cluster configuration options, see the PostgreSQL Core Documentation.

You can also view online help for initdb by assuming superuser privileges and entering:

/path_to_initdb_installation_directory/initdb --help

Where path_to_initdb_installation_directory specifies the location of the initdb binary file.

Modifying the Data Directory Location

on RHEL or Rocky Linux 8.x

On a RHEL/Rocky Linux/AlmaLinux 8.x host, the unit file is named edb-as-13.service and resides in /usr/lib/systemd/system . The unit file
contains references to the location of the Advanced Server data directory. You should avoid making any modifications directly to the unit file because it
may be overwritten during package upgrades.

By default, data files reside under /var/lib/edb/as13/data directory. To use a data directory that resides in a non-default location, perform the
following steps:

Create a copy of the unit file under the /etc directory:

cp /usr/lib/systemd/system/edb-as-13.service /etc/systemd/system/

After copying the unit file to the new location, create the service file /etc/systemd/system/edb-as-13.service .

Update the following values with new location of data directory in the /lib/systemd/system/edb-as-13.service file:

Environment=PGDATA=/var/lib/edb/as13/data
PIDFile=/var/lib/edb/as13/data/postmaster.pid

Delete the entire content of /etc/systemd/system/edb-as-13.service file, except the following line:

.include /lib/systemd/system/edb-as-13.service

Run the following command to initialize the cluster at the new location:

PGSETUP_INITDB_OPTIONS="-E UTF-8" /usr/edb/as13/bin/edb-as-13-setup initdb

Use the following command to reload systemd , updating the modified service scripts:

systemctl daemon-reload

Start the Advanced Server service with the following command:

systemctl start edb-as-13

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 123

https://www.postgresql.org/docs/current/static/app-initdb.html

Configuring SELinux Policy to Change the Data Directory Location on RHEL/Rocky Linux/AlmaLinux 8.x

By default, the data files resides under /var/lib/edb/as13/data directory. To change the default data directory location depending on individual
environment preferences, you must configure the SELinux policy and perform the following steps:

Stop the server using the following command:

systemctl stop edb-as-13

Check the status of SELinux using the getenforce or sestatus command:

getenforce
Enforcing

sestatus
SELinux status: enabled
SELinuxfs mount: /sys/fs/selinux
SELinux root directory: /etc/selinux
Loaded policy name: targeted
Current mode: enforcing
Mode from config file: enforcing
Policy MLS status: enabled
Policy deny_unknown status: allowed
Max kernel policy version: 31

Use the following command to view the SELinux context of the default database location:

ls -lZ /var/lib/edb/as13/data
drwx------. enterprisedb enterprisedb unconfined_u:object_r:var_lib_t:s0 log

Create a new directory for a new location of the database using the following command:

mkdir /opt/edb

Use the following command to move the data directory to /opt/edb :

mv /var/lib/edb/as13/data /opt/edb/

Create a file edb-as-13.service under /etc/systemd/system directory to include the location of a new data directory:

.include /lib/systemd/system/edb-as-13.service
[Service]
Environment=PGDATA=/opt/edb/data
PIDFile=/opt/edb/data/postmaster.pid

Use the semanage utility to set the context mapping for /opt/edb/ . The mapping is written to
/etc/selinux/targeted/contexts/files/file.contexts.local file.

semanage fcontext --add --equal /var/lib/edb/as13/data /opt/edb

Apply the context mapping using restorecon utility:

restorecon -rv /opt/edb/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 124

Reload systemd to modify the service script using the following command:

systemctl daemon-reload

Now, the /opt/edb location has been labeled correctly with the context, use the following command to start the service:

systemctl start edb-as-13

Enabling Core Dumps

You can use core dumps to diagnose or debug errors. A core dump is a file containing a process's address space (memory) when the process terminates
unexpectedly. Core dumps may be produced on-demand (such as by a debugger) or automatically upon termination.

Enabling Core Dumps on a RHEL/Rocky Linux/AlmaLinux 8 Host

On a RHEL/Rocky Linux/AlmaLinux 8.x, core file creation is disabled by default. To enable the core file generation, follow the following commands:

Identify the system's current limit using the ulimit -c or ulimit -a command. 0 indicates that core file generation is disabled.

ulimit -c
0

ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 3756
max locked memory (kbytes, -l) 64
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 3756
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Create a new directory to store the core dumps and modify kernel.core_pattern to store the dumps in a specified directory:

mkdir -p /var/coredumps
chmod a+w /var/coredumps

sysctl kernel.core_pattern=/var/coredumps/core-%e-%p
kernel.core_pattern = /var/coredumps/core-%e-%p

Use the following command to persist the kernel.core_pattern setting across reboots:

echo 'kernel.core_pattern=/var/coredumps/core-%e-%p' >> /etc/sysctl.conf

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 125

Enable core dumps in /etc/security/limits.conf to allow a user to create core files. Each line describes a limit for a user in the following
form:

<domain> <type> <item> <value>
 * soft core unlimited

Use * to enable the core dump size to unlimited.

Set the limit of core file size to UNLIMITED by using the following command:

ulimit -c unlimited

ulimit -c
unlimited

To set a core limit for the services, add the following setting in /usr/lib/systemd/system/edb-as-13.service .

[Service]
LimitCore=Infinity

Reload the service configuration:

systemctl daemon-reload

Modify the global default limit using systemd , add the following setting in /etc/systemd/system.conf .

DefaultLimitCORE=Infinity

Restart the systemd :

systemctl daemon-reexec

Stop and then start Advanced Server:

systemctl stop edb-as-13
systemctl start edb-as-13

Now, the core dumps are enabled, install the gdb tool and debug packages using the following command:

yum install gdb
debuginfo-install edb-as13 edb-as13-server-contrib edb-as13-server edb-as13-libs

Replace the path to a core dump file before proceeding to get a backtrace using the bt command to analyze output:

gdb /usr/edb/as13/bin /var/coredumps/core-edb-postgres-65499
(gdb) bt full

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 126

Enabling Core Dumps on a Debian or Ubuntu Host

On Debian 10 or Ubuntu 18, 20, core file creation is disabled by default. To enable the core file generation, follow the following commands:

Identify the system's current limit using the ulimit -c or ulimit -a command. 0 indicates that core file generation is disabled.

ulimit -c
0

ulimit -a
core file size (blocks, -c) 0
data seg size (kbytes, -d) unlimited
scheduling priority (-e) 0
file size (blocks, -f) unlimited
pending signals (-i) 7617
max locked memory (kbytes, -l) 65536
max memory size (kbytes, -m) unlimited
open files (-n) 1024
pipe size (512 bytes, -p) 8
POSIX message queues (bytes, -q) 819200
real-time priority (-r) 0
stack size (kbytes, -s) 8192
cpu time (seconds, -t) unlimited
max user processes (-u) 7617
virtual memory (kbytes, -v) unlimited
file locks (-x) unlimited

Create a new directory to store the core dumps and modify kernel.core_pattern to store the dumps in a specified directory:

mkdir -p /var/coredumps
chmod a+w /var/coredumps

sysctl kernel.core_pattern=/var/coredumps/core-%e-%p
kernel.core_pattern = /var/coredumps/core-%e-%p

Use the following command to persist the kernel.core_pattern setting across reboots:

echo 'kernel.core_pattern=/var/coredumps/core-%e-%p' >> /etc/sysctl.conf

Enable core dumps in /etc/security/limits.conf to allow a user to create core files. Each line describes a limit for a user in the following
form:

<domain> <type> <item> <value>
 * soft core unlimited

Use * to enable the core dump size to unlimited.

Set the limit of core file size to UNLIMITED by using the following command:

ulimit -c unlimited

ulimit -c
unlimited

To set a core limit for the services, add the following setting in /lib/systemd/system/edb-as@.service .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 127

To set a core limit for the services, add the following setting in /lib/systemd/system/edb-as@.service .

[Service]
LimitCore=Infinity

Reload the service configuration:

systemctl daemon-reload

Modify the global default limit using systemd , add the following setting in /etc/systemd/system.conf .

DefaultLimitCORE=Infinity

Restart the systemd :

systemctl daemon-reexec

Stop and then start Advanced Server:

systemctl stop edb-as@13.service
systemctl start edb-as@13.service

Now, the core dumps are enabled, install the gdb tool and debug symbols using the following command:

apt-get install gdb
apt-get install edb-as13 edb-as-contrib edb-as13-server edb-debugger-dbgsym

Replace the path to a core dump file before proceeding to get a backtrace using the bt command to analyze output:

gdb /usr/lib/edb-as/13/bin /var/coredumps/core-edb-postgres-21638
(gdb) bt full

NoteNote

The debug info packages name on a Debian or Ubuntu host may vary and include -dbgsym or -dbg suffix. For more information about
setting sources.list and installing the debug info packages, visit Debian or Ubuntu wiki at
https://wiki.debian.org/HowToGetABacktrace or https://wiki.ubuntu.com/Debug%20Symbol%20Packages respectively.
The core files can be huge depending on the memory usage, enabling the core dumps on a system may fill up its mass storage over time.

Starting Multiple Postmasters with Different Clusters

You can configure Advanced Server to use multiple postmasters, each with its own database cluster. The steps required are version specific to the Linux
host.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 128

https://wiki.debian.org/HowToGetABacktrace
https://wiki.ubuntu.com/Debug%20Symbol%20Packages

On RHEL/Rocky Linux/AlmaLinux 8.x

The edb-as13-server-core RPM for version 8.x contains a unit file that starts the Advanced Server instance. The file allows you to start multiple
services, with unique data directories and that monitor different ports. You must have root access to invoke or modify the script.

The example that follows creates an Advanced Server installation with two instances; the secondary instance is named secondary :

Make a copy of the default file with the new name. As noted at the top of the file, all modifications must reside under /etc . You must pick a name
that is not already used in /etc/systemd/system .

cp /usr/lib/systemd/system/edb-as-13.service /etc/systemd/system/secondary-edb-as-13.service

Edit the file, changing PGDATA to point to the new data directory that you will create the cluster against.

Create the target PGDATA with user enterprisedb .

Run initdb , specifying the setup script:

/usr/edb/as13/bin/edb-as-13-setup initdb secondary-edb-as-13

Edit the postgresql.conf file for the new instance, specifying the port, the IP address, TCP/IP settings, etc.

Make sure that new cluster runs after a reboot:

systemctl enable secondary-edb-as-13

Start the second cluster with the following command:

systemctl start secondary-edb-as-13

Creating an Advanced Server Repository on an Isolated Network

You can create a local repository to act as a host for the Advanced Server RPM packages if the server on which you wish to install Advanced Server (or
supporting components) cannot directly access the EDB repository. Please note that this is a high-level listing of the steps requires; you will need to modify
the process for your individual network.

To create and use a local repository, you must:

Use dnf to install the epel-release , yum-utils , and createrepo packages.

On RHEL or Rocky Linux or AlmaLinux 8.x:

Create a directory in which to store the repository:

mkdir /srv/repos

dnf install epel-release
dnf install yum-utils
dnf install createrepo

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 129

Copy the RPM installation packages to your local repository. You can download the individual packages or use a tarball to populate the repository.
The packages are available from the EDB repository at https://repos.enterprisedb.com/.

Sync the RPM packages and create the repository.

reposync -r edbas13 -p /srv/repos
createrepo /srv/repos

Install your preferred webserver on the host that will act as your local repository, and ensure that the repository directory is accessible to the other
servers on your network.

On each isolated database server, configure yum or dnf to pull updates from the mirrored repository on your local network. For example, you
might create a repository configuration file called /etc/yum.repos.d/edb-repo with connection information that specifies:

[edbas13]
name=EnterpriseDB Advanced Server 13
baseurl=https://yum.your_domain.com/edbas13
enabled=1
gpgcheck=0

After specifying the location and connection information for your local repository, you can use dnf to install Advanced Server and its supporting
components on the isolated servers. For example:

On RHEL or Rocky Linux or AlmaLinux 8:

dnf -y install edb-as13-server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 130

https://repos.enterprisedb.com/

5.5 Windows installation details

This section provides detailed information about:

Connecting to Advanced Server with the pgAdmin 4 Client
Managing an Advanced Server installation
Configuring Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 131

5.5.1 Connecting to Advanced Server with the pgAdmin 4 client

pgAdmin 4 provides an interactive graphical interface that you can use to manage your database and database objects. Easy-to-use dialogs and online help
simplify tasks such as object creation, role management, and granting or revoking privileges. The tabbed browser panel provides quick access to
information about the object currently selected in the pgAdmin tree control.

The client is distributed with the graphical installer. To open pgAdmin, select pgAdmin4 from the EDB Postgres menu. The client opens in your default
browser.

Fig. 1: The pgAdmin 4 client Dashboard

To connect to the Advanced Server database server, expand the Servers node of the Browser tree control, and right click on the EDB Postgres
Advanced Server node. When the context menu opens, select Connect Server . The Connect to Server dialog opens.

Fig. 2: The Connect to Server dialog

Provide the password associated with the database superuser in the Password field, and click OK to connect.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 132

Fig. 3: Connecting to an Advanced Server database

When the client connects, you can use the Browser tree control to retrieve information about existing database objects, or to create new objects. For
more information about using the pgAdmin client, use the Help drop-down menu to access the online help files.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 133

5.5.2 Managing an Advanced Server installation

Unless otherwise noted, the commands and paths noted in the following section assume that you have performed an installation with the interactive
installer.

Starting and Stopping Advanced Server and Supporting Components

A service is a program that runs in the background and requires no user interaction (in fact, a service provides no user interface); a service can be
configured to start at boot time, or manually on demand. Services are best controlled using the platform-specific operating system service control utility.
Many of the Advanced Server supporting components are services.

The following table lists the names of the services that control Advanced Server and services that control Advanced Server supporting components:

Advanced Server Component
Name

Windows Service Name

Advanced Server edb-as-13

pgAgent EDB Postgres Advanced Server 13 Scheduling
Agent

PgBouncer edb-pgbouncer-1.14

Slony edb-slony-replication-13

You can use the command line or the Windows Services applet to control Advanced Server's database server and the services of Advanced Server's
supporting components on a Windows host.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 134

5.5.2.1 Using the Windows Services applet

The Windows operating system includes a graphical service controller that offers control of Advanced Server and the services associated with Advanced
Server components. The Services utility can be accessed through the Administrative Tools section of the Windows Control Panel .

Fig. 1: The Advanced Server service in the Windows Services window

The Services window displays an alphabetized list of services; the edb-as-13 service controls Advanced Server.

Use the Stop the service option to stop the instance of Advanced Server. Please note that any user (or client application) connected to the
Advanced Server instance will be abruptly disconnected if you stop the service.
Use the Start the service option to start the Advanced Server service.
Use the Pause the service option to tell Advanced Server to reload the server configuration parameters without disrupting user sessions for
many of the configuration parameters. See Configuring Advanced Server for more information about the parameters that can be updated with a
server reload.
Use the Restart the service option to stop and then start the Advanced Server. Please note that any user sessions will be terminated when
you stop the service. This option is useful to reset server parameters that only take effect on server start.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 135

5.5.2.2 Using pg_ctl to control Advanced Server

You can use the pg_ctl utility to control an Advanced Server service from the command line on any platform. pg_ctl allows you to start, stop, or
restart the Advanced Server database server, reload the configuration parameters, or display the status of a running server. To invoke the utility, assume
the identity of the cluster owner, navigate into the home directory of Advanced Server, and issue the command:

./bin/pg_ctl -D data_directory action

data_directory

data_directory is the location of the data controlled by the Advanced Server cluster.

action

action specifies the action taken by the pg_ctl utility. Specify:

start to start the service.
stop to stop the service.
restart to stop and then start the service.
reload sends the server a SIGHUP signal, reloading configuration parameters
status to discover the current status of the service.

For more information about using the pg_ctl utility, or the command line options available, see the official PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 136

https://www.postgresql.org/docs/current/static/app-pg-ctl.html

5.5.2.3 Controlling server startup behavior on Windows

You can use the Windows Services utility to control the startup behavior of the server. Right click on the name of the service you wish to update, and select
Properties from the context menu to open the Properties dialog.

Use the drop-down listbox in the Startup type field to specify how the Advanced Server service will behave when the host starts.

Fig. 2: Specifying Advanced Server's startup behavior

Specify Automatic (Delayed Start) to instruct the service controller to start after boot.
Specify Automatic to instruct the service controller to start and stop the server whenever the system starts or stops.
Specify Manual to instruct the service controller that the server must be started manually.
Specify Disabled to instruct the service controller to disable the service; after disabling the service, you must stop the service or restart the server
to make the change take effect. Once disabled, the server’s status cannot be changed until Startup type is reset to Automatic (Delayed
Start) , Automatic , or Manual .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 137

5.5.3 Configuring Advanced Server

You can easily update parameters that determine the behavior of Advanced Server and supporting components by modifying the following configuration
files:

The postgresql.conf file determines the initial values of Advanced Server configuration parameters.
The pg_hba.conf file specifies your preferences for network authentication and authorization.
The pg_ident.conf file maps operating system identities (user names) to Advanced Server identities (roles) when using ident -based
authentication.

For more information about Modifying the postgresql.conf file and Modifying the pg_hba.conf file, see the EDB Postgres Advanced Server Guide available
from the EDB website at:

https://www.enterprisedb.com/docs

You can use your editor of choice to open a configuration file, or on Windows navigate through the EDB Postgres menu to open a file.

Fig. 1: Accessing the configuration files through the Windows system menu

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 138

https://www.enterprisedb.com/docs

5.5.3.1 Setting Advanced Server environment variables

The graphical installer provides a script that simplifies the task of setting environment variables for Windows users. The script sets the environment
variables for your current shell session; when your shell session ends, the environment variables are destroyed. You may wish to invoke
pgplus_env.bat from your system-wide shell startup script, so that environment variables are automatically defined for each shell session.

The pgplus_env script is created during the Advanced Server installation process and reflects the choices made during installation. To invoke the
script, open a command line and enter:

C:\Program Files\edb\as13\pgplus_env.bat

As the pgplus_env.bat script executes, it sets the following environment variables:

PATH="C:\Program Files\edb\as13\bin";%PATH%
EDBHOME=C:\Program Files\edb\as13
PGDATA=C:\Program Files\edb\as13\data
PGDATABASE=edb
REM @SET PGUSER=enterprisedb
PGPORT=5444
PGLOCALEDIR=C:\Program Files\edb\as13\share\locale

If you have used an installer created by EDB to install PostgreSQL, the pg_env script performs the same function:

C:\Progra~1\PostgreSQL\13\pg_env.bat

As the pg_env.bat script executes on PostgreSQL, it sets the following environment variables:

PATH="C:\Program Files\PostgreSQL\13\bin";%PATH%
PGDATA=C:\Program Files\PostgreSQL\13\data
PGDATABASE=postgres
PGUSER=postgres
PGPORT=5432
PGLOCALEDIR=C:\Program Files\PostgreSQL\13\share\locale

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 139

5.5.3.2 Connecting to Advanced Server with edb-psql

edb-psql is a command line client application that allows you to execute SQL commands and view the results. To open the edb-psql client, the
client must be in your search path. The executable resides in the bin directory, under your Advanced Server installation.

Use the following command and options to start the edb-psql client:

psql -d edb -U enterprisedb

Fig. 2: Connecting to the server

Where:

-d specifies the database to which edb-psql will connect.

-U specifies the identity of the database user that will be used for the session.

If you have performed an installation with the interactive installer, you can access the edb-psql client by selecting EDB-PSQL from the EDB
Postgres menu. When the client opens, provide connection information for your session.

edb-psql is a symbolic link to a binary called psql , a modified version of the PostgreSQL community psql , with added support for Advanced Server
features. For more information about using the command line client, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/app-psql.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 140

https://www.postgresql.org/docs/current/static/app-psql.html

6 Upgrading EDB Postgres Advanced Server

This section explains how to upgrade EDB Postgres Advanced Server (Advanced Server). It includes detailed information about using:

pg_upgrade to upgrade from an earlier version of Advanced Server to Advanced Server 13.
yum to perform a minor version upgrade on a Linux host.
StackBuilder Plus to perform a minor version upgrade on a Windows host.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 141

6.1 Upgrade considerations

The following limitations apply to upgrading EDB Postgres Advanced Server:

The pg_upgrade utility cannot upgrade a partitioned table if a foreign key refers to the partitioned table.
If you are upgrading from the version 9.4 server or a lower version of Advanced Server, and you use partitioned tables that include a
SUBPARTITION BY clause, you must use pg_dump and pg_restore to upgrade an existing Advanced Server installation to a later version

of Advanced Server. To upgrade, you must:
1. Use pg_dump to preserve the content of the subpartitioned table.
2. Drop the table from the Advanced Server 9.4 database or a lower version of Advanced Server database.
3. Use pg_upgrade to upgrade the rest of the Advanced Server database to a more recent version.
4. Use pg_restore to restore the subpartitioned table to the latest upgraded Advanced Server database.

If you perform an upgrade of the Advanced Server installation, you must rebuild any hash-partitioned table on the upgraded server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 142

6.2 Upgrading an installation with pg_upgrade

While minor upgrades between versions are fairly simple and require only the installation of new executables, past major version upgrades has been both
expensive and time consuming. pg_upgrade facilitates migration between any version of Advanced Server (version 9.0 or later), and any subsequent
release of Advanced Server that is supported on the same platform.

Without pg_upgrade , to migrate from an earlier version of Advanced Server to Advanced Server 13, you must export all of your data using pg_dump ,
install the new release, run initdb to create a new cluster, and then import your old data.

pg_upgrade can reduce both the amount of time required and the disk space required for many major-version upgrades.

The pg_upgrade utility performs an in-place transfer of existing data between Advanced Server and any subsequent version.

Several factors determine if an in-place upgrade is practical:

The on-disk representation of user-defined tables must not change between the original version and the upgraded version.
The on-disk representation of data types must not change between the original version and the upgraded version.
To upgrade between major versions of Advanced Server with pg_upgrade , both versions must share a common binary representation for each
data type. Therefore, you cannot use pg_upgrade to migrate from a 32-bit to a 64-bit Linux platform.

Before performing a version upgrade, pg_upgrade will verify that the two clusters (the old cluster and the new cluster) are compatible.

If the upgrade involves a change in the on-disk representation of database objects or data, or involves a change in the binary representation of data types,
pg_upgrade will be unable to perform the upgrade; to upgrade, you will have to pg_dump the old data and then import that data into the new cluster.

The pg_upgrade executable is distributed with Advanced Server 13, and is installed as part of the Database Server component; no additional
installation or configuration steps are required.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 143

6.2.1 Performing an upgrade

To upgrade an earlier version of Advanced Server to the current version, you must:

Install the current version of Advanced Server. The new installation must contain the same supporting server components as the old installation.
Empty the target database or create a new target cluster with initdb .
Place the pg_hba.conf file for both databases in trust authentication mode (to avoid authentication conflicts).
Shut down the old and new Advanced Server services.
Invoke the pg_upgrade utility.

When pg_upgrade starts, it performs a compatibility check to ensure that all required executables are present and contain the expected version
numbers. The verification process also checks the old and new $PGDATA directories to ensure that the expected files and subdirectories are in place. If
the verification process succeeds, pg_upgrade starts the old postmaster and runs pg_dumpall --schema-only to capture the metadata
contained in the old cluster. The script produced by pg_dumpall is used in a later step to recreate all user-defined objects in the new cluster.

Note that the script produced by pg_dumpall recreates only user-defined objects and not system-defined objects. The new cluster will already contain
the system-defined objects created by the latest version of Advanced Server.

After extracting the metadata from the old cluster, pg_upgrade performs the bookkeeping tasks required to sync the new cluster with the existing data.

pg_upgrade runs the pg_dumpall script against the new cluster to create (empty) database objects of the same shape and type as those found in the
old cluster. Then, pg_upgrade links or copies each table and index from the old cluster to the new cluster.

If you are upgrading to Advanced Server 13 and have installed the edb_dblink_oci or edb_dblink_libpq extension, you must drop the extension
before performing an upgrade. To drop the extension, connect to the server with the psql or PEM client, and invoke the commands:

DROP EXTENSION edb_dblink_oci;
DROP EXTENSION edb_dblink_libpq;

When you have completed upgrading, you can use the CREATE EXTENSION command to add the current versions of the extensions to your installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 144

6.2.1.1 Linking versus copying

When invoking pg_upgrade , you can use a command-line option to specify whether pg_upgrade should copy or link each table and index in the old
cluster to the new cluster.

Linking is much faster because pg_upgrade simply creates a second name (a hard link) for each file in the cluster; linking also requires no extra
workspace because pg_upgrade does not make a copy of the original data. When linking the old cluster and the new cluster, the old and new clusters
share the data; note that after starting the new cluster, your data can no longer be used with the previous version of Advanced Server.

If you choose to copy data from the old cluster to the new cluster, pg_upgrade will still reduce the amount of time required to perform an upgrade
compared to the traditional dump/restore procedure. pg_upgrade uses a file-at-a-time mechanism to copy data files from the old cluster to the
new cluster (versus the row-by-row mechanism used by dump/restore). When you use pg_upgrade , you avoid building indexes in the new cluster;
each index is simply copied from the old cluster to the new cluster. Finally, using a dump/restore procedure to upgrade requires a great deal of
workspace to hold the intermediate text-based dump of all of your data, while pg_upgrade requires very little extra workspace.

Data that is stored in user-defined tablespaces is not copied to the new cluster; it stays in the same location in the file system, but is copied into a
subdirectory whose name reflects the version number of the new cluster. To manually relocate files that are stored in a tablespace after upgrading, move
the files to the new location and update the symbolic links (located in the pg_tblspc directory under your cluster's data directory) to point to the
files.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 145

6.2.2 Invoking pg_upgrade

When invoking pg_upgrade , you must specify the location of the old and new cluster's PGDATA and executable (/bin) directories, as well as the
name of the Advanced Server superuser, and the ports on which the installations are listening. A typical call to invoke pg_upgrade to migrate from
Advanced Server 12 to Advanced Server 13 takes the form:

pg_upgrade
--old-datadir <path_to_12_data_directory>
--new-datadir <path_to_13_data_directory>
--user <superuser_name>
--old-bindir <path_to_12_bin_directory>
--new-bindir <path_to_13_bin_directory>
--old-port <12_port> --new-port <13_port>

Where:

--old-datadir path_to_12_data_directory

Use the --old-datadir option to specify the complete path to the data directory within the Advanced Server 12 installation.

--new-datadir path_to_13_data_directory

Use the --new-datadir option to specify the complete path to the data directory within the Advanced Server 13 installation.

--username superuser_name

Include the --username option to specify the name of the Advanced Server superuser. The superuser name should be the same in both versions of
Advanced Server. By default, when Advanced Server is installed in Oracle mode, the superuser is named enterprisedb . If installed in PostgreSQL
mode, the superuser is named postgres .

If the Advanced Server superuser name is not the same in both clusters, the clusters will not pass the pg_upgrade consistency check.

--old-bindir path_to_12_bin_directory

Use the --old-bindir option to specify the complete path to the bin directory in the Advanced Server 12 installation.

--new-bindir path_to_13_bin_directory

Use the --new-bindir option to specify the complete path to the bin directory in the Advanced Server 13 installation.

--old-port 12_port

Include the --old-port option to specify the port on which Advanced Server 12 listens for connections.

--new-port 13_port

Include the --new-port option to specify the port on which Advanced Server 13 listens for connections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 146

6.2.2.1 Command line options - Reference

pg_upgrade accepts the following command line options; each option is available in a long form or a short form:

-b path_to_old_bin_directory
--old-bindir path_to_old_bin_directory

Use the -b or --old-bindir keyword to specify the location of the old cluster's executable directory.

-B path_to_new_bin_directory
--new-bindir path_to_new_bin_directory

Use the -B or --new-bindir keyword to specify the location of the new cluster's executable directory.

-c
--check

Include the -c or --check keyword to specify that pg_upgrade should perform a consistency check on the old and new cluster without performing a
version upgrade.

-d path_to_old_data_directory
--old-datadir path_to_old_data_directory

Use the -d or --old-datadir keyword to specify the location of the old cluster's data directory.

-D path_to_new_data_directory
--new-datadir path_to_new_data_directory

Use the -D or --new-datadir keyword to specify the location of the new cluster's data directory.

Data that is stored in user-defined tablespaces is not copied to the new cluster; it stays in the same location in the file system, but is copied into a
subdirectory whose name reflects the version number of the new cluster. To manually relocate files that are stored in a tablespace after upgrading, you
must move the files to the new location and update the symbolic links (located in the pg_tblspc directory under your cluster's data directory) to point
to the files.

-j
--jobs

Include the -j or --jobs keyword to specify the number of simultaneous processes or threads to use during the upgrade.

-k
--link

Include the -k or --link keyword to create a hard link from the new cluster to the old cluster. See Linking versus Copying for more information about
using a symbolic link.

-o options
--old-options options

Use the -o or --old-options keyword to specify options that will be passed to the old postgres command. Enclose options in single or double
quotes to ensure that they are passed as a group.

-O options
--new-options options

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 147

Use the -O or --new-options keyword to specify options to be passed to the new postgres command. Enclose options in single or double quotes
to ensure that they are passed as a group.

-p old_port_number
--old-port old_port_number

Include the -p or --old-port keyword to specify the port number of the Advanced Server installation that you are upgrading.

-P new_port_number
--new-port new_port_number

Include the -P or --new-port keyword to specify the port number of the new Advanced Server installation.

NoteNote

If the original Advanced Server installation is using port number 5444 when you invoke the Advanced Server 13 installer, the installer will
recommend using listener port 5445 for the new installation of Advanced Server.

-r
--retain

During the upgrade process, pg_upgrade creates four append-only log files; when the upgrade is completed, pg_upgrade deletes these files.
Include the -r or --retain option to specify that the server should retain the pg_upgrade log files.

-U user_name
--username user_name

Include the -U or --username keyword to specify the name of the Advanced Server database superuser. The same superuser must exist in both
clusters.

-v
--verbose

Include the -v or --verbose keyword to enable verbose output during the upgrade process.

-V
--version

Use the -V or --version keyword to display version information for pg_upgrade .

-?
-h
--help

Use -?, -h, or --help options to display pg_upgrade help information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 148

6.2.3 Upgrading to Advanced Server 13

You can use pg_upgrade to upgrade from an existing installation of Advanced Server into the cluster built by the Advanced Server 13 installer or into an
alternate cluster created using the initdb command. In this section, we will provide the details of upgrading into the cluster provided by the installer.

The basic steps to perform an upgrade into an empty cluster created with the initdb command are the same as the steps to upgrade into the cluster
created by the Advanced Server 13 installer, but you can omit Step 2 (Empty the edb database) , and substitute the location of the alternate
cluster when specifying a target cluster for the upgrade.

If a problem occurs during the upgrade process, you can revert to the previous version. See Reverting to the old cluster Section for detailed information
about this process.

You must be an operating system superuser or Windows Administrator to perform an Advanced Server upgrade.

Step 1 - Install the New ServerStep 1 - Install the New Server

Install Advanced Server 13, specifying the same non-server components that were installed during the previous Advanced Server installation. The new
cluster and the old cluster must reside in different directories.

Step 2 - Empty the target databaseStep 2 - Empty the target database

The target cluster must not contain any data; you can create an empty cluster using the initdb command, or you can empty a database that was created
during the installation of Advanced Server 13. If you have installed Advanced Server in PostgreSQL mode, the installer creates a single database named
postgres ; if you have installed Advanced Server in Oracle mode, it creates a database named postgres and a database named edb .

The easiest way to empty the target database is to drop the database and then create a new database. Before invoking the DROP DATABASE command,
you must disconnect any users and halt any services that are currently using the database.

On Windows, navigate through the Control Panel to the Services manager; highlight each service in the Services list, and select Stop .

On Linux, open a terminal window, assume superuser privileges, and manually stop each service; for example, invoke the following command to stop the
pgAgent service:

service edb-pgagent-13 stop

After stopping any services that are currently connected to Advanced Server, you can use the EDB-PSQL command line client to drop and create a
database. When the client opens, connect to the template1 database as the database superuser; if prompted, provide authentication information. Then,
use the following command to drop your database:

DROP DATABASE <database_name>;

Where database_name is the name of the database.

Then, create an empty database based on the contents of the template1 database.

CREATE DATABASE <database_name>;

Step 3 - Set both servers in trust modeStep 3 - Set both servers in trust mode

During the upgrade process, pg_upgrade will connect to the old and new servers several times; to make the connection process easier, you can edit the
pg_hba.conf file, setting the authentication mode to trust . To modify the pg_hba.conf file, navigate through the Start menu to the EDB
Postgres menu; to the Advanced Server menu, and open the Expert Configuration menu; select the Edit pg_hba.conf menu option
to open the pg_hba.conf file.

You must allow trust authentication for the previous Advanced Server installation, and Advanced Server 13 servers. Edit the pg_hba.conf file for both

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 149

You must allow trust authentication for the previous Advanced Server installation, and Advanced Server 13 servers. Edit the pg_hba.conf file for both
installations of Advanced Server as shown in the following figure.

Fig. 1: Configuring Advanced Server to use trust authentication

After editing each file, save the file and exit the editor.

If the system is required to maintain md5 authentication mode during the upgrade process, you can specify user passwords for the database superuser in a
password file (pgpass.conf on Windows, .pgpass on Linux). For more information about configuring a password file, see the PostgreSQL Core
Documentation, available at:

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

Step 4 - Stop All Component Services and ServersStep 4 - Stop All Component Services and Servers

Before you invoke pg_upgrade , you must stop any services that belong to the original Advanced Server installation, Advanced Server 13, or the
supporting components. This ensures that a service will not attempt to access either cluster during the upgrade process.

The services that are most likely to be running in your installation are:

Service:Service: On Linux:On Linux: On Windows:On Windows:

EnterpriseDB Postgres Advanced Server 9.6 edb-as-9.6 edb-as-9.6

EnterpriseDB Postgres Advanced Server 10 edb-as-10 edb-as-10

EnterpriseDB Postgres Advanced Server 11 edb-as-11 edb-as-11

EnterpriseDB Postgres Advanced Server 12 edb-as-12 edb-as-12

EnterpriseDB Postgres Advanced Server 13 edb-as-13 edb-as-13

Advanced Server 9.6 Scheduling Agent
(pgAgent)

edb-pgagent-9.6 EnterpriseDB Postgres Advanced Server 9.6 Scheduling
Agent

Infinite Cache 9.6 edb-icache N/A

Infinite Cache 10 edb-icache N/A

PgBouncer Pgbouncer Pgbouncer

PgBouncer 1.6 ppas-pgbouncer-1.6 or ppas-
pgbouncer16

ppas-pgbouncer-1.6

PgBouncer 1.7 edb-pgbouncer-1.7 edb-pgbouncer-1.7

PgPool ppas-pgpool N/A

PgPool 3.4 ppas-pgpool-3.4 or ppas-pgpool34 N/A

pgPool-II edb-pgpool-3.5 N/A

Slony 9.6 edb-slony-replication-9.6 edb-slony-replication-9.6

xDB Publication Server 9.0 edb-xdbpubserver-90 Publication Service 90

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 150

https://www.postgresql.org/docs/current/static/libpq-pgpass.html

xDB Publication Server 9.1 edb-xdbpubserver-91 Publication Service 91

xDB Subscription Server edb-xdbsubserver-90 Subscription Service 90

xDB Subscription Server edb-xdbsubserver-91 Subscription Service 91

EDB Replication Server v6.x edb-xdbpubserver Publication Service for xDB Replication Server

EDB Subscription Server v6.x edb-xdbsubserver Subscription Service for xDB Replication Server

Service:Service: On Linux:On Linux: On Windows:On Windows:

To stop a service on Windows:To stop a service on Windows:

Open the Services applet; highlight each Advanced Server or supporting component service displayed in the list, and select Stop .

To stop a service on Linux:To stop a service on Linux:

Open a terminal window and manually stop each service at the command line.

Step 5 For Linux only - Assume the identity of the cluster ownerStep 5 For Linux only - Assume the identity of the cluster owner

If you are using Linux, assume the identity of the Advanced Server cluster owner. (The following example assumes Advanced Server was installed in the
default, compatibility with Oracle database mode, thus assigning enterprisedb as the cluster owner. If installed in compatibility with PostgreSQL
database mode, postgres is the cluster owner.)

su - enterprisedb

Enter the Advanced Server cluster owner password if prompted. Then, set the path to include the location of the pg_upgrade executable:

export PATH=$PATH:/usr/edb/as13/bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the enterprisedb user; you must invoke pg_upgrade
from a directory where the enterprisedb user has write privileges. After performing the above commands, navigate to a directory in which the
enterprisedb user has sufficient privileges to write a file.

cd /tmp

Proceed to Step 6.

Step 5 For Windows only - Assume the identity of the cluster ownerStep 5 For Windows only - Assume the identity of the cluster owner

If you are using Windows, open a terminal window, assume the identity of the Advanced Server cluster owner and set the path to the pg_upgrade
executable.

If the --serviceaccount service_account_user parameter was specified during the initial installation of Advanced Server, then
service_account_user is the Advanced Server cluster owner and is the user to be given with the RUNAS command.

RUNAS /USER:service_account_user "CMD.EXE"
SET PATH=%PATH%;C:\Program Files\edb\as13\bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the service account user; you must invoke pg_upgrade from
a directory where the service account user has write privileges. After performing the above commands, navigate to a directory in which the service
account user has sufficient privileges to write a file.

cd %TEMP%

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 151

Proceed to Step 6.

If the --serviceaccount parameter was omitted during the initial installation of Advanced Server, then the default owner of the Advanced Server
service and the database cluster is NT AUTHORITY\NetworkService .

When NT AUTHORITY\NetworkService is the service account user, the RUNAS command may not be usable as it prompts for a password and the
NT AUTHORITY\NetworkService account is not assigned a password. Thus, there is typically a failure with an error message such as, “Unable to

acquire user password”.

Under this circumstance a Windows utility program named PsExec must be used to run CMD.EXE as the service account NT
AUTHORITY\NetworkService .

The PsExec program must be obtained by downloading PsTools , which is available at the following site:

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx.

You can then use the following command to run CMD.EXE as NT AUTHORITY\NetworkService , and then set the path to the pg_upgrade
executable.

psexec.exe -u "NT AUTHORITY\NetworkService" CMD.EXE
SET PATH=%PATH%;C:\Program Files\edb\as13\bin

During the upgrade process, pg_upgrade writes a file to the current working directory of the service account user; you must invoke pg_upgrade from
a directory where the service account user has write privileges. After performing the above commands, navigate to a directory in which the service
account user has sufficient privileges to write a file.

cd %TEMP%

Proceed with Step 6.

Step 6 - Perform a consistency checkStep 6 - Perform a consistency check

Before attempting an upgrade, perform a consistency check to assure that the old and new clusters are compatible and properly configured. Include the -
-check option to instruct pg_upgrade to perform the consistency check.

The following example demonstrates invoking pg_upgrade to perform a consistency check on Linux:

pg_upgrade -d /var/lib/edb/as12/data
-D /var/lib/edb/as13/data -U enterprisedb
-b /usr/edb/as12/bin -B /usr/edb/as13/bin -p 5444 -P 5445 --check

If the command is successful, it will return *Clusters are compatible* .

If you are using Windows, you must quote any directory names that contain a space:

pg_upgrade.exe
-d "C:\Program Files\ PostgresPlus\12AS\data"
-D "C:\Program Files\edb\as13\data" -U enterprisedb
-b "C:\Program Files\PostgresPlus\12AS\bin"
-B "C:\Program Files\edb\as13\bin" -p 5444 -P 5445 --check

During the consistency checking process, pg_upgrade will log any discrepancies that it finds to a file located in the directory from which
pg_upgrade was invoked. When the consistency check completes, review the file to identify any missing components or upgrade conflicts. You must

resolve any conflicts before invoking pg_upgrade to perform a version upgrade.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 152

https://technet.microsoft.com/en-us/sysinternals/bb897553.aspx

If pg_upgrade alerts you to a missing component, you can use StackBuilder Plus to add the component that contains the component. Before using
StackBuilder Plus, you must restart the Advanced Server 13 service. After restarting the service, open StackBuilder Plus by navigating through the Start
menu to the Advanced Server 13 menu, and selecting StackBuilder Plus . Follow the onscreen advice of the StackBuilder Plus wizard to
download and install the missing components.

When pg_upgrade has confirmed that the clusters are compatible, you can perform a version upgrade.

Step 7 - Run pg_upgradeStep 7 - Run pg_upgrade

After confirming that the clusters are compatible, you can invoke pg_upgrade to upgrade the old cluster to the new version of Advanced Server.

On Linux:

pg_upgrade -d /var/lib/edb/as12/data
-D /var/lib/edb/as13/data -U enterprisedb
-b /usr/edb/as12/bin -B /usr/edb/as13/bin -p 5444 -P 5445

On Windows:

pg_upgrade.exe -d "C:\Program Files\PostgresPlus\12AS\data"
-D "C:\Program Files\edb\as13\data" -U enterprisedb
-b "C:\Program Files\PostgresPlus\12AS\bin"
-B "C:\Program Files\edb\as13\bin" -p 5444 -P 5445

pg_upgrade will display the progress of the upgrade onscreen:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 153

$ pg_upgrade -d /var/lib/edb/as12/data -D /var/lib/edb/as13/data -U
enterprisedb -b /usr/edb/as12/bin -B /usr/edb/as13/bin -p 5444 -P 5445
Performing Consistency Checks

Checking current, bin, and data directories ok
Checking cluster versions ok
Checking database user is a superuser ok
Checking for prepared transactions ok
Checking for reg* system OID user data types ok
Checking for contrib/isn with bigint-passing mismatch ok
Creating catalog dump ok
Checking for presence of required libraries ok
Checking database user is a superuser ok
Checking for prepared transactions ok

If pg_upgrade fails after this point, you must re-initdb the
new cluster before continuing.

Performing Upgrade

Analyzing all rows in the new cluster ok
Freezing all rows on the new cluster ok
Deleting files from new pg_clog ok
Copying old pg_clog to new server ok
Setting next transaction ID for new cluster ok
Resetting WAL archives ok
Setting frozenxid counters in new cluster ok
Creating databases in the new cluster ok
Adding support functions to new cluster ok
Restoring database schema to new cluster ok
Removing support functions from new cluster ok
Copying user relation files ok

Setting next OID for new cluster ok
Creating script to analyze new cluster ok
Creating script to delete old cluster ok

Upgrade Complete

Optimizer statistics are not transferred by pg_upgrade so,
once you start the new server, consider running:
 analyze_new_cluster.sh

Running this script will delete the old cluster's data files:
 delete_old_cluster.sh

While pg_upgrade runs, it may generate SQL scripts that handle special circumstances that it has encountered during your upgrade. For example, if the
old cluster contains large objects, you may need to invoke a script that defines the default permissions for the objects in the new cluster. When performing
the pre-upgrade consistency check pg_upgrade will alert you to any script that you may be required to run manually.

You must invoke the scripts after pg_upgrade completes. To invoke the scripts, connect to the new cluster as a database superuser with the EDB-PSQL
command line client, and invoke each script using the \i option:

\i complete_path_to_script/script.sql

It is generally unsafe to access tables referenced in rebuild scripts until the rebuild scripts have completed; accessing the tables could yield incorrect
results or poor performance. Tables not referenced in rebuild scripts can be accessed immediately.

If pg_upgrade fails to complete the upgrade process, the old cluster will be unchanged, except that $PGDATA/global/pg_control is renamed to

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 154

If pg_upgrade fails to complete the upgrade process, the old cluster will be unchanged, except that $PGDATA/global/pg_control is renamed to
pg_control.old and each tablespace is renamed to tablespace.old . To revert to the pre-invocation state:

1. Delete any tablespace directories created by the new cluster.
2. Rename $PGDATA/global/pg_control , removing the .old suffix.
3. Rename the old cluster tablespace directory names, removing the .old suffix.
4. Remove any database objects (from the new cluster) that may have been moved before the upgrade failed.

After performing these steps, resolve any upgrade conflicts encountered before attempting the upgrade again.

When the upgrade is complete, pg_upgrade may also recommend vacuuming the new cluster, and will provide a script that allows you to delete the old
cluster.

NoteNote

Before removing the old cluster, ensure that the cluster has been upgraded as expected, and that you have preserved a backup of the cluster in
case you need to revert to a previous version.

Step 8 - Restore the authentication settings in the pg_hba.conf fileStep 8 - Restore the authentication settings in the pg_hba.conf file

If you modified the pg_hba.conf file to permit trust authentication, update the contents of the pg_hba.conf file to reflect your preferred
authentication settings.

Step 9 - Move and identify user-defined tablespaces (Optional)Step 9 - Move and identify user-defined tablespaces (Optional)

If you have data stored in a user-defined tablespace, you must manually relocate tablespace files after upgrading; move the files to the new location and
update the symbolic links (located in the pg_tblspc directory under your cluster's data directory) to point to the files.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 155

6.2.4 Upgrading a pgAgent installation

If your existing Advanced Server installation uses pgAgent, you can use a script provided with the Advanced Server 13 installer to update pgAgent. The
script is named dbms_job.upgrade.script.sql , and is located in the /share/contrib/ directory under your Advanced Server installation.

If you are using pg_upgrade to upgrade your installation, you should:

1. Perform the upgrade.
2. Invoke the dbms_job.upgrade.script.sql script to update the catalog files. If your existing pgAgent installation was performed with a

script, the update will convert the installation to an extension.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 156

6.2.5 pg_upgrade troubleshooting

The troubleshooting tips in this section address problems you may encounter when using pg_upgrade .

Upgrade Error - There seems to be a postmaster servicing the cluster

If pg_upgrade reports that a postmaster is servicing the cluster, please stop all Advanced Server services and try the upgrade again.

Upgrade Error - fe_sendauth: no password supplied

If pg_upgrade reports an authentication error that references a missing password, please modify the pg_hba.conf files in the old and new cluster to
enable trust authentication, or configure the system to use a pgpass.conf file.

Upgrade Error - New cluster is not empty; exiting

If pg_upgrade reports that the new cluster is not empty, please empty the new cluster. The target cluster may not contain any user-defined databases.

Upgrade Error - Failed to load library

If the original Advanced Server cluster included libraries that are not included in the Advanced Server 13 cluster, pg_upgrade will alert you to the
missing component during the consistency check by writing an entry to the loadable_libraries.txt file in the directory from which you invoked
pg_upgrade . Generally, for missing libraries that are not part of a major component upgrade, perform the following steps:

1. Restart the Advanced Server service.

Use StackBuilder Plus to download and install the missing module. Then:

2. Stop the Advanced Server service.

3. Resume the upgrade process: invoke pg_upgrade to perform consistency checking.

4. When you have resolved any remaining problems noted in the consistency checks, invoke pg_upgrade to perform the data migration from the old
cluster to the new cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 157

6.2.6 Reverting to the old cluster

The method used to revert to a previous cluster varies with the options specified when invoking pg_upgrade :

If you specified the --check option when invoking pg_upgrade , an upgrade has not been performed, and no modifications have been made to
the old cluster; you can re-use the old cluster at any time.
If you included the --link option when invoking pg_upgrade , the data files are shared between the old and new cluster after the upgrade
completes. If you have started the server that is servicing the new cluster, the new server has written to those shared files and it is unsafe to use the
old cluster.
If you ran pg_upgrade without the --link specification or have not started the new server, the old cluster is unchanged, except that the
.old suffix has been appended to the $PGDATA/global/pg_control and tablespace directories.

To reuse the old cluster, delete the tablespace directories created by the new cluster and remove the .old suffix from
$PGDATA/global/pg_control and the old cluster tablespace directory names and restart the server that services the old cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 158

6.3 Performing a minor version update of an RPM installation

If you used an RPM package to install Advanced Server or its supporting components, you can use yum to perform a minor version upgrade to a more
recent version. To review a list of the package updates that are available for your system, open a command line, assume root privileges, and enter the
command:

yum check-update <package_name>

Where package_name is the search term for which you wish to search for updates. Please note that you can include wild-card values in the search term.
To use yum update to install an updated package, use the command:

yum update <package_name>

Where package_name is the name of the package you wish to update. Include wild-card values in the update command to update multiple related
packages with a single command. For example, use the following command to update all packages whose names include the expression edb :

yum update edb*

NoteNote

The yum update command will only perform an update between minor releases; to update between major releases, you must use
pg_upgrade .

For more information about using yum commands and options, enter yum --help on your command line, or visit:

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-yum.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 159

https://access.redhat.com/documentation/en-US/Red_Hat_Enterprise_Linux/6/html/Deployment_Guide/ch-yum.html

6.4 Using StackBuilder Plus to perform a minor version update

StackBuilder Plus is supported only on Windows systems.

The StackBuilder Plus utility provides a graphical interface that simplifies the process of updating, downloading, and installing modules that complement
your Advanced Server installation. When you install a module with StackBuilder Plus, StackBuilder Plus automatically resolves any software dependencies.

You can invoke StackBuilder Plus at any time after the installation has completed by selecting the StackBuilder Plus menu option from the Apps
menu. Enter your system password (if prompted), and the StackBuilder Plus welcome window opens.

Fig. 1: The StackBuilder Plus welcome window

Use the drop-down listbox on the welcome window to select your Advanced Server installation.

StackBuilder Plus requires Internet access; if your installation of Advanced Server resides behind a firewall (with restricted Internet access), StackBuilder
Plus can download program installers through a proxy server. The module provider determines if the module can be accessed through an HTTP proxy or an
FTP proxy; currently, all updates are transferred via an HTTP proxy and the FTP proxy information is not used.

If the selected Advanced Server installation has restricted Internet access, use the Proxy Servers on the Welcome window to open the Proxy
servers dialog (shown in the following figure).

Fig. 2: The Proxy servers dialog

Enter the IP address and port number of the proxy server in the HTTP proxy on the Proxy servers dialog. Currently, all StackBuilder Plus modules
are distributed via HTTP proxy (FTP proxy information is ignored). Click OK to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 160

Fig. 3: The StackBuilder Plus module selection window

The tree control on the StackBuilder Plus module selection window (shown in the figure) displays a node for each module category.

To add a new component to the selected Advanced Server installation or to upgrade a component, check the box to the left of the module name and click
Next . If prompted, enter your email address and password on the StackBuilder Plus registration window.

Fig. 4: A summary window displays a list of selected packages

StackBuilder Plus confirms the packages selected. The Selected packages dialog will display the name and version of the installer; click Next to
continue.

When the download completes, a window opens that confirms the installation files have been downloaded and are ready for installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 161

Fig. 5: Confirmation that the download process is complete

You can check the box next to Skip Installation , and select Next to exit StackBuilder Plus without installing the downloaded files, or leave the
box unchecked and click Next to start the installation process.

Fig. 6: StackBuilder Plus confirms the completed installation

When the upgrade is complete, StackBuilder Plus will alert you to the success or failure of the installation of the requested package. If you were prompted
by an installer to restart your computer, reboot now.

NoteNote

If the update fails to install, StackBuilder Plus will alert you to the installation error with a popup dialog and write a message to the log file at
%TEMP% .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 162

6.5 Migration to Version 13

A dump/restore using pg_dumpall or pg_upgrade or logical replication is required for migrating data from any previous release. See Upgrading an
Installation With pg_upgrade for information on migrating to new major releases.

Version 13 contains a number of changes that may affect compatibility with previous releases. Listed is the following incompatibilities:

Change SIMILAR TO ... ESCAPE NULL to return NULL .

This new behavior matches the SQL specification. Previously a null ESCAPE value was taken to mean using the default escape string (a backslash
character). This also applies to substring (text FROM pattern ESCAPE text) . The previous behavior has been retained in old views by
keeping the original function unchanged.

Make json[b]_to_tsvector() fully check the spelling of its string option.

Change the way non-default effective_io_concurrency values affect concurrency.

Previously, this value was adjusted before setting the number of concurrent requests. The value is now used directly. Conversion of old values to
new ones can be done using:

SELECT round(sum(OLDVALUE / n::float)) AS newvalue FROM generate_series(1, OLDVALUE) s(n);

Prevent display of auxiliary processes in pg_stat_ssl and pg_stat_gssapi system views. Queries that join these views to
pg_stat_activity and wish to see auxiliary processes will need to use left joins.

Rename various wait events to improve consistency.

Fix ALTER FOREIGN TABLE ... RENAME COLUMN to return a more appropriate command tag. Previously it returned ALTER TABLE ; now it
returns ALTER FOREIGN TABLE .

Fix ALTER MATERIALIZED VIEW ... RENAME COLUMN to return a more appropriate command tag. Previously it returned ALTER TABLE ;
now it returns ALTER MATERIALIZED VIEW .

Rename configuration parameter wal_keep_segments to wal_keep_size .

This determines how much WAL to retain for standby servers. It is specified in megabytes, rather than number of files as with the old parameter. If
you previously used wal_keep_segments , the following formula will give you an approximately equivalent setting:

wal_keep_size = wal_keep_segments * wal_segment_size (typically 16MB)

Remove support for defining operator classes using pre-PostgreSQL 8.0 syntax.

Remove support for defining foreign key constraints using pre-PostgreSQL 7.3 syntax.

Remove support for "opaque" pseudo-types used by pre-PostgreSQL 7.3 servers.

Remove support for upgrading unpackaged (pre-9.1) extensions.

The FROM option of CREATE EXTENSION is no longer supported. Any installations still using unpackaged extensions should upgrade them to a
packaged version before updating to PostgreSQL 13.

Remove support for posixrules files in the timezone database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 163

Remove support for posixrules files in the timezone database.

IANA's timezone group has deprecated this feature, meaning that it will gradually disappear from systems' timezone databases over the next few
years. Rather than have a behavioral change appear unexpectedly with a timezone data update, we have removed PostgreSQL's support for this
feature as of version 13. This affects only the behavior of POSIX-style time zone specifications that lack an explicit daylight savings transition rule;
formerly the transition rule could be determined by installing a custom posixrules file, but now it is hard-wired. The recommended fix for any
affected installations is to start using a geographical time zone name.

In ltree, when an lquery pattern contains adjacent asterisks with braces, e.g., *{2}.*{3} , properly interpret that as *{5} .

Fix pageinspect's bt_metap() to return more appropriate data types that are less likely to overflow.

The SELECT DISTINCT...ORDER BY clause of the SELECT DISTINCT query behavior differs after upgrade.

If SELECT DISTINCT is specified or if a SELECT statement includes the SELECT DISTINCT …ORDER BY clause then all the expressions in
ORDER BY must be present in the select list of the SELECT DISTINCT query (applicable when upgrading from version 9.6 to any higher version

of Advanced Server).

All objects depending on collation must be rebuilt using pg_upgrade to migrate from earlier versions (12, 11, 10, 9.6) using ICU to the latest
Advanced Server version.

A change in collation definitions can lead to corrupt indexes and other problems because the database system relies on stored objects having a
certain sort order. Generally, this should be avoided, but it can happen in legitimate circumstances, such as when using pg_upgrade to upgrade
to server binaries linked with a newer version of ICU. When this happens, all objects depending on the collation should be rebuilt, for example, using
REINDEX . When that is done, the collation version can be refreshed using the command ALTER COLLATION ... REFRESH VERSION . This

will update the system catalog to record the current collator version and will make the warning go away. Note that this does not actually check
whether all affected objects have been rebuilt correctly.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 164

7 Uninstalling EDB Postgres Advanced Server

This section provides detailed instructions for uninstalling Advanced Server on Linux and Windows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 165

7.1 Uninstalling Advanced Server on Linux

Note that after uninstalling Advanced Server, the cluster data files remain intact and the service user persists. You may manually remove the cluster data
and service user from the system.

Uninstalling on RHEL/AlmaLinux/Rocky Linux

You can use variations of the rpm or dnf command to remove installed packages. Note that removing a package does not damage the Advanced Server
data directory.

Include the -e option when invoking the rpm command to remove an installed package; the command syntax is:

rpm -e <package_name>

Where package_name is the name of the package that you would like to remove.

You can use the dnf remove command to remove a package installed by dnf . To remove a package, open a terminal window, assume superuser
privileges, and enter the command:

dnf remove <package_name>

Where package_name is the name of the package that you would like to remove.

rpm does not remove a package that another package requires. If you attempt to remove a package that satisfies a package dependency, rpm provides a
warning.

NoteNote

In RHEL or Rocky Linux or AlmaLinux 8, removing a package also removes all its dependencies that are not required by other packages. To
override this default behavior of RHEL or Rocky Linux or AlmaLinux 8, you must disable the clean_requirements_on_remove parameter
in the /etc/yum.conf file.

To uninstall Advanced Server and its dependent packages; use the following command:

dnf remove edb-as13-server*

Uninstalling on Debian or Ubuntu

To uninstall Advanced Server, invoke the following command. The configuration files and data directory remains intact.

apt-get remove edb-as13-server*

To uninstall Advanced Server, configuration files, and data directory, invoke the following command:

apt-get purge edb-as13-server*

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 166

7.2 Uninstalling Advanced Server on Windows

Note that after uninstalling Advanced Server, the cluster data files remain intact and the service user persists. You may manually remove the cluster data
and service user from the system.

Using Advanced Server Uninstallers at the Command Line

The Advanced Server interactive installer creates an uninstaller that you can use to remove Advanced Server or components that reside on a Windows host.
The uninstaller is created in C:\Program Files\edb\as13 . To open the uninstaller, assume superuser privileges, navigate into the directory that
contains the uninstaller, and enter:

uninstall-edb-as13-server.exe

The uninstaller opens.

Fig. 1: The Advanced Server uninstaller

You can remove the Entire application (the default), or select the radio button next to Individual components to select components for
removal; if you select Individual components , a dialog will open, prompting you to select the components you wish to remove. After making your
selection, click Next .

Fig. 2: Acknowledge that dependent components are removed first

If you have elected to remove components that are dependent on Advanced Server, those components will be removed first; click Yes to acknowledge
that you wish to continue.

Progress bars are displayed as the software is removed. When the uninstallation is complete, an Info dialog opens to confirm that Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 167

Progress bars are displayed as the software is removed. When the uninstallation is complete, an Info dialog opens to confirm that Advanced Server
(and/or its components) has been removed.

Fig. 3: The uninstallation is complete

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 168

8 Troubleshooting an installation

This section provides guidance for troubleshooting an Advanced Server installation on Linux and Windows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 169

8.1 Linux installation troubleshooting

Difficulty Displaying Java-based ApplicationsDifficulty Displaying Java-based Applications

If you encounter difficulty displaying Java-based server features (controls or text not displayed correctly or blank windows), upgrading to the latest
libxcb-xlib libraries should correct the problem on most distributions. Please visit this link for other possible workarounds.

The Installation Fails to Complete Due to Existing data Directory ContentsThe Installation Fails to Complete Due to Existing data Directory Contents

If an installation fails to complete due to an existing content in the data directory, the server will write an error message to the server logs:

A data directory is neither empty, or a recognisable data directory.

If you encounter a similar message, you should confirm that the data directory is empty; the presence of files (including the system-generated
lost+found folder) will prevent the installation from completing. Either remove the files from the data directory, or specify a different location for the

data directory before re-invoking the installer to complete the installation.

Difficulty Installing the EPEL Release PackageDifficulty Installing the EPEL Release Package

If you encounter difficulty when installing the EPEL release package, you can use the following command to install the epel-release package on
RHEL/Rocky Linux/AlmaLinux 8.x:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

Please note that you may need to enable the [extras] repository definition in the CentOS-Base.repo file (located in /etc/yum.repos.d). If
yum cannot access a repository that contains epel-release , you will get an error message:

No package epel available.
Error: Nothing to do

If you receive this error, you can download the EPEL rpm package, and install it manually. To manually install EPEL , download the rpm package, assume
superuser privileges, navigate into the directory that contains the package, and install EPEL with the command:

dnf -y install epel-release

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 170

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6532373

8.2 Windows installation troubleshooting

Difficulty Displaying Java-based ApplicationsDifficulty Displaying Java-based Applications

If you encounter difficulty displaying Java-based server features (controls or text not being displayed correctly, or blank windows), upgrading to the latest
libxcb-xlib libraries should correct the problem on most distributions. Please visit the following link for other possible work-arounds:

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6532373

- -mode unattended Authentication Errors- -mode unattended Authentication Errors

Authentication errors from component modules during unattended installations may indicate that the specified values of --servicepassword or --
superpassword may be incorrect.

Errors During an Advanced Server InstallationErrors During an Advanced Server Installation

If you encounter an error during the installation process, exit the installation, and ensure that your version of Windows is up-to-date. After applying any
outstanding operating system updates, re-invoke the Advanced Server installer.

The Installation Fails to Complete Due to Existing Data Directory ContentsThe Installation Fails to Complete Due to Existing Data Directory Contents

If an installation fails to complete due to existing content in the data directory, the server will write an error message to the server logs:

A data directory is neither empty, or a recognisable data directory .

If you encounter a similar message, you should confirm that the data directory is empty; the presence of files (including the system-generated
lost+found folder) will prevent the installation from completing. Either remove the files from the data directory, or specify a different location for the

data directory before re-invoking the installer to complete the installation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 171

http://bugs.sun.com/bugdatabase/view_bug.do?bug_id=6532373

9 Quick Start Guide for RHEL/Rocky Linux/AlmaLinux 8

Advanced Server adds extended functionality to the open-source PostgreSQL database that supports database administration, enhanced SQL capabilities,
database and application security, performance monitoring and analysis, and application development utilities. Advanced Server also supports database
compatibility features for Oracle users; for detailed information about compatibility features, see the Advanced Server documentation.

This guide will walk you through using dnf to install EDB Postgres Advanced Server on a RHEL/Rocky Linux/AlmaLinux 8 system and deploying a
database cluster. The database created by this tutorial is well-suited for experimentation and testing. There are likely to be additional security and
resource considerations when configuring a production installation that are not covered by this document.

This guide assumes that you are familiar with simple operating system and system administration procedures, and have administrative privileges on the
host on which Advanced Server will be installed.

Please note that if you are using the pdf version of this document, using cut/paste to copy a command may result in extra spaces or carriage returns in the
pasted command. If a command fails, check the command carefully for extra characters.

Components of an EDB Postgres Advanced Server DeploymentComponents of an EDB Postgres Advanced Server Deployment

Among the components that make up an Advanced Server deployment are:

The Database ServerThe Database Server - The database server (the postmaster) is the service that provides the key functionality that allows you to store and manage data.
Advanced Server is built on the PostgreSQL open-source database project; it includes all of the documented features of community PostgreSQL and more.

The Database ClusterThe Database Cluster - A cluster is a set of on-disk structures that comprise a collection of databases. A cluster is serviced by a single-instance of the
database server. A database cluster is stored in the data directory; please note that the data directory of a production database should not be stored
on an NFS file system.

Configuration FilesConfiguration Files - You can use the parameters listed in Postgres configuration files to manage deployment preferences, security preferences, connection
behaviors, and logging preferences.

Supporting Tools, Utilities, and ClientsSupporting Tools, Utilities, and Clients - EDB makes available a full suite of tools and utilities that can help you monitor and manage your Advanced Server
deployment. For more information, visit the EDB website.

Supporting Functions, Procedures, Data Types, Index Types, Operators, Utilities, and AggregatesSupporting Functions, Procedures, Data Types, Index Types, Operators, Utilities, and Aggregates - Advanced Server includes a number of features that help
you manage your data.

PrerequisitesPrerequisites

Before installing Advanced Server, assume superuser privileges and use dnf to install prerequisite packages:

dnf -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-8.noarch.rpm

If you are installing Migration Toolkit or EDB*Plus, you must first install Java:

dnf -y install java

Installing and Configuring Advanced ServerInstalling and Configuring Advanced Server

Step 1:Step 1: You must register with EDB to receive credentials for the EDB repository. For information about requesting credentials, visit the
https://www.enterprisedb.com/user/login.

Step 2:Step 2: Assume superuser privileges to install the EDB repository configuration package:

dnf -y install https://yum.enterprisedb.com/edbrepos/edb-repo-latest.noarch.rpm

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 172

https://www.enterprisedb.com/
https://www.enterprisedb.com/user/login

Step 3:Step 3: The repository configuration file is named edb.repo . The file resides in /etc/yum.repos.d . Ensure the username and password
placeholders in the baseurl specification matches with the name and password of a registered EDB user.

Step 4:Step 4: Update the cache and install Advanced Server:

dnf makecache

dnf -y install edb-as13-server

Step 5:Step 5: Use sudo to assume the identity of the enterprisedb database superuser and create an Advanced Server cluster named acctg on listener
port 5444 :

sudo su - enterprisedb

/usr/edb/as13/bin/initdb -D /var/lib/edb/as13/acctg

Starting the ClusterStarting the Cluster

As the enterprisedb user, start the cluster:

/usr/edb/as13/bin/pg_ctl start -D /var/lib/edb/as13/acctg

You can check the status of the cluster with the command:

/usr/edb/as13/bin/pg_ctl status -D /var/lib/edb/as13/acctg

Using the psql Command Line ClientUsing the psql Command Line Client

After installing the server and initializing a cluster, you can connect to the database with your choice of client. For convenience, the server is deployed with
the pgAdmin 4 graphical client and the psql command line client.

As the enterprisedb user, open a psql session:

/usr/edb/as13/bin/psql -d edb

Then, assign a password to the enterprisedb user:

ALTER ROLE enterprisedb IDENTIFIED BY password;

Create a database (named hr):

CREATE DATABASE hr;

Connect to the new database and create a table (named dept):

\c hr

CREATE TABLE public.dept (deptno numeric(2) NOT NULL CONSTRAINT dept_pk
PRIMARY KEY, dname varchar(14) CONSTRAINT dept_dname_uq UNIQUE, loc
varchar(13));

Add data to the table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 173

https://www.pgadmin.org/docs/
https://www.postgresql.org/docs/current/app-psql.html

INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');

INSERT into dept VALUES (20,'RESEARCH','DALLAS');

You can use simple SQL commands to query the database and retrieve information about the data you have added to the table:

SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
(2 rows)

Or create database users:

ALTER ROLE enterprisedb IDENTIFIED BY password;

For more detailed product usage information, see the Advanced Server documentation, available at the EDB website.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 174

10 Quick Start Guide for Windows

Advanced Server adds extended functionality to the open-source PostgreSQL database that supports database administration, enhanced SQL capabilities,
database and application security, performance monitoring and analysis, and application development utilities. Advanced Server also supports database
compatibility features for Oracle users; for detailed information about compatibility features, see the Advanced Server documentation.

This guide will walk you through using the graphical installer to install EDB Postgres Advanced Server on a Windows system. The database created by this
tutorial is well-suited for experimentation and testing. There are likely to be additional security and resource considerations when configuring a production
installation that are not covered by this document.

This guide assumes that you are familiar with simple operating system and system administration procedures, and have administrative privileges on the
host on which Advanced Server will be installed.

Please note that if you are using the pdf version of this document, using cut/paste to copy a command may result in extra spaces or carriage returns in the
pasted command. If a command fails, check the command carefully for extra characters.

Components of an EDB Postgres Advanced Server DeploymentComponents of an EDB Postgres Advanced Server Deployment

Among the components that make up an Advanced Server deployment are:

The Database ServerThe Database Server - The database server (the postmaster) is the service that provides the key functionality that allows you to store and manage data.
Advanced Server is built on the PostgreSQL open-source database project; it includes all of the documented features of community PostgreSQL and more.

The Database ClusterThe Database Cluster - A cluster is a set of on-disk structures that comprise a collection of databases. A cluster is serviced by a single-instance of the
database server. A database cluster is stored in the data directory; please note that the data directory of a production database should not be stored
on an NFS file system.

Configuration FilesConfiguration Files - You can use the parameters listed in Postgres configuration files to manage deployment preferences, security preferences, connection
behaviors, and logging preferences.

Supporting Tools, Utilities, and ClientsSupporting Tools, Utilities, and Clients - EDB makes available a full suite of tools and utilities that can help you monitor and manage your Advanced Server
deployment. For more information, visit the EDB website.

Supporting Functions, Procedures, Data Types, Index Types, Operators, Utilities, and AggregatesSupporting Functions, Procedures, Data Types, Index Types, Operators, Utilities, and Aggregates - Advanced Server includes a number of features that help
you manage your data.

Installation PrerequisitesInstallation Prerequisites

User PrivilegesUser Privileges

To perform an Advanced Server installation on a Windows system, you must have administrator privileges. If you are installing Advanced Server on a
Windows system that is configured with User Account Control enabled, you can assume sufficient privileges to invoke the graphical installer by
right clicking on the name of the installer and selecting Run as administrator from the context menu.

Windows-specific Software RequirementsWindows-specific Software Requirements

You should apply Windows operating system updates before invoking the Advanced Server installer. If (during the installation process) the installer
encounters errors, exit the installation, and ensure that your version of Windows is up-to-date before restarting the installer.

Migration Toolkit or EDB*Plus Installation Pre-requisitesMigration Toolkit or EDB*Plus Installation Pre-requisites

Before using StackBuilder Plus to install Migration Toolkit or EDB*Plus, you must first install Java (version 1.8 or later). If you are using Windows, Java
installers and instructions are available online at:

http://www.java.com/en/download/manual.jsp

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 175

https://www.enterprisedb.com/
http://www.java.com/en/download/manual.jsp

Installing and Configuring Advanced ServerInstalling and Configuring Advanced Server

The graphical installer provides a quick and easy way to install Advanced Server 13 on a Windows system. Use the wizard's dialogs to specify information
about your system and system usage; when you have completed the dialogs, the installer performs an installation based on the selections made during the
setup process.

To invoke the wizard, you must have administrator privileges. Assume administrator privileges, and double-click the edb-as13-server-13.x.x-x-
windows-x64 executable file.

NoteNote

To install Advanced Server on some versions of Windows, you may be required to right click on the file icon and select Run as
Administrator from the context menu to invoke the installer with Administrator privileges.

When the Language Selection popup opens, select an installation language and click OK to continue to the Setup window.

Fig. 1: The Advanced Server installer Welcome window

Click Next to continue.

The EnterpriseDB License Agreement opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 176

Fig. 2: The EnterpriseDB License Agreement

Carefully review the license agreement before highlighting the appropriate radio button; click Next to continue.

The Installation Directory window opens.

Fig. 3: The Installation Directory window

By default, the Advanced Server installation directory is:

C:\Program Files\edb\as13

You can accept the default installation location, and click Next to continue, or optionally click the File Browser icon to open the Browse For
Folder dialog to choose an alternate installation directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 177

NoteNote

The data directory of a production database should not be stored on an NFS file system.

Fig. 4: The Select Components window

The Select Components window contains a list of optional components that you can install with the Advanced Server Setup wizard. You can omit a
module from the Advanced Server installation by deselecting the box next to the components name.

The Setup wizard can install the following components while installing Advanced Server 13:

EDB Postgres Advanced ServerEDB Postgres Advanced Server

Select the EDB Postgres Advanced Server option to install Advanced Server 13.

pgAdmin 4pgAdmin 4

Select the pgAdmin 4 option to install the pgAdmin 4 client. pgAdmin 4 provides a powerful graphical interface for database management and
monitoring.

StackBuilder PlusStackBuilder Plus

The StackBuilder Plus utility is a graphical tool that can update installed products, or download and add supporting modules (and the resulting
dependencies) after your Advanced Server setup and installation completes.

Command Line ToolsCommand Line Tools

The Command Line Tools option installs command line tools and supporting client libraries including:

libpq
psql
EDB*Loader
ecpgPlus
pg_basebackup, pg_dump, and pg_restore
pg_bench
and more.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 178

NoteNote

The Command Line Tools are required if you are installing Advanced Server or pgAdmin 4.

After selecting the components you wish to install, click Next to open the Additional Directories window.

Fig. 5: The Additional Directories window

By default, the Advanced Server data files are saved to:

C:\Program Files\edb\as13\data

The default location of the Advanced Server Write-Ahead Log (WAL) Directory is:

C:\Program Files\edb\as13\data\pg_wal

Advanced Server uses write-ahead logs to promote transaction safety and speed transaction processing; when you make a change to a table, the change is
stored in shared memory and a record of the change is written to the write-ahead log. When you perform a COMMIT , Advanced Server writes contents of
the write-ahead log to disk.

Accept the default file locations, or use the File Browser icon to select an alternate location; click Next to continue to the Advanced Server
Dialect window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 179

Fig. 6: The Advanced Server Dialect window

Use the drop-down listbox on the Advanced Server Dialect window to choose a server dialect. The server dialect specifies the compatibility
features supported by Advanced Server.

By default, Advanced Server installs in Compatible with Oracle mode; you can choose between Compatible with Oracle and
Compatible with PostgreSQL installation modes.

Compatible with OracleCompatible with Oracle

If you select Compatible with Oracle , the installation will include the following features:

Data dictionary views that is compatible with Oracle databases.
Oracle data type conversions.
Date values displayed in a format compatible with Oracle syntax.
Support for Oracle-styled concatenation rules (if you concatenate a string value with a NULL value, the returned value is the value of the string).
Schemas (dbo and sys) compatible with Oracle databases added to the SEARCH_PATH .
Support for the following Oracle built-in packages:

Package Functionality compatible with Oracle Databases

dbms_aler
t

Provides the capability to register for, send, and receive alerts.

dbms_job Provides the capability for the creation, scheduling, and managing of jobs.

dbms_lob Provides the capability to manage on large objects.

dbms_outp
ut

Provides the capability to send messages to a message buffer, or get messages from the message buffer.

dbms_pipe Provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

dbms_rls Enables the implementation of Virtual Private Database on certain Advanced Server database objects.

dbms_sql Provides an application interface to the EDB dynamic SQL functionality.

dbms_util
ity

Provides various utility programs.

dbms_aqad
m

Provides supporting procedures for Advanced Queueing functionality.

dbms_aq Provides message queueing and processing for Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 180

dbms_prof
iler

Collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a performance
profiling session.

dbms_rand
om

Provides a number of methods to generate random values.

dbms_reda
ct

Enables the redacting or masking of data that is returned by a query.

dbms_lock Provides support for the DBMS_LOCK.SLEEP procedure.

dbms_sche
duler

Provides a way to create and manage jobs, programs, and job schedules.

dbms_cryp
to

Provides functions and procedures to encrypt or decrypt RAW, BLOB or CLOB data. You can also use DBMS_CRYPTO functions to
generate cryptographically strong random values.

dbms_mvie
w

Provides a way to manage and refresh materialized views and their dependencies.

dbms_sess
ion

Provides support for the DBMS_SESSION.SET_ROLE procedure.

utl_encod
e

Provides a way to encode and decode data.

utl_http Provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

utl_file Provides the capability to read from, and write to files on the operating system’s file system.

utl_smtp Provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

utl_mail Provides the capability to manage e-mail.

utl_url Provides a way to escape illegal and reserved characters within an URL.

utl_raw Provides a way to manipulate or retrieve the length of raw data types.

Package Functionality compatible with Oracle Databases

This is not a comprehensive list of the compatibility features for Oracle included when Advanced Server is installed in Compatible with Oracle
mode; for more information, see the Database Compatibility for Oracle Developers Built-in Package Guide available from the EDB website at:

https://www.enterprisedb.com/docs

If you choose to install in Compatible with Oracle mode, the Advanced Server superuser name is enterprisedb .

Compatible with PostgreSQLCompatible with PostgreSQL

If you select Compatible with PostgreSQL , Advanced Server will exhibit compatibility with PostgreSQL version 13. If you choose to install in
Compatible with PostgreSQL mode, the default Advanced Server superuser name is postgres .

For detailed information about PostgreSQL functionality, visit the official PostgreSQL website at:

http://www.postgresql.org

After specifying a configuration mode, click Next to continue to the Password window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 181

https://www.enterprisedb.com/docs
http://www.postgresql.org

Fig. 7: The Password window

Advanced Server uses the password specified on the Password window for the database superuser. The specified password must conform to any security
policies existing on the Advanced Server host.

After you enter a password in the Password field, confirm the password in the Retype Password field, and click Next to continue.

The Additional Configuration window opens.

Fig. 8: The Additional Configuration window

Use the fields on the Additional Configuration window to specify installation details:

Use the Port field to specify the port number that Advanced Server should listen to for connection requests from client applications. The default is
5444 .

If the Locale field is set to [Default locale] , Advanced Server uses the system locale as the working locale. Use the drop-down listbox
next to Locale to specify an alternate locale for Advanced Server.

By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 182

By default, the Setup wizard installs corresponding sample data for the server dialect specified by the compatibility mode (Oracle or
PostgreSQL) . Clear the check box next to Install sample tables and procedures if you do not wish to have sample data installed.

After verifying the information on the Additional Configuration window, click Next to open the Dynatune Dynamic Tuning: Server
Utilization window.

The graphical Setup wizard facilitates performance tuning via the Dynatune Dynamic Tuning feature. Dynatune functionality allows Advanced Server to
make optimal usage of the system resources available on the host machine on which it is installed.

Fig. 9: The Dynatune Dynamic Tuning: Server Utilization window

The edb_dynatune configuration parameter determines how Advanced Server allocates system resources. Use the radio buttons on the Server
Utilization window to set the initial value of the edb_dynatune configuration parameter:

Select Development to set the value of edb_dynatune to 33 . A low value dedicates the least amount of the host machine’s resources to the
database server. This is a good choice for a development machine.
Select General Purpose to set the value of edb_dynatune to 66 . A mid-range value dedicates a moderate amount of system resources to
the database server. This would be a good setting for an application server with a fixed number of applications running on the same host as
Advanced Server.
Select Dedicated to set the value of edb_dynatune to 100 . A high value dedicates most of the system resources to the database server. This
is a good choice for a dedicated server host.

After the installation is complete, you can adjust the value of edb_dynatune by editing the postgresql.conf file, located in the data directory
of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

Select the appropriate setting for your system, and click Next to continue to the Dynatune Dynamic Tuning: Workload Profile window.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 183

Fig. 10: The Dynatune Dynamic Tuning: Workload Profile window

Use the radio buttons on the Workload Profile window to specify the initial value of the edb_dynatune_profile configuration parameter. The
edb_dynatune_profile parameter controls performance-tuning aspects based on the type of work that the server performs.

Select Transaction Processing (OLTP systems) to specify an edb_dynatune_profile value of oltp . Recommended when
Advanced Server is supporting heavy online transaction processing.
Select General Purpose (OLTP and reporting workloads) to specify an edb_dynatune_profile value of mixed .
Recommended for servers that provide a mix of transaction processing and data reporting.
Select Reporting (Complex queries or OLAP workloads) to specify an edb_dynatune_profile value of reporting .
Recommended for database servers used for heavy data reporting.

After the installation is complete, you can adjust the value of edb_dynatune_profile by editing the postgresql.conf file, located in the data
directory of your Advanced Server installation. After editing the postgresql.conf file, you must restart the server for your changes to take effect.

For more information about edb_dynatune and other performance-related topics, see the EDB Postgres Advanced Server Guide available from the EDB
website at:

https://www.enterprisedb.com/docs

Click Next to continue. The Update Notification Service window opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 184

https://www.enterprisedb.com/docs

Fig. 11: The Update Notification Service window

When enabled, the update notification service notifies you of any new updates and security patches available for your installation of Advanced Server.

By default, Advanced Server is configured to start the service when the system boots; clear the Install Update Notification Service check
box, or accept the default, and click Next to continue.

The Pre Installation Summary opens.

Fig. 12: The Pre Installation Summary

The Pre Installation Summary provides an overview of the options specified during the Setup process. Review the options before clicking
Next ; click Back to navigate back through the dialogs and update any options.

The Ready to Install window confirms that the installer has the information it needs about your configuration preferences to install Advanced
Server. Click Next to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 185

Fig. 13: The Ready to Install window

Fig. 14: Installing Advanced Server

As each supporting module is unpacked and installed, the module’s installation is confirmed with a progress bar.

Before the Setup wizard completes the Advanced Server installation, it offers to Launch StackBuilder Plus at exit?

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 186

Fig. 15: The Setup wizard offers to Launch StackBuilder Plus at exit

You can clear the StackBuilder Plus check box and click Finish to complete the Advanced Server installation, or accept the default and proceed
to StackBuilder Plus.

EDB Postgres StackBuilder Plus is included with the installation of Advanced Server and its core supporting components. StackBuilder Plus is a graphical
tool that can update installed products, or download and add supporting modules (and the resulting dependencies) after your Advanced Server setup and
installation completes.

For more detailed product usage information, see the Advanced Server documentation, available at the EDB website.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 187

11 Database Compatibility for Oracle Developers Guide

Database Compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server (Advanced
Server) environment with minimal or no changes to the application code. Developing an application that is compatible with Oracle databases in the
Advanced Server requires special attention to which features are used in the construction of the application. For example, developing a compatible
application means choosing compatible:

System and built-in functions for use in SQL statements and procedural logic.
Stored Procedure Language (SPL) when creating database server-side application logic for stored procedures, functions, triggers, and packages.
Data types that are compatible with Oracle databases
SQL statements that are compatible with Oracle SQL
System catalog views that are compatible with Oracle’s data dictionary

For detailed information about the compatible SQL syntax, data types, and views, see SQL reference.

The compatibility offered by the procedures and functions that are part of the Built-in packages is documented in Built-in packages.

For information about using the compatible tools and utilities (EDB*Plus, EDB*Loader, DRITA, and EDB*Wrap) that are included with an EDB Postgres
Advanced Server installation, see Tools, utilities, and components.

For applications written using the Oracle Call Interface (OCI), EDB’s Open Client Library (OCL) provides interoperability with these applications. For detailed
information about using the Open Client Library, see EDB OCL Connector.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 188

https://www.enterprisedb.com/docs/ocl_connector/latest/

11.1 Configuration Parameters Compatible with Oracle Databases

EDB Postgres Advanced Server supports the development and execution of applications compatible with PostgreSQL and Oracle. Some system behaviors
can be altered to act in a more PostgreSQL or in a more Oracle compliant manner; these behaviors are controlled by configuration parameters. Modifying
the parameters in the postgresql.conf file changes the behavior for all databases in the cluster, while a user or group can SET the parameter value
on the command line, effecting only their session. These parameters are:

edb_redwood_date – Controls whether or not a time component is stored in DATE columns. For behavior compatible with Oracle databases,
set edb_redwood_date to TRUE . See edb_redwood_date.
edb_redwood_raw_names – Controls whether database object names appear in uppercase or lowercase letters when viewed from Oracle

system catalogs. For behavior compatible with Oracle databases, edb_redwood_raw_names is set to its default value of FALSE . To view
database object names as they are actually stored in the PostgreSQL system catalogs, set edb_redwood_raw_names to TRUE . See
edb_redwood_raw_names.
edb_redwood_strings – Equates NULL to an empty string for purposes of string concatenation operations. For behavior compatible with

Oracle databases, set edb_redwood_strings to TRUE . See edb_redwood_strings.
edb_stmt_level_tx – Isolates automatic rollback of an aborted SQL command to statement level rollback only – the entire, current

transaction is not automatically rolled back as is the case for default PostgreSQL behavior. For behavior compatible with Oracle databases, set
edb_stmt_level_tx to TRUE ; however, use only when absolutely necessary. See edb_stmt_level_tx.
oracle_home – Point Advanced Server to the correct Oracle installation directory. See oracle_home.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 189

11.1.1 edb_redwood_date

When DATE appears as the data type of a column in the commands, it is translated to TIMESTAMP at the time the table definition is stored in the data
base if the configuration parameter edb_redwood_date is set to TRUE . Thus, a time component will also be stored in the column along with the date.
This is consistent with Oracle’s DATE data type.

If edb_redwood_date is set to FALSE the column’s data type in a CREATE TABLE or ALTER TABLE command remains as a native PostgreSQL
DATE data type and is stored as such in the database. The PostgreSQL DATE data type stores only the date without a time component in the column.

Regardless of the setting of edb_redwood_date , when DATE appears as a data type in any other context such as the data type of a variable in an SPL
declaration section, or the data type of a formal parameter in an SPL procedure or SPL function, or the return type of an SPL function, it is always internally
translated to a TIMESTAMP and thus, can handle a time component if present.

See the Database Compatibility for Oracle Developers Reference Guide for more information about date/time data types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 190

11.1.2 edb_redwood_raw_names

When edb_redwood_raw_names is set to its default value of FALSE , database object names such as table names, column names, trigger names,
program names, user names, etc. appear in uppercase letters when viewed from Oracle catalogs (for a complete list of supported catalog views, see the
Database Compatibility for Oracle Developers Catalog Views Guide). In addition, quotation marks enclose names that were created with enclosing
quotation marks.

When edb_redwood_raw_names is set to TRUE , the database object names are displayed exactly as they are stored in the PostgreSQL system
catalogs when viewed from the Oracle catalogs. Thus, names created without enclosing quotation marks appear in lowercase as expected in PostgreSQL.
Names created with enclosing quotation marks appear exactly as they were created, but without the quotation marks.

For example, the following user name is created, and then a session is started with that user.

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When connected to the database as reduser , the following tables are created.

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Oracle catalog, USER_TABLES , with edb_redwood_raw_names set to the default value FALSE , the names appear in
uppercase except for the Mixed_Case name, which appears as created and also with enclosing quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+--------------+-----------------+--------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE , the names appear in lowercase except for the Mixed_Case name, which appears as
created, but now without the enclosing quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET
edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+------------+-----------------+--------+-----------
 reduser | all_lower | | VALID | N
 reduser | all_upper | | VALID | N
 reduser | Mixed_Case | | VALID | N
(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables catalog.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 191

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
-------------+------------+------------
 reduser | all_lower | reduser
 reduser | all_upper | reduser
 reduser | Mixed_Case | reduser
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 192

11.1.3 edb_redwood_strings

In Oracle, when a string is concatenated with a null variable or null column, the result is the original string; however, in PostgreSQL concatenation of a
string with a null variable or null column gives a null result. If the edb_redwood_strings parameter is set to TRUE , the aforementioned
concatenation operation results in the original string as done by Oracle. If edb_redwood_strings is set to FALSE , the native PostgreSQL behavior is
maintained.

The following example illustrates the difference.

The sample application introduced in the next section contains a table of employees. This table has a column named comm that is null for most
employees. The following query is run with edb_redwood_string set to FALSE . The concatenation of a null column with non-empty strings produces
a final result of null, so only employees that have a commission appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE . Here, the value of a null column is treated as an empty string.
The concatenation of an empty string with a non-empty string produces the non-empty string. This result is consistent with the results produced by Oracle
for the same query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 193

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

SMITH 800.00
ALLEN 1,600.00 300.00
WARD 1,250.00 500.00
JONES 2,975.00
MARTIN 1,250.00 1,400.00
BLAKE 2,850.00
CLARK 2,450.00
SCOTT 3,000.00
KING 5,000.00
TURNER 1,500.00 .00
ADAMS 1,100.00
JAMES 950.00
FORD 3,000.00
MILLER 1,300.00
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 194

11.1.4 edb_stmt_level_tx

In Oracle, when a runtime error occurs in a SQL command, all the updates on the database caused by that single command are rolled back. This is called
statement level transaction isolation. For example, if a single UPDATE command successfully updates five rows, but an attempt to update a sixth row
results in an exception, the updates to all six rows made by this UPDATE command are rolled back. The effects of prior SQL commands that have not yet
been committed or rolled back are pending until a COMMIT or ROLLBACK command is executed.

In PostgreSQL, if an exception occurs while executing a SQL command, all the updates on the database since the start of the transaction are rolled back. In
addition, the transaction is left in an aborted state and either a COMMIT or ROLLBACK command must be issued before another transaction can be
started.

If edb_stmt_level_tx is set to TRUE , then an exception will not automatically roll back prior uncommitted database updates, emulating the Oracle
behavior. If edb_stmt_level_tx is set to FALSE , then an exception will roll back uncommitted database updates.

NoteNote

Use edb_stmt_level_tx set to TRUE only when absolutely necessary, as this may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE , the abort of the second INSERT command also rolls back the
first INSERT command. Note that in PSQL, the command \set AUTOCOMMIT off must be issued, otherwise every statement commits automatically
defeating the purpose of this demonstration of the effect of edb_stmt_level_tx .

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE , the first INSERT command has not been rolled back after the error on the second
INSERT command. At this point, the first INSERT command can either be committed or rolled back.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 195

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
9001 | JONES | 40
(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in which case the insert of employee number 9001 would have been
rolled back as well.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 196

11.1.5 oracle_home

Before creating a link to an Oracle server, you must direct Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH
environment variable on Linux (or PATH on Windows) to the lib directory of the Oracle client installation directory.

Alternatively, you can also set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the
oracle_home configuration parameter will override the LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in

Windows.

NoteNote

The oracle_home configuration parameter should provide the correct path to the Oracle client i.e. OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in
Windows for lib_directory .

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server,

on Linux, using the systemctl command or pg_ctl services.

on Windows, from the Windows Services console.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 197

11.2 About the Examples Used in this Guide

The examples shown in this guide are illustrated using the PSQL program. The prompt that normally appears when using PSQL is omitted in these examples
to provide extra clarity for the point being demonstrated.

Examples and output from examples are shown in fixed-width, white font on a dark background.

Also note the following points:

During installation of the EDB Postgres Advanced Server the selection for configuration and defaults compatible with Oracle databases must be
chosen in order to reproduce the same results as the examples shown in this guide. A default compatible configuration can be verified by issuing the
following commands in PSQL and obtaining the same results as shown below.

SHOW edb_redwood_date;

 edb_redwood_date

 on

SHOW datestyle;

 DateStyle

 Redwood, DMY

SHOW edb_redwood_strings;

 edb_redwood_strings

 on

The examples use the sample tables, dept , emp , and jobhist , created and loaded when Advanced Server is installed. The emp table is
installed with triggers that must be disabled in order to reproduce the same results as shown in this guide. Log onto Advanced Server as the
enterprisedb superuser and disable the triggers by issuing the following command.

ALTER TABLE emp DISABLE TRIGGER USER;

The triggers on the emp table can later be re-activated with the following command.

ALTER TABLE emp ENABLE TRIGGER USER;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 198

11.3 SQL Tutorial

Advanced Server is a relational database management system (RDBMS). That means it is a system for managing data stored in relations. A relation is
essentially a mathematical term for a table. The notion of storing data in tables is so commonplace today that it might seem inherently obvious, but there
are a number of other ways of organizing databases. Files and directories on Unix-like operating systems form an example of a hierarchical database. A
more modern development is the object-oriented database.

Each table is a named collection of rows. Each row of a given table has the same set of named columns, and each column is of a specific data type. Whereas
columns have a fixed order in each row, it is important to remember that SQL does not guarantee the order of the rows within the table in any way (although
they can be explicitly sorted for display).

Tables are grouped into databases, and a collection of databases managed by a single Advanced Server instance constitutes a database cluster.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 199

11.3.1 Sample Database

Throughout this documentation we will be working with a sample database to help explain some basic to advanced level database concepts.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 200

11.3.1.1 Sample Database Installation

When Advanced Server is installed a sample database named, edb , is automatically created. This sample database contains the tables and programs used
throughout this document by executing the script, edb-sample.sql , located in the /usr/edb/as13/share directory.

This script does the following:

Creates the sample tables and programs in the currently connected database
Grants all permissions on the tables to the PUBLIC group

The tables and programs will be created in the first schema of the search path in which the current user has permission to create tables and procedures. You
can display the search path by issuing the command:

SHOW SEARCH_PATH;

Altering the search path can be done using commands in PSQL.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 201

11.3.1.2 Sample Database Description

The sample database represents employees in an organization.

It contains three types of records: employees, departments, and historical records of employees.

Each employee has an identification number, name, hire date, salary, and manager. Some employees earn a commission in addition to their salary. All
employee-related information is stored in the emp table.

The sample company is regionally diverse, so the database keeps track of the location of the departments. Each company employee is assigned to a
department. Each department is identified by a unique department number and a short name. Each department is associated with one location. All
department-related information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees have been with the company for a long time and have held
different positions, received raises, switched departments, etc. When a change in employee status occurs, the company records the end date of the former
position. A new job record is added with the start date and the new job title, department, salary, and the reason for the status change. All employee history
is maintained in the jobhist table.

The following is an entity relationship diagram of the sample database tables.

Fig. 1: Sample Database Tables

The following is the edb-sample.sql script.

--
-- Script that creates the 'sample' tables, views, procedures,
-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
/
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 202

 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
GRANT ALL ON emp TO PUBLIC;
GRANT ALL ON dept TO PUBLIC;
GRANT ALL ON jobhist TO PUBLIC;
GRANT ALL ON salesemp TO PUBLIC;
GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 203

--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Procedure that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 204

 END LOOP;
 CLOSE emp_cur;
END;
/
--
-- Procedure that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE PROCEDURE select_emp (
 p_empno IN NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
BEGIN
 SELECT ename, hiredate, sal, NVL(comm, 0), dname
 INTO v_ename, v_hiredate, v_sal, v_comm, v_dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
END;
/
--
-- Procedure that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as IN OUT parameters and job,
-- hire date, and salary as OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 205

 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
/
--
-- Procedure to call 'emp_query_caller' with IN and IN OUT
-- parameters. Displays the results received from IN OUT and
-- OUT parameters.
--
CREATE OR REPLACE PROCEDURE emp_query_caller
IS
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee was selected');
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('No employees were selected');
END;
/
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;
/
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno RETURN NUMBER
IS
 v_cnt INTEGER := 1;
 v_new_empno NUMBER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT next_empno.nextval INTO v_new_empno FROM dual;
 SELECT COUNT(*) INTO v_cnt FROM emp WHERE empno = v_new_empno;
 END LOOP;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 206

 RETURN v_new_empno;
END;
/
--
-- EDB-SPL function that adds a new clerk to table 'emp'. This function
-- uses package 'emp_admin'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;
/
--
-- PostgreSQL PL/pgSQL function that adds a new salesman
-- to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 207

 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM:';
 RAISE INFO '%', SQLERRM;
 RAISE INFO 'The following is SQLSTATE:';
 RAISE INFO '%', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
/
--
-- Rule to INSERT into view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 208

DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;
/
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;
/
--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER
) RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
) RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 209

 p_mgr NUMBER,
 p_deptno NUMBER
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;
/
--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin
IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
) RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 210

 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE,
 p_comm NUMBER,
 p_mgr NUMBER,
 p_deptno NUMBER
)
 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;
/
COMMIT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 211

11.3.2 Creating a New Table

A new table is created by specifying the table name, along with all column names and their types. The following is a simplified version of the emp sample
table with just the minimal information needed to define a table.

CREATE TABLE emp (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2)
);

You can enter this into PSQL with line breaks. PSQL will recognize that the command is not terminated until the semicolon.

White space (i.e., spaces, tabs, and newlines) may be used freely in SQL commands. That means you can type the command aligned differently than the
above, or even all on one line. Two dashes ("--") introduce comments. Whatever follows them is ignored up to the end of the line. SQL is case insensitive
about key words and identifiers, except when identifiers are double-quoted to preserve the case (not done above).

VARCHAR2(10) specifies a data type that can store arbitrary character strings up to 10 characters in length. NUMBER(7,2) is a fixed point number
with precision 7 and scale 2. NUMBER(4) is an integer number with precision 4 and scale 0.

Advanced Server supports the usual SQL data types INTEGER , SMALLINT , NUMBER , REAL , DOUBLE PRECISION , CHAR , VARCHAR2 , DATE ,
and TIMESTAMP as well as various synonyms for these types.

If you don’t need a table any longer or want to recreate it differently you can remove it using the following command:

DROP TABLE tablename;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 212

11.3.3 Populating a Table With Rows

The INSERT statement is used to populate a table with rows:

INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);

Note that all data types use rather obvious input formats. Constants that are not simple numeric values usually must be surrounded by single quotes ('), as
in the example. The DATE type is actually quite flexible in what it accepts, but for this tutorial we will stick to the unambiguous format shown here.

The syntax used so far requires you to remember the order of the columns. An alternative syntax allows you to list the columns explicitly:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,comm,deptno)
 VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);

You can list the columns in a different order if you wish or even omit some columns, e.g., if the commission is unknown:

INSERT INTO emp(empno,ename,job,mgr,hiredate,sal,deptno)
 VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,20);

Many developers consider explicitly listing the columns better style than relying on the order implicitly.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 213

11.3.4 Querying a Table

To retrieve data from a table, the table is queried. An SQL SELECT statement is used to do this. The statement is divided into a select list (the part that
lists the columns to be returned), a table list (the part that lists the tables from which to retrieve the data), and an optional qualification (the part that
specifies any restrictions). The following query lists all columns of all employees in the table in no particular order.

SELECT * FROM emp;

Here, “*” in the select list means all columns. The following is the output from this query.

empno| ename | job | mgr | hiredate | sal | comm | deptno
-----+-------+----------+------+--------------------+---------+-------+-------
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00| 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00| 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN| SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER| SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER| CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

You may specify any arbitrary expression in the select list. For example, you can do:

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
---------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Notice how the AS clause is used to re-label the output column. (The AS clause is optional.)

A query can be qualified by adding a WHERE clause that specifies which rows are wanted. The WHERE clause contains a Boolean (truth value) expression,
and only rows for which the Boolean expression is true are returned. The usual Boolean operators (AND , OR , and NOT) are allowed in the qualification.
For example, the following retrieves the employees in department 20 with salaries over $1000.00:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 214

SELECT ename, sal, deptno FROM emp WHERE deptno = 20 AND sal > 1000;

 ename | sal | deptno
-------+---------+--------
 JONES | 2975.00 | 20
 SCOTT | 3000.00 | 20
 ADAMS | 1100.00 | 20
 FORD | 3000.00 | 20
(4 rows)

You can request that the results of a query be returned in sorted order:

SELECT ename, sal, deptno FROM emp ORDER BY ename;

 ename | sal | deptno
--------+---------+--------
 ADAMS | 1100.00 | 20
 ALLEN | 1600.00 | 30
 BLAKE | 2850.00 | 30
 CLARK | 2450.00 | 10
 FORD | 3000.00 | 20
 JAMES | 950.00 | 30
 JONES | 2975.00 | 20
 KING | 5000.00 | 10
 MARTIN | 1250.00 | 30
 MILLER | 1300.00 | 10
 SCOTT | 3000.00 | 20
 SMITH | 800.00 | 20
 TURNER | 1500.00 | 30
 WARD | 1250.00 | 30
(14 rows)

You can request that duplicate rows be removed from the result of a query:

SELECT DISTINCT job FROM emp;

 job

 ANALYST
 CLERK
 MANAGER
 PRESIDENT
 SALESMAN
(5 rows)

The following section shows how to obtain rows from more than one table in a single query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 215

11.3.5 Joins Between Tables

Thus far, our queries have only accessed one table at a time. Queries can access multiple tables at once, or access the same table in such a way that
multiple rows of the table are being processed at the same time. A query that accesses multiple rows of the same or different tables at one time is called a
join query. For example, say you wish to list all the employee records together with the name and location of the associated department. To do that, we
need to compare the deptno column of each row of the emp table with the deptno column of all rows in the dept table, and select the pairs of rows
where these values match. This would be accomplished by the following query:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp, dept
WHERE emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
(14 rows)

Observe two things about the result set:

There is no result row for department 40. This is because there is no matching entry in the emp table for department 40, so the join ignores the
unmatched rows in the dept table. Shortly we will see how this can be fixed.
It is more desirable to list the output columns qualified by table name rather than using * or leaving out the qualification as follows:

SELECT ename, sal, dept.deptno, dname, loc FROM emp, dept WHERE emp.deptno =
dept.deptno;

Since all the columns had different names (except for deptno which therefore must be qualified), the parser automatically found out which table they
belong to, but it is good style to fully qualify column names in join queries:

Join queries of the kind seen thus far can also be written in this alternative form:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM emp INNER
JOIN dept ON emp.deptno = dept.deptno;

This syntax is not as commonly used as the one above, but we show it here to help you understand the following topics.

You will notice that in all the above results for joins no employees were returned that belonged to department 40 and as a consequence, the record for
department 40 never appears. Now we will figure out how we can get the department 40 record in the results despite the fact that there are no matching
employees. What we want the query to do is to scan the dept table and for each row to find the matching emp row. If no matching row is found we want
some “empty” values to be substituted for the emp table’s columns. This kind of query is called an outer join. (The joins we have seen so far are inner
joins.) The command looks like this:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 216

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept LEFT
OUTER JOIN emp ON emp.deptno = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

This query is called a left outer join because the table mentioned on the left of the join operator will have each of its rows in the output at least once,
whereas the table on the right will only have those rows output that match some row of the left table. When a left-table row is selected for which there is no
right-table match, empty (NULL) values are substituted for the right-table columns.

An alternative syntax for an outer join is to use the outer join operator, “(+)”, in the join condition within the WHERE clause. The outer join operator is
placed after the column name of the table for which null values should be substituted for unmatched rows. So for all the rows in the dept table that have
no matching rows in the emp table, Advanced Server returns null for any select list expressions containing columns of emp . Hence the above example
could be rewritten as:

SELECT emp.ename, emp.sal, dept.deptno, dept.dname, dept.loc FROM dept, emp
WHERE emp.deptno(+) = dept.deptno;

 ename | sal | deptno | dname | loc
--------+---------+--------+------------+----------
 MILLER | 1300.00 | 10 | ACCOUNTING | NEW YORK
 CLARK | 2450.00 | 10 | ACCOUNTING | NEW YORK
 KING | 5000.00 | 10 | ACCOUNTING | NEW YORK
 SCOTT | 3000.00 | 20 | RESEARCH | DALLAS
 JONES | 2975.00 | 20 | RESEARCH | DALLAS
 SMITH | 800.00 | 20 | RESEARCH | DALLAS
 ADAMS | 1100.00 | 20 | RESEARCH | DALLAS
 FORD | 3000.00 | 20 | RESEARCH | DALLAS
 WARD | 1250.00 | 30 | SALES | CHICAGO
 TURNER | 1500.00 | 30 | SALES | CHICAGO
 ALLEN | 1600.00 | 30 | SALES | CHICAGO
 BLAKE | 2850.00 | 30 | SALES | CHICAGO
 MARTIN | 1250.00 | 30 | SALES | CHICAGO
 JAMES | 950.00 | 30 | SALES | CHICAGO
 | | 40 | OPERATIONS | BOSTON
(15 rows)

We can also join a table against itself. This is called a self join. As an example, suppose we wish to find the name of each employee along with the name of
that employee’s manager. So we need to compare the mgr column of each emp row to the empno column of all other emp rows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 217

SELECT e1.ename || ' works for ' || e2.ename AS "Employees and their
Managers" FROM emp e1, emp e2 WHERE e1.mgr = e2.empno;

 Employees and their Managers

 FORD works for JONES
 SCOTT works for JONES
 WARD works for BLAKE
 TURNER works for BLAKE
 MARTIN works for BLAKE
 JAMES works for BLAKE
 ALLEN works for BLAKE
 MILLER works for CLARK
 ADAMS works for SCOTT
 CLARK works for KING
 BLAKE works for KING
 JONES works for KING
 SMITH works for FORD
(13 rows)

Here, the emp table has been re-labeled as e1 to represent the employee row in the select list and in the join condition, and also as e2 to represent the
matching employee row acting as manager in the select list and in the join condition. These kinds of aliases can be used in other queries to save some
typing, for example:

SELECT e.ename, e.mgr, d.deptno, d.dname, d.loc FROM emp e, dept d WHERE
e.deptno = d.deptno;

 ename | mgr | deptno | dname | loc
--------+------+--------+------------+----------
 MILLER | 7782 | 10 | ACCOUNTING | NEW YORK
 CLARK | 7839 | 10 | ACCOUNTING | NEW YORK
 KING | | 10 | ACCOUNTING | NEW YORK
 SCOTT | 7566 | 20 | RESEARCH | DALLAS
 JONES | 7839 | 20 | RESEARCH | DALLAS
 SMITH | 7902 | 20 | RESEARCH | DALLAS
 ADAMS | 7788 | 20 | RESEARCH | DALLAS
 FORD | 7566 | 20 | RESEARCH | DALLAS
 WARD | 7698 | 30 | SALES | CHICAGO
 TURNER | 7698 | 30 | SALES | CHICAGO
 ALLEN | 7698 | 30 | SALES | CHICAGO
 BLAKE | 7839 | 30 | SALES | CHICAGO
 MARTIN | 7698 | 30 | SALES | CHICAGO
 JAMES | 7698 | 30 | SALES | CHICAGO
(14 rows)

This style of abbreviating will be encountered quite frequently.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 218

11.3.6 Aggregate Functions

Like most other relational database products, Advanced Server supports aggregate functions. An aggregate function computes a single result from
multiple input rows. For example, there are aggregates to compute the COUNT , SUM , AVG (average), MAX (maximum), and MIN (minimum) over a set
of rows.

As an example, the highest and lowest salaries can be found with the following query:

SELECT MAX(sal) highest_salary, MIN(sal) lowest_salary FROM emp;

 highest_salary | lowest_salary
----------------+---------------
 5000.00 | 800.00
(1 row)

If we wanted to find the employee with the largest salary, we may be tempted to try:

SELECT ename FROM emp WHERE sal = MAX(sal);

ERROR: aggregates not allowed in WHERE clause

This does not work because the aggregate function, MAX , cannot be used in the WHERE clause. This restriction exists because the WHERE clause
determines the rows that will go into the aggregation stage so it has to be evaluated before aggregate functions are computed. However, the query can be
restated to accomplish the intended result by using a subquery:

SELECT ename FROM emp WHERE sal = (SELECT MAX(sal) FROM emp);

 ename

 KING
(1 row)

The subquery is an independent computation that obtains its own result separately from the outer query.

Aggregates are also very useful in combination with the GROUP BY clause. For example, the following query gets the highest salary in each department.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
 30 | 2850.00
(3 rows)

This query produces one output row per department. Each aggregate result is computed over the rows matching that department. These grouped rows can
be filtered using the HAVING clause.

SELECT deptno, MAX(sal) FROM emp GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 10 | 5000.00
 20 | 3000.00
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 219

This query gives the same results for only those departments that have an average salary greater than 2000.

Finally, the following query takes into account only the highest paid employees who are analysts in each department.

SELECT deptno, MAX(sal) FROM emp WHERE job = 'ANALYST' GROUP BY deptno HAVING AVG(sal) > 2000;

 deptno | max
--------+---------
 20 | 3000.00
(1 row)

There is a subtle distinction between the WHERE and HAVING clauses. The WHERE clause filters out rows before grouping occurs and aggregate
functions are applied. The HAVING clause applies filters on the results after rows have been grouped and aggregate functions have been computed for
each group.

So in the previous example, only employees who are analysts are considered. From this subset, the employees are grouped by department and only those
groups where the average salary of analysts in the group is greater than 2000 are in the final result. This is true of only the group for department 20 and the
maximum analyst salary in department 20 is 3000.00.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 220

11.3.7 Updates

The column values of existing rows can be changed using the UPDATE command. For example, the following sequence of commands shows the before and
after results of giving everyone who is a manager a 10% raise:

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 2975.00
 BLAKE | 2850.00
 CLARK | 2450.00
(3 rows)

UPDATE emp SET sal = sal * 1.1 WHERE job = 'MANAGER';

SELECT ename, sal FROM emp WHERE job = 'MANAGER';

 ename | sal
-------+---------
 JONES | 3272.50
 BLAKE | 3135.00
 CLARK | 2695.00
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 221

11.3.8 Deletions

Rows can be removed from a table using the DELETE command. For example, the following sequence of commands shows the before and after results of
deleting all employees in department 20 .

SELECT ename, deptno FROM emp;

 ename | deptno
--------+--------
 SMITH | 20
 ALLEN | 30
 WARD | 30
 JONES | 20
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 SCOTT | 20
 KING | 10
 TURNER | 30
 ADAMS | 20
 JAMES | 30
 FORD | 20
 MILLER | 10
(14 rows)

DELETE FROM emp WHERE deptno = 20;

SELECT ename, deptno FROM emp;
 ename | deptno
--------+--------
 ALLEN | 30
 WARD | 30
 MARTIN | 30
 BLAKE | 30
 CLARK | 10
 KING | 10
 TURNER | 30
 JAMES | 30
 MILLER | 10
(9 rows)

Be extremely careful of giving a DELETE command without a WHERE clause such as the following:

DELETE FROM tablename;

This statement will remove all rows from the given table, leaving it completely empty. The system will not request confirmation before doing this.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 222

11.3.9 The SQL Language

Advanced Server supports SQL language that is compatible with Oracle syntax as well as syntax and commands for extended functionality (functionality
that does not provide database compatibility for Oracle or support Oracle-styled applications).

The Database Compatibility for Oracle Developers SQL Guide provides detailed information about:

Compatible SQL syntax and language elements
Data types
Supported SQL command syntax

To review a copy of the guide, visit the Advanced Server website at:

https://www.enterprisedb.com/docs/epas/latest/epas_compat_sql/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 223

https://www.enterprisedb.com/docs/epas/latest/epas_compat_sql/

11.4 Advanced Concepts

The previous section discussed the basics of using SQL to store and access your data in Advanced Server. This section discusses more advanced SQL
features that may simplify management and prevent loss or corruption of your data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 224

11.4.1 Views

Consider the following SELECT command.

SELECT ename, sal, sal * 24 AS yearly_salary, deptno FROM emp;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

If this is a query that is used repeatedly, a shorthand method of reusing this query without re-typing the entire SELECT command each time is to create a
view as shown below.

CREATE VIEW employee_pay AS SELECT ename, sal, sal * 24 AS yearly_salary,
deptno FROM emp;

The view name, employee_pay , can now be used like an ordinary table name to perform the query.

SELECT * FROM employee_pay;

 ename | sal | yearly_salary | deptno
--------+---------+---------------+--------
 SMITH | 800.00 | 19200.00 | 20
 ALLEN | 1600.00 | 38400.00 | 30
 WARD | 1250.00 | 30000.00 | 30
 JONES | 2975.00 | 71400.00 | 20
 MARTIN | 1250.00 | 30000.00 | 30
 BLAKE | 2850.00 | 68400.00 | 30
 CLARK | 2450.00 | 58800.00 | 10
 SCOTT | 3000.00 | 72000.00 | 20
 KING | 5000.00 | 120000.00 | 10
 TURNER | 1500.00 | 36000.00 | 30
 ADAMS | 1100.00 | 26400.00 | 20
 JAMES | 950.00 | 22800.00 | 30
 FORD | 3000.00 | 72000.00 | 20
 MILLER | 1300.00 | 31200.00 | 10
(14 rows)

Making liberal use of views is a key aspect of good SQL database design. Views provide a consistent interface that encapsulate details of the structure of
your tables which may change as your application evolves.

Views can be used in almost any place a real table can be used. Building views upon other views is not uncommon.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 225

11.4.2 Foreign Keys

Suppose you want to make sure all employees belong to a valid department. This is called maintaining the referential integrity of your data. In simplistic
database systems this would be implemented (if at all) by first looking at the dept table to check if a matching record exists, and then inserting or
rejecting the new employee record. This approach has a number of problems and is very inconvenient. Advanced Server can make it easier for you.

A modified version of the emp table presented in Creating a New Table is shown in this section with the addition of a foreign key constraint. The modified
emp table looks like the following:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

If an attempt is made to issue the following INSERT command in the sample emp table, the foreign key constraint, emp_ref_dept_fk , ensures that
department 50 exists in the dept table. Since it does not, the command is rejected.

INSERT INTO emp VALUES (8000,'JONES','CLERK',7902,'17-AUG-07',1200,NULL,50);

ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(50) is not present in table "dept".

The behavior of foreign keys can be finely tuned to your application. Making correct use of foreign keys will definitely improve the quality of your database
applications, so you are strongly encouraged to learn more about them.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 226

11.4.3 The ROWNUM Pseudo-Column

ROWNUM is a pseudo-column that is assigned an incremental, unique integer value for each row based on the order the rows were retrieved from a query.
Therefore, the first row retrieved will have ROWNUM of 1 ; the second row will have ROWNUM of 2 and so on.

This feature can be used to limit the number of rows retrieved by a query. This is demonstrated in the following example:

SELECT empno, ename, job FROM emp WHERE ROWNUM < 5;

 empno | ename | job
-------+-------+----------
 7369 | SMITH | CLERK
 7499 | ALLEN | SALESMAN
 7521 | WARD | SALESMAN
 7566 | JONES | MANAGER
(4 rows)

The ROWNUM value is assigned to each row before any sorting of the result set takes place. Thus, the result set is returned in the order given by the ORDER
BY clause, but the ROWNUM values may not necessarily be in ascending order as shown in the following example:

SELECT ROWNUM, empno, ename, job FROM emp WHERE ROWNUM < 5 ORDER BY ename;

 rownum | empno | ename | job
--------+-------+-------+----------
 2 | 7499 | ALLEN | SALESMAN
 4 | 7566 | JONES | MANAGER
 1 | 7369 | SMITH | CLERK
 3 | 7521 | WARD | SALESMAN
(4 rows)

The following example shows how a sequence number can be added to every row in the jobhist table. First a new column named, seqno , is added to
the table and then seqno is set to ROWNUM in the UPDATE command.

ALTER TABLE jobhist ADD seqno NUMBER(3);
UPDATE jobhist SET seqno = ROWNUM;

The following SELECT command shows the new seqno values.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 227

SELECT seqno, empno, TO_CHAR(startdate,'DD-MON-YY') AS start, job FROM
jobhist;

seqno | empno | start | job
-------+-------+-----------+-----------
 1 | 7369 | 17-DEC-80 | CLERK
 2 | 7499 | 20-FEB-81 | SALESMAN
 3 | 7521 | 22-FEB-81 | SALESMAN
 4 | 7566 | 02-APR-81 | MANAGER
 5 | 7654 | 28-SEP-81 | SALESMAN
 6 | 7698 | 01-MAY-81 | MANAGER
 7 | 7782 | 09-JUN-81 | MANAGER
 8 | 7788 | 19-APR-87 | CLERK
 9 | 7788 | 13-APR-88 | CLERK
 10 | 7788 | 05-MAY-90 | ANALYST
 11 | 7839 | 17-NOV-81 | PRESIDENT
 12 | 7844 | 08-SEP-81 | SALESMAN
 13 | 7876 | 23-MAY-87 | CLERK
 14 | 7900 | 03-DEC-81 | CLERK
 15 | 7900 | 15-JAN-83 | CLERK
 16 | 7902 | 03-DEC-81 | ANALYST
 17 | 7934 | 23-JAN-82 | CLERK
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 228

11.4.4 Synonyms

A synonym is an identifier that can be used to reference another database object in a SQL statement. A synonym is useful in cases where a database object
would normally require full qualification by schema name to be properly referenced in a SQL statement. A synonym defined for that object simplifies the
reference to a single, unqualified name.

Advanced Server supports synonyms for:

tables
views
materialized views
sequences
procedures
functions
types
objects that are accessible through a database link
other synonyms

Neither the referenced schema or referenced object must exist at the time that you create the synonym; a synonym may refer to a non-existent object or
schema. A synonym will become invalid if you drop the referenced object or schema. You must explicitly drop a synonym to remove it.

As with any other schema object, Advanced Server uses the search path to resolve unqualified synonym names. If you have two synonyms with the same
name, an unqualified reference to a synonym will resolve to the first synonym with the given name in the search path. If public is in your search path,
you can refer to a synonym in that schema without qualifying that name.

When Advanced Server executes an SQL command, the privileges of the current user are checked against the synonym’s underlying database object; if the
user does not have the proper permissions for that object, the SQL command will fail.

Creating a SynonymCreating a Synonym

Use the CREATE SYNONYM command to create a synonym. The syntax is:

CREATE [OR REPLACE] [PUBLIC] SYNONYM [<schema>.]<syn_name>
 FOR <object_schema>.<object_name>[<@dblink_name>];

Parameters:Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you do not specify a schema name, the synonym is created in the first existing
schema in your search path.

object_name

object_name specifies the name of the object.

object_schema

object_schema specifies the name of the schema that the object resides in.

dblink_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 229

dblink_name specifies the name of the database link through which a target object may be accessed.

Include the REPLACE clause to replace an existing synonym definition with a new synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. Compatible with Oracle databases, the CREATE PUBLIC SYNONYM
command creates a synonym that resides in the public schema:

CREATE [OR REPLACE] PUBLIC SYNONYM <syn_name> FOR
<object_schema>.<object_name>;

This just a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.<syn_name> FOR
<object_schema>.<object_name>;

The following example creates a synonym named personnel that refers to the enterprisedb.emp table.

CREATE SYNONYM personnel FOR enterprisedb.emp;

Unless the synonym is schema qualified in the CREATE SYNONYM command, it will be created in the first existing schema in your search path. You can
view your search path by executing the following command:

SHOW SEARCH_PATH;

 search_path

 development,accounting
(1 row)

In our example, if a schema named development does not exist, the synonym will be created in the schema named accounting .

Now, the emp table in the enterprisedb schema can be referenced in any SQL statement (DDL or DML), by using the synonym, personnel :

INSERT INTO personnel VALUES (8142,'ANDERSON','CLERK',7902,'17-DEC-06',1300,NULL,20);

SELECT * FROM personnel;

 empno | ename | job | mgr | hiredate | sal | comm |deptno
-------+---------+----------+-----+------------------+--------+-------+------
 7369 | SMITH | CLERK |7902 |17-DEC-80 00:00:00| 800.00 | | 20
 7499 | ALLEN | SALESMAN |7698 |20-FEB-81 00:00:00| 1600.00|300.00 | 30
 7521 | WARD | SALESMAN |7698 |22-FEB-81 00:00:00| 1250.00|500.00 | 30
 7566 | JONES | MANAGER |7839 |02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN | SALESMAN |7698 |28-SEP-81 00:00:00| 1250.00|1400.00| 30
 7698 | BLAKE | MANAGER |7839 |01-MAY-81 00:00:00| 2850.00| | 30
 7782 | CLARK | MANAGER |7839 |09-JUN-81 00:00:00| 2450.00| | 10
 7788 | SCOTT | ANALYST |7566 |19-APR-87 00:00:00| 3000.00| | 20
 7839 | KING | PRESIDENT| |17-NOV-81 00:00:00| 5000.00| | 10
 7844 | TURNER | SALESMAN |7698 |08-SEP-81 00:00:00| 1500.00| 0.00 | 30
 7876 | ADAMS | CLERK |7788 |23-MAY-87 00:00:00| 1100.00| | 20
 7900 | JAMES | CLERK |7698 |03-DEC-81 00:00:00| 950.00 | | 30
 7902 | FORD | ANALYST |7566 |03-DEC-81 00:00:00| 3000.00| | 20
 7934 | MILLER | CLERK |7782 |23-JAN-82 00:00:00| 1300.00| | 10
 8142 | ANDERSON| CLERK |7902 |17-DEC-06 00:00:00| 1300.00| | 20
(15 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 230

Deleting a SynonymDeleting a Synonym

To delete a synonym, use the command, DROP SYNONYM . The syntax is:

DROP [PUBLIC] SYNONYM [<schema>.] <syn_name>

Parameters:Parameters:

syn_name

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema in which the synonym resides.

Like any other object that can be schema-qualified, you may have two synonyms with the same name in your search path. To disambiguate the name of the
synonym that you are dropping, include a schema name. Unless a synonym is schema qualified in the DROP SYNONYM command, Advanced Server
deletes the first instance of the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the public schema. Compatible with Oracle databases, the DROP
PUBLIC SYNONYM command drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM <syn_name>;

The following example drops the synonym, personnel :

DROP SYNONYM personnel;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 231

11.4.5 Hierarchical Queries

A hierarchical query is a type of query that returns the rows of the result set in a hierarchical order based upon data forming a parent-child relationship. A
hierarchy is typically represented by an inverted tree structure. The tree is comprised of interconnected nodes. Each node may be connected to none, one,
or multiple child nodes. Each node is connected to one parent node except for the top node which has no parent. This node is the root node. Each tree has
exactly one root node. Nodes that don’t have any children are called leaf nodes. A tree always has at least one leaf node - e.g., the trivial case where the
tree is comprised of a single node. In this case it is both the root and the leaf.

In a hierarchical query the rows of the result set represent the nodes of one or more trees.

NoteNote

It is possible that a single, given row may appear in more than one tree and thus appear more than once in the result set.

The hierarchical relationship in a query is described by the CONNECT BY clause which forms the basis of the order in which rows are returned in the result
set. The context of where the CONNECT BY clause and its associated optional clauses appear in the SELECT command is shown below.

SELECT <select_list> FROM <table_expression> [WHERE ...]
 [START WITH <start_expression>]
 CONNECT BY { PRIOR <parent_expr> = <child_expr> |
 <child_expr> = PRIOR <parent_expr> }
 [ORDER SIBLINGS BY <column1> [ASC | DESC]
 [, <column2> [ASC | DESC]] ...
 [GROUP BY ...]
 [HAVING ...]
 [<other> ...]

select_list is one or more expressions that comprise the fields of the result set. table_expression is one or more tables or views from which the
rows of the result set originate. other is any additional legal SELECT command clauses. The clauses pertinent to hierarchical queries, START WITH,
CONNECT BY , and ORDER SIBLINGS BY are described in the following sections.

NoteNote

At this time, Advanced Server does not support the use of AND (or other operators) in the CONNECT BY clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 232

11.4.5.1 Defining the Parent/Child Relationship

For any given row, its parent and its children are determined by the CONNECT BY clause. The CONNECT BY clause must consist of two expressions
compared with the equals (=) operator. In addition, one of these two expressions must be preceded by the keyword, PRIOR .

For any given row, to determine its children:

1. Evaluate parent_expr on the given row.

2. Evaluate child_expr on any other row resulting from the evaluation of table_expression .

3. If parent_expr = child_expr , then this row is a child node of the given parent row.

4. Repeat the process for all remaining rows in table_expression . All rows that satisfy the equation in step 3 are the children nodes of the given
parent row.

NoteNote

The evaluation process to determine if a row is a child node occurs on every row returned by table_expression before the WHERE clause is
applied to table_expression .

By iteratively repeating this process treating each child node found in the prior steps as a parent, an inverted tree of nodes is constructed. The process is
complete when the final set of child nodes has no children of their own - these are the leaf nodes.

A SELECT command that includes a CONNECT BY clause typically includes the START WITH clause. The START WITH clause determines the rows
that are to be the root nodes - i.e., the rows that are the initial parent nodes upon which the algorithm described previously is to be applied. This is further
explained in the following section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 233

11.4.5.2 Selecting the Root Nodes

The START WITH clause is used to determine the row(s) selected by table_expression that are to be used as the root nodes. All rows selected by
table_expression where start_expression evaluates to true become a root node of a tree. Thus, the number of potential trees in the result set

is equal to the number of root nodes. As a consequence, if the START WITH clause is omitted, then every row returned by table_expression is a
root of its own tree.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 234

11.4.5.3 Organization Tree in the Sample Application

Consider the emp table of the sample application. The rows of the emp table form a hierarchy based upon the mgr column which contains the employee
number of the employee’s manager. Each employee has at most, one manager. KING is the president of the company so he has no manager, therefore
KING’s mgr column is null. Also, it is possible for an employee to act as a manager for more than one employee. This relationship forms a typical, tree-
structured, hierarchical organization chart as illustrated below.

Fig. 1: Employee Organization Hierarchy

To form a hierarchical query based upon this relationship, the SELECT command includes the clause, CONNECT BY PRIOR empno = mgr . For
example, given the company president, KING , with employee number 7839 , any employee whose mgr column is 7839 reports directly to KING
which is true for JONES, BLAKE , and CLARK (these are the child nodes of KING). Similarly, for employee, JONES , any other employee with mgr
column equal to 7566 is a child node of JONES - these are SCOTT and FORD in this example.

The top of the organization chart is KING so there is one root node in this tree. The START WITH mgr IS NULL clause selects only KING as the
initial root node.

The complete SELECT command is shown below.

SELECT ename, empno, mgr
FROM emp
START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The rows in the query output traverse each branch from the root to leaf moving in a top-to-bottom, left-to-right order. Below is the output from this query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 235

ename | empno | mgr
-------+-------+------
KING | 7839 |
JONES | 7566 | 7839
SCOTT | 7788 | 7566
ADAMS | 7876 | 7788
FORD | 7902 | 7566
SMITH | 7369 | 7902
BLAKE | 7698 | 7839
ALLEN | 7499 | 7698
WARD | 7521 | 7698
MARTIN | 7654 | 7698
TURNER | 7844 | 7698
JAMES | 7900 | 7698
CLARK | 7782 | 7839
MILLER | 7934 | 7782
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 236

11.4.5.4 Node Level

LEVEL is a pseudo-column that can be used wherever a column can appear in the SELECT command. For each row in the result set, LEVEL returns a
non-zero integer value designating the depth in the hierarchy of the node represented by this row. The LEVEL for root nodes is 1. The LEVEL for direct
children of root nodes is 2, and so on.

The following query is a modification of the previous query with the addition of the LEVEL pseudo-column. In addition, using the LEVEL value, the
employee names are indented to further emphasize the depth in the hierarchy of each row.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr;

The output from this query follows.

level | employee | empno | mgr
------+-------------+-------+------
 1 | KING | 7839 |
 2 | JONES | 7566 | 7839
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | WARD | 7521 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | JAMES | 7900 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
(14 rows)

Nodes that share a common parent and are at the same level are called siblings. For example in the above output, employees ALLEN, WARD, MARTIN,
TURNER , and JAMES are siblings since they are all at level three with parent, BLAKE. JONES, BLAKE , and CLARK are siblings since they are at
level two and KING is their common parent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 237

11.4.5.5 Ordering the Siblings

The result set can be ordered so the siblings appear in ascending or descending order by selected column value(s) using the ORDER SIBLINGS BY
clause. This is a special case of the ORDER BY clause that can be used only with hierarchical queries.

The previous query is further modified with the addition of ORDER SIBLINGS BY ename ASC .

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the prior query is now modified so the siblings appear in ascending order by name. Siblings BLAKE, CLARK , and JONES are now
alphabetically arranged under KING . Siblings ALLEN, JAMES, MARTIN, TURNER , and WARD are alphabetically arranged under BLAKE , and so
on.

level | employee | empno | mgr
------+-------------+-------+------
 1 | KING | 7839 |
 2 | BLAKE | 7698 | 7839
 3 | ALLEN | 7499 | 7698
 3 | JAMES | 7900 | 7698
 3 | MARTIN | 7654 | 7698
 3 | TURNER | 7844 | 7698
 3 | WARD | 7521 | 7698
 2 | CLARK | 7782 | 7839
 3 | MILLER | 7934 | 7782
 2 | JONES | 7566 | 7839
 3 | FORD | 7902 | 7566
 4 | SMITH | 7369 | 7902
 3 | SCOTT | 7788 | 7566
 4 | ADAMS | 7876 | 7788
(14 rows)

This final example adds the WHERE clause and starts with three root nodes. After the node tree is constructed, the WHERE clause filters out rows in the
tree to form the result set.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr
FROM emp WHERE mgr IN (7839, 7782, 7902, 7788)
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The output from the query shows three root nodes (level one) - BLAKE, CLARK , and JONES . In addition, rows that do not satisfy the WHERE clause
have been eliminated from the output.

level | employee | empno | mgr
------+-----------+-------+------
 1 | BLAKE | 7698 | 7839
 1 | CLARK | 7782 | 7839
 2 | MILLER | 7934 | 7782
 1 | JONES | 7566 | 7839
 3 | SMITH | 7369 | 7902
 3 | ADAMS | 7876 | 7788
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 238

11.4.5.6 Retrieving the Root Node with CONNECT_BY_ROOT

CONNECT_BY_ROOT is a unary operator that can be used to qualify a column in order to return the column’s value of the row considered to be the root
node in relation to the current row.

NoteNote

A unary operator operates on a single operand, which in the case of CONNECT_BY_ROOT , is the column name following the
CONNECT_BY_ROOT keyword.

In the context of the SELECT list, the CONNECT_BY_ROOT operator is shown by the following.

SELECT [... ,] CONNECT_BY_ROOT <column> [, ...]
 FROM <table_expression> ...

The following are some points to note about the CONNECT_BY_ROOT operator.

The CONNECT_BY_ROOT operator can be used in the SELECT list, the WHERE clause, the GROUP BY clause, the HAVING clause, the ORDER
BY clause, and the ORDER SIBLINGS BY clause as long as the SELECT command is for a hierarchical query.
The CONNECT_BY_ROOT operator cannot be used in the CONNECT BY clause or the START WITH clause of the hierarchical query.
It is possible to apply CONNECT_BY_ROOT to an expression involving a column, but to do so, the expression must be enclosed within parentheses.

The following query shows the use of the CONNECT_BY_ROOT operator to return the employee number and employee name of the root node for each
employee listed in the result set based on trees starting with employees BLAKE, CLARK , and JONES .

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

Note that the output from the query shows that all of the root nodes in columns mgr empno and mgr ename are one of the employees, BLAKE,
CLARK , or JONES , listed in the START WITH clause.

level | employee | empno | mgr | mgr empno | mgr ename
------+-----------+-------+------+-----------+-----------
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
(13 rows)

The following is a similar query, but producing only one tree starting with the single, top-level, employee where the mgr column is null.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 239

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp START WITH mgr IS NULL
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

In the following output, all of the root nodes in columns mgr empno and mgr ename indicate KING as the root for this particular query.

level | employee | empno | mgr | mgr empno | mgr ename
------+-------------+-------+------+-----------+-----------
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
(14 rows)

By contrast, the following example omits the START WITH clause thereby resulting in fourteen trees.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT empno "mgr empno",
CONNECT_BY_ROOT ename "mgr ename"
FROM emp
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Each node appears at least once as a root node under the mgr empno and mgr ename columns since even
the leaf nodes form the top of their own trees.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 240

level | employee | empno | mgr | mgr empno | mgr ename
------+-------------+-------+------+-----------+-----------
 1 | ADAMS | 7876 | 7788 | 7876 | ADAMS
 1 | ALLEN | 7499 | 7698 | 7499 | ALLEN
 1 | BLAKE | 7698 | 7839 | 7698 | BLAKE
 2 | ALLEN | 7499 | 7698 | 7698 | BLAKE
 2 | JAMES | 7900 | 7698 | 7698 | BLAKE
 2 | MARTIN | 7654 | 7698 | 7698 | BLAKE
 2 | TURNER | 7844 | 7698 | 7698 | BLAKE
 2 | WARD | 7521 | 7698 | 7698 | BLAKE
 1 | CLARK | 7782 | 7839 | 7782 | CLARK
 2 | MILLER | 7934 | 7782 | 7782 | CLARK
 1 | FORD | 7902 | 7566 | 7902 | FORD
 2 | SMITH | 7369 | 7902 | 7902 | FORD
 1 | JAMES | 7900 | 7698 | 7900 | JAMES
 1 | JONES | 7566 | 7839 | 7566 | JONES
 2 | FORD | 7902 | 7566 | 7566 | JONES
 3 | SMITH | 7369 | 7902 | 7566 | JONES
 2 | SCOTT | 7788 | 7566 | 7566 | JONES
 3 | ADAMS | 7876 | 7788 | 7566 | JONES
 1 | KING | 7839 | | 7839 | KING
 2 | BLAKE | 7698 | 7839 | 7839 | KING
 3 | ALLEN | 7499 | 7698 | 7839 | KING
 3 | JAMES | 7900 | 7698 | 7839 | KING
 3 | MARTIN | 7654 | 7698 | 7839 | KING
 3 | TURNER | 7844 | 7698 | 7839 | KING
 3 | WARD | 7521 | 7698 | 7839 | KING
 2 | CLARK | 7782 | 7839 | 7839 | KING
 3 | MILLER | 7934 | 7782 | 7839 | KING
 2 | JONES | 7566 | 7839 | 7839 | KING
 3 | FORD | 7902 | 7566 | 7839 | KING
 4 | SMITH | 7369 | 7902 | 7839 | KING
 3 | SCOTT | 7788 | 7566 | 7839 | KING
 4 | ADAMS | 7876 | 7788 | 7839 | KING
 1 | MARTIN | 7654 | 7698 | 7654 | MARTIN
 1 | MILLER | 7934 | 7782 | 7934 | MILLER
 1 | SCOTT | 7788 | 7566 | 7788 | SCOTT
 2 | ADAMS | 7876 | 7788 | 7788 | SCOTT
 1 | SMITH | 7369 | 7902 | 7369 | SMITH
 1 | TURNER | 7844 | 7698 | 7844 | TURNER
 1 | WARD | 7521 | 7698 | 7521 | WARD
(39 rows)

The following illustrates the unary operator effect of CONNECT_BY_ROOT . As shown in this example, when applied to an expression that is not enclosed
in parentheses, the CONNECT_BY_ROOT operator affects only the term, ename , immediately following it. The subsequent concatenation of || '
manages ' || ename is not part of the CONNECT_BY_ROOT operation, hence the second occurrence of ename results in the value of the currently
processed row while the first occurrence of ename results in the value from the root node.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ename || ' manages ' || ename "top mgr/employee"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output from the query. Note the values produced under the top mgr/employee column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 241

level | employee | empno | mgr | top mgr/employee
------+-----------+-------+------+----------------------
 1 | BLAKE | 7698 | 7839 | BLAKE manages BLAKE
 2 | ALLEN | 7499 | 7698 | BLAKE manages ALLEN
 2 | JAMES | 7900 | 7698 | BLAKE manages JAMES
 2 | MARTIN | 7654 | 7698 | BLAKE manages MARTIN
 2 | TURNER | 7844 | 7698 | BLAKE manages TURNER
 2 | WARD | 7521 | 7698 | BLAKE manages WARD
 1 | CLARK | 7782 | 7839 | CLARK manages CLARK
 2 | MILLER | 7934 | 7782 | CLARK manages MILLER
 1 | JONES | 7566 | 7839 | JONES manages JONES
 2 | FORD | 7902 | 7566 | JONES manages FORD
 3 | SMITH | 7369 | 7902 | JONES manages SMITH
 2 | SCOTT | 7788 | 7566 | JONES manages SCOTT
 3 | ADAMS | 7876 | 7788 | JONES manages ADAMS
(13 rows)

The following example uses the CONNECT_BY_ROOT operator on an expression enclosed in parentheses.

SELECT LEVEL, LPAD (' ', 2 * (LEVEL - 1)) || ename "employee", empno, mgr,
CONNECT_BY_ROOT ('Manager ' || ename || ' is emp # ' || empno)
"top mgr/empno"
FROM emp
START WITH ename IN ('BLAKE','CLARK','JONES')
CONNECT BY PRIOR empno = mgr
ORDER SIBLINGS BY ename ASC;

The following is the output of the query. Note that the values of both ename and empno are affected by the CONNECT_BY_ROOT operator and as a
result, return the values from the root node as shown under the top mgr/empno column.

level | employee | empno | mgr | top mgr/empno
------+-----------+-------+------+-----------------------------
 1 | BLAKE | 7698 | 7839 | Manager BLAKE is emp # 7698
 2 | ALLEN | 7499 | 7698 | Manager BLAKE is emp # 7698
 2 | JAMES | 7900 | 7698 | Manager BLAKE is emp # 7698
 2 | MARTIN | 7654 | 7698 | Manager BLAKE is emp # 7698
 2 | TURNER | 7844 | 7698 | Manager BLAKE is emp # 7698
 2 | WARD | 7521 | 7698 | Manager BLAKE is emp # 7698
 1 | CLARK | 7782 | 7839 | Manager CLARK is emp # 7782
 2 | MILLER | 7934 | 7782 | Manager CLARK is emp # 7782
 1 | JONES | 7566 | 7839 | Manager JONES is emp # 7566
 2 | FORD | 7902 | 7566 | Manager JONES is emp # 7566
 3 | SMITH | 7369 | 7902 | Manager JONES is emp # 7566
 2 | SCOTT | 7788 | 7566 | Manager JONES is emp # 7566
 3 | ADAMS | 7876 | 7788 | Manager JONES is emp # 7566
(13 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 242

11.4.5.7 Retrieving a Path with SYS_CONNECT_BY_PATH

SYS_CONNECT_BY_PATH is a function that works within a hierarchical query to retrieve the column values of a specified column that occur between the
current node and the root node. The signature of the function is:

SYS_CONNECT_BY_PATH (<column>, <delimiter>)

The function takes two arguments:

column is the name of a column that resides within a table specified in the hierarchical query that is calling the function.

delimiter is the varchar value that separates each entry in the specified column.

The following example returns a list of employee names, and their managers; if the manager has a manager, that name is appended to the result:

edb=# SELECT level, ename , SYS_CONNECT_BY_PATH(ename, '/') managers
 FROM emp
 CONNECT BY PRIOR empno = mgr
 START WITH mgr IS NULL
 ORDER BY level, ename, managers;

 level | ename | managers
-------+--------+-------------------------
 1 | KING | /KING
 2 | BLAKE | /KING/BLAKE
 2 | CLARK | /KING/CLARK
 2 | JONES | /KING/JONES
 3 | ALLEN | /KING/BLAKE/ALLEN
 3 | FORD | /KING/JONES/FORD
 3 | JAMES | /KING/BLAKE/JAMES
 3 | MARTIN | /KING/BLAKE/MARTIN
 3 | MILLER | /KING/CLARK/MILLER
 3 | SCOTT | /KING/JONES/SCOTT
 3 | TURNER | /KING/BLAKE/TURNER
 3 | WARD | /KING/BLAKE/WARD
 4 | ADAMS | /KING/JONES/SCOTT/ADAMS
 4 | SMITH | /KING/JONES/FORD/SMITH
(14 rows)

Within the result set:

The level column displays the number of levels that the query returned.
The ename column displays the employee name.
The managers column contains the hierarchical list of managers.

The Advanced Server implementation of SYS_CONNECT_BY_PATH does not support use of:

SYS_CONNECT_BY_PATH inside CONNECT_BY_PATH
SYS_CONNECT_BY_PATH inside SYS_CONNECT_BY_PATH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 243

11.4.6 Multidimensional Analysis

Multidimensional analysis refers to the process commonly used in data warehousing applications of examining data using various combinations of
dimensions. Dimensions are categories used to classify data such as time, geography, a company’s departments, product lines, and so forth. The results
associated with a particular set of dimensions are called facts. Facts are typically figures associated with product sales, profits, volumes, counts, etc.

In order to obtain these facts according to a set of dimensions in a relational database system, SQL aggregation is typically used. SQL aggregation basically
means data is grouped according to certain criteria (dimensions) and the result set consists of aggregates of facts such as counts, sums, and averages of
the data in each group.

The GROUP BY clause of the SQL SELECT command supports the following extensions that simplify the process of producing aggregate results.

ROLLUP extension
CUBE extension
GROUPING SETS extension

In addition, the GROUPING function and the GROUPING_ID function can be used in the SELECT list or the HAVING clause to aid with the
interpretation of the results when these extensions are used.

NoteNote

The sample dept and emp tables are used extensively in this discussion to provide usage examples. The following changes were applied to
these tables to provide more informative results.

UPDATE dept SET loc = 'BOSTON' WHERE deptno = 20;
INSERT INTO emp (empno,ename,job,deptno) VALUES (9001,'SMITH','CLERK',40);
INSERT INTO emp (empno,ename,job,deptno) VALUES (9002,'JONES','ANALYST',40);
INSERT INTO emp (empno,ename,job,deptno) VALUES (9003,'ROGERS','MANAGER',40);

The following rows from a join of the emp and dept tables are used:

SELECT loc, dname, job, empno FROM emp e, dept d
WHERE e.deptno = d.deptno
ORDER BY 1, 2, 3, 4;

 loc | dname | job | empno
----------+------------+-----------+-------
 BOSTON | OPERATIONS | ANALYST | 9002
 BOSTON | OPERATIONS | CLERK | 9001
 BOSTON | OPERATIONS | MANAGER | 9003
 BOSTON | RESEARCH | ANALYST | 7788
 BOSTON | RESEARCH | ANALYST | 7902
 BOSTON | RESEARCH | CLERK | 7369
 BOSTON | RESEARCH | CLERK | 7876
 BOSTON | RESEARCH | MANAGER | 7566
 CHICAGO | SALES | CLERK | 7900
 CHICAGO | SALES | MANAGER | 7698
 CHICAGO | SALES | SALESMAN | 7499
 CHICAGO | SALES | SALESMAN | 7521
 CHICAGO | SALES | SALESMAN | 7654
 CHICAGO | SALES | SALESMAN | 7844
 NEW YORK | ACCOUNTING | CLERK | 7934
 NEW YORK | ACCOUNTING | MANAGER | 7782
 NEW YORK | ACCOUNTING | PRESIDENT | 7839
(17 rows)

The loc, dname , and job columns are used for the dimensions of the SQL aggregations used in the examples. The resulting facts of the aggregations

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 244

The loc, dname , and job columns are used for the dimensions of the SQL aggregations used in the examples. The resulting facts of the aggregations
are the number of employees obtained by using the COUNT(*) function.

A basic query grouping the loc, dname , and job columns is given by the following.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, dname, job
ORDER BY 1, 2, 3;

The rows of this result set using the basic GROUP BY clause without extensions are referred to as the base aggregate rows.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
(12 rows)

The ROLLUP and CUBE extensions add to the base aggregate rows by providing additional levels of subtotals to the result set.

The GROUPING SETS extension provides the ability to combine different types of groupings into a single result set.

The GROUPING and GROUPING_ID functions aid in the interpretation of the result set.

The additions provided by these extensions are discussed in more detail in the subsequent sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 245

11.4.6.1 ROLLUP Extension

The ROLLUP extension produces a hierarchical set of groups with subtotals for each hierarchical group as well as a grand total. The order of the hierarchy
is determined by the order of the expressions given in the ROLLUP expression list. The top of the hierarchy is the leftmost item in the list. Each successive
item proceeding to the right moves down the hierarchy with the rightmost item being the lowest level.

The syntax for a single ROLLUP is as follows:

ROLLUP ({ <expr_1> | (<expr_1a> [, <expr_1b>] ...) }
 [, <expr_2> | (<expr_2a> [, <expr_2b>] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed within parenthesis as (expr_1a, expr_1b, ...) then the
combination of values returned by expr_1a and expr_1b defines a single grouping level of the hierarchy.

The base level of aggregates returned in the result set is for each unique combination of values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination of (expr_1a, expr_1b, ...) , whichever is specified)
for each unique value. A subtotal is returned for the second item in the list (expr_2 or the combination of (expr_2a, expr_2b, ...) , whichever
is specified) for each unique value, within each grouping of the first item and so on. Finally a grand total is returned for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The ROLLUP extension specified within the context of the GROUP BY clause is shown by the following:

SELECT <select_list> FROM ...
GROUP BY [... ,] ROLLUP (<expression_list>) [, ...]

The items specified in select_list must also appear in the ROLLUP expression_list ; or they must be aggregate functions such as COUNT,
SUM, AVG, MIN, or MAX ; or they must be constants or functions whose return values are independent of the individual rows in the group (for example,
the SYSDATE function).

The GROUP BY clause may specify multiple ROLLUP extensions as well as multiple occurrences of other GROUP BY extensions and individual
expressions.

The ORDER BY clause should be used if you want the output to display in a hierarchical or other meaningful structure. There is no guarantee on the order
of the result set if no ORDER BY clause is specified.

The number of grouping levels or totals is n + 1 where n represents the number of items in the ROLLUP expression list. A parenthesized list counts as one
item.

The following query produces a rollup based on a hierarchy of columns loc, dname , then job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

The following is the result of the query. There is a count of the number of employees for each unique combination of loc, dname , and job , as well as
subtotals for each unique combination of loc and dname , for each unique value of loc , and a grand total displayed on the last line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 246

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | | 3
 | | | 17
(20 rows)

The following query shows the effect of combining items in the ROLLUP list within parenthesis.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, (dname, job))
ORDER BY 1, 2, 3;

In the output, note that there are no subtotals for loc and dname combinations as in the prior example.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | | | 3
 | | | 17
(16 rows)

If the first two columns in the ROLLUP list are enclosed in parenthesis, the subtotal levels differ as well.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 247

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP ((loc, dname), job)
ORDER BY 1, 2, 3;

Now there is a subtotal for each unique loc and dname combination, but none for unique values of loc .

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
 | | | 17
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 248

11.4.6.2 CUBE Extension

The CUBE extension is similar to the ROLLUP extension. However, unlike ROLLUP , which produces groupings and results in a hierarchy based on a left
to right listing of items in the ROLLUP expression list, a CUBE produces groupings and subtotals based on every permutation of all items in the CUBE
expression list. Thus, the result set contains more rows than a ROLLUP performed on the same expression list.

The syntax for a single CUBE is as follows:

CUBE ({ <expr_1> | (<expr_1a> [, <expr_1b>] ...) }
 [, <expr_2> | (<expr_2a> [, <expr_2b>] ...)] ...)

Each expr is an expression that determines the grouping of the result set. If enclosed within parenthesis as (expr_1a, expr_1b, ...) then the
combination of values returned by expr_1a and expr_1b defines a single group.

The base level of aggregates returned in the result set is for each unique combination of values returned by the expression list.

In addition, a subtotal is returned for the first item in the list (expr_1 or the combination of (expr_1a, expr_1b, ...) , whichever is specified)
for each unique value. A subtotal is returned for the second item in the list (expr_2 or the combination of (expr_2a, expr_2b, ...) , whichever
is specified) for each unique value. A subtotal is also returned for each unique combination of the first item and the second item. Similarly, if there is a third
item, a subtotal is returned for each unique value of the third item, each unique value of the third item and first item combination, each unique value of the
third item and second item combination, and each unique value of the third item, second item, and first item combination. Finally a grand total is returned
for the entire result set.

For the subtotal rows, null is returned for the items across which the subtotal is taken.

The CUBE extension specified within the context of the GROUP BY clause is shown by the following:

SELECT <select_list> FROM ...
GROUP BY [... ,] CUBE (<expression_list>) [, ...]

The items specified in select_list must also appear in the CUBE expression_list ; or they must be aggregate functions such as COUNT,
SUM, AVG, MIN , or MAX ; or they must be constants or functions whose return values are independent of the individual rows in the group (for example,
the SYSDATE function).

The GROUP BY clause may specify multiple CUBE extensions as well as multiple occurrences of other GROUP BY extensions and individual
expressions.

The ORDER BY clause should be used if you want the output to display in a meaningful structure. There is no guarantee on the order of the result set if no
ORDER BY clause is specified.

The number of grouping levels or totals is 2 raised to the power of n where n represents the number of items in the CUBE expression list. A
parenthesized list counts as one item.

The following query produces a cube based on permutations of columns loc, dname , and job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname, job)
ORDER BY 1, 2, 3;

The following is the result of the query. There is a count of the number of employees for each combination of loc, dname , and job , as well as
subtotals for each combination of loc and dname , for each combination of loc and job , for each combination of dname and job , for each
unique value of loc , for each unique value of dname , for each unique value of job , and a grand total displayed on the last line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 249

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(50 rows)

The following query shows the effect of combining items in the CUBE list within parenthesis.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, (dname, job))
ORDER BY 1, 2, 3;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 250

In the output note that there are no subtotals for permutations involving loc and dname combinations, loc and job combinations, or for dname by
itself, or for job by itself.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | | | 17
(28 rows)

The following query shows another variation whereby the first expression is specified outside of the CUBE extension.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc, CUBE (dname, job)
ORDER BY 1, 2, 3;

In this output, the permutations are performed for dname and job within each grouping of loc .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 251

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | OPERATIONS | ANALYST | 1
BOSTON | OPERATIONS | CLERK | 1
BOSTON | OPERATIONS | MANAGER | 1
BOSTON | OPERATIONS | | 3
BOSTON | RESEARCH | ANALYST | 2
BOSTON | RESEARCH | CLERK | 2
BOSTON | RESEARCH | MANAGER | 1
BOSTON | RESEARCH | | 5
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | SALES | CLERK | 1
CHICAGO | SALES | MANAGER | 1
CHICAGO | SALES | SALESMAN | 4
CHICAGO | SALES | | 6
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | ACCOUNTING | CLERK | 1
NEW YORK | ACCOUNTING | MANAGER | 1
NEW YORK | ACCOUNTING | PRESIDENT | 1
NEW YORK | ACCOUNTING | | 3
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
(28 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 252

11.4.6.3 GROUPING SETS Extension

The use of the GROUPING SETS extension within the GROUP BY clause provides a means to produce one result set that is actually the concatenation
of multiple results sets based upon different groupings. In other words, a UNION ALL operation is performed combining the result sets of multiple
groupings into one result set.

Note that a UNION ALL operation, and therefore the GROUPING SETS extension, do not eliminate duplicate rows from the result sets that are being
combined together.

The syntax for a single GROUPING SETS extension is as follows:

GROUPING SETS (
 { <expr_1> | (<expr_1a> [, <expr_1b>] ...) |
 ROLLUP (<expr_list>) | CUBE (<expr_list>)
 } [, ...])

A GROUPING SETS extension can contain any combination of one or more comma-separated expressions, lists of expressions enclosed within
parenthesis, ROLLUP extensions, and CUBE extensions.

The GROUPING SETS extension is specified within the context of the GROUP BY clause as shown by the following:

SELECT <select_list> FROM ...
GROUP BY [... ,] GROUPING SETS (<expression_list>) [, ...]

The items specified in select_list must also appear in the GROUPING SETS expression_list ; or they must be aggregate functions such as
COUNT, SUM, AVG, MIN , or MAX ; or they must be constants or functions whose return values are independent of the individual rows in the group

(for example, the SYSDATE function).

The GROUP BY clause may specify multiple GROUPING SETS extensions as well as multiple occurrences of other GROUP BY extensions and
individual expressions.

The ORDER BY clause should be used if you want the output to display in a meaningful structure. There is no guarantee on the order of the result set if no
ORDER BY clause is specified.

The following query produces a union of groups given by columns loc, dname , and job .

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, dname, job)
ORDER BY 1, 2, 3;

The result is as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 253

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
(12 rows)

This is equivalent to the following query, which employs the use of the UNION ALL operator.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, NULL, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY dname
 UNION ALL
SELECT NULL, NULL, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY job
ORDER BY 1, 2, 3;

The output from the UNION ALL query is the same as the GROUPING SETS output.

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
 | ACCOUNTING | | 3
 | OPERATIONS | | 3
 | RESEARCH | | 5
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
(12 rows)

The following example shows how various types of GROUP BY extensions can be used together within a GROUPING SETS expression list.

SELECT loc, dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))
ORDER BY 1, 2, 3;

The following is the output from this query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 254

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

The output is basically a concatenation of the result sets that would be produced individually from GROUP BY loc, GROUP BY ROLLUP (dname,
job) , and GROUP BY CUBE (job, loc) . These individual queries are shown by the following.

SELECT loc, NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
ORDER BY 1;

The following is the result set from the GROUP BY loc clause.

loc | dname | job | employees
----------+-------+-----+-----------
BOSTON | | | 8
CHICAGO | | | 6
NEW YORK | | | 3
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 255

The following query uses the GROUP BY ROLLUP (dname, job) clause.

SELECT NULL AS "loc", dname, job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
ORDER BY 2, 3;

The following is the result set from the GROUP BY ROLLUP (dname, job) clause.

loc | dname | job | employees
----+------------+-----------+-----------
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | | 17
(17 rows)

The following query uses the GROUP BY CUBE (job, loc) clause.

SELECT loc, NULL AS "dname", job, COUNT(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 3;

The following is the result set from the GROUP BY CUBE (job, loc) clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 256

loc | dname | job | employees
---------+-------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
(18 rows)

If the previous three queries are combined with the UNION ALL operator, a concatenation of the three results sets is produced.

SELECT loc AS "loc", NULL AS "dname", NULL AS "job", COUNT(*) AS "employees"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY loc
 UNION ALL
SELECT NULL, dname, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (dname, job)
 UNION ALL
SELECT loc, NULL, job, count(*) AS "employees" FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (job, loc)
ORDER BY 1, 2, 3;

The following is the output, which is the same as when the GROUP BY GROUPING SETS (loc, ROLLUP (dname, job), CUBE (job, loc))
clause is used.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 257

loc | dname | job | employees
---------+------------+-----------+-----------
BOSTON | | ANALYST | 3
BOSTON | | CLERK | 3
BOSTON | | MANAGER | 2
BOSTON | | | 8
BOSTON | | | 8
CHICAGO | | CLERK | 1
CHICAGO | | MANAGER | 1
CHICAGO | | SALESMAN | 4
CHICAGO | | | 6
CHICAGO | | | 6
NEW YORK | | CLERK | 1
NEW YORK | | MANAGER | 1
NEW YORK | | PRESIDENT | 1
NEW YORK | | | 3
NEW YORK | | | 3
 | ACCOUNTING | CLERK | 1
 | ACCOUNTING | MANAGER | 1
 | ACCOUNTING | PRESIDENT | 1
 | ACCOUNTING | | 3
 | OPERATIONS | ANALYST | 1
 | OPERATIONS | CLERK | 1
 | OPERATIONS | MANAGER | 1
 | OPERATIONS | | 3
 | RESEARCH | ANALYST | 2
 | RESEARCH | CLERK | 2
 | RESEARCH | MANAGER | 1
 | RESEARCH | | 5
 | SALES | CLERK | 1
 | SALES | MANAGER | 1
 | SALES | SALESMAN | 4
 | SALES | | 6
 | | ANALYST | 3
 | | CLERK | 5
 | | MANAGER | 4
 | | PRESIDENT | 1
 | | SALESMAN | 4
 | | | 17
 | | | 17
(38 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 258

11.4.6.4 GROUPING Function

When using the ROLLUP, CUBE, or GROUPING SETS extensions to the GROUP BY clause, it may sometimes be difficult to differentiate between
the various levels of subtotals generated by the extensions as well as the base aggregate rows in the result set. The GROUPING function provides a means
of making this distinction.

The general syntax for use of the GROUPING function is shown by the following.

SELECT [<expr> ...,] GROUPING(<col_expr>) [, <expr>] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] <col_expr>
 [, ...]) [, ...]

The GROUPING function takes a single parameter that must be an expression of a dimension column specified in the expression list of a ROLLUP,
CUBE , or GROUPING SETS extension of the GROUP BY clause.

The return value of the GROUPING function is either a 0 or 1. In the result set of a query, if the column expression specified in the GROUPING function is
null because the row represents a subtotal over multiple values of that column then the GROUPING function returns a value of 1. If the row returns results
based on a particular value of the column specified in the GROUPING function, then the GROUPING function returns a value of 0. In the latter case, the
column can be null as well as non-null, but in any case, it is for a particular value of that column, not a subtotal across multiple values.

The following query shows how the return values of the GROUPING function correspond to the subtotal lines.

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
ORDER BY 1, 2, 3;

In the three right-most columns displaying the output of the GROUPING functions, a value of 1 appears on a subtotal line wherever a subtotal is taken
across values of the corresponding columns.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 259

loc | dname | job | employees | gf_loc | gf_dname | gf_job
---------+------------+-----------+-----------+--------+----------+--------
BOSTON | OPERATIONS | ANALYST | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | CLERK | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | MANAGER | 1 | 0 | 0 | 0
BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
BOSTON | RESEARCH | ANALYST | 2 | 0 | 0 | 0
BOSTON | RESEARCH | CLERK | 2 | 0 | 0 | 0
BOSTON | RESEARCH | MANAGER | 1 | 0 | 0 | 0
BOSTON | RESEARCH | | 5 | 0 | 0 | 1
BOSTON | | | 8 | 0 | 1 | 1
CHICAGO | SALES | CLERK | 1 | 0 | 0 | 0
CHICAGO | SALES | MANAGER | 1 | 0 | 0 | 0
CHICAGO | SALES | SALESMAN | 4 | 0 | 0 | 0
CHICAGO | SALES | | 6 | 0 | 0 | 1
CHICAGO | | | 6 | 0 | 1 | 1
NEW YORK | ACCOUNTING | CLERK | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | MANAGER | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | PRESIDENT | 1 | 0 | 0 | 0
NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
NEW YORK | | | 3 | 0 | 1 | 1
 | | | 17 | 1 | 1 | 1
(20 rows)

These indicators can be used as screening criteria for particular subtotals. For example, using the previous query, you can display only those subtotals for
loc and dname combinations by using the GROUPING function in a HAVING clause.

SELECT loc, dname, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(dname) AS "gf_dname",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY ROLLUP (loc, dname, job)
HAVING GROUPING(loc) = 0
 AND GROUPING(dname) = 0
 AND GROUPING(job) = 1
ORDER BY 1, 2;

This query produces the following result:

loc | dname | job | employees | gf_loc | gf_dname | gf_job
---------+------------+-----+-----------+--------+----------+--------
BOSTON | OPERATIONS | | 3 | 0 | 0 | 1
BOSTON | RESEARCH | | 5 | 0 | 0 | 1
CHICAGO | SALES | | 6 | 0 | 0 | 1
NEW YORK | ACCOUNTING | | 3 | 0 | 0 | 1
(4 rows)

The GROUPING function can be used to distinguish a subtotal row from a base aggregate row or from certain subtotal rows where one of the items in the
expression list returns null as a result of the column on which the expression is based being null for one or more rows in the table, as opposed to
representing a subtotal over the column.

To illustrate this point, the following row is added to the emp table. This provides a row with a null value for the job column.

INSERT INTO emp (empno,ename,deptno) VALUES (9004,'PETERS',40);

The following query is issued using a reduced number of rows for clarity.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 260

SELECT loc, job, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc",
 GROUPING(job) AS "gf_job"
FROM emp e, dept d
WHERE e.deptno = d.deptno AND loc = 'BOSTON'
GROUP BY CUBE (loc, job)
ORDER BY 1, 2;

Note that the output contains two rows containing BOSTON in the loc column and spaces in the job column (fourth and fifth entries in the table).

loc | job | employees | gf_loc | gf_job
-------+---------+-----------+--------+--------
BOSTON | ANALYST | 3 | 0 | 0
BOSTON | CLERK | 3 | 0 | 0
BOSTON | MANAGER | 2 | 0 | 0
BOSTON | | 1 | 0 | 0
BOSTON | | 9 | 0 | 1
 | ANALYST | 3 | 1 | 0
 | CLERK | 3 | 1 | 0
 | MANAGER | 2 | 1 | 0
 | | 1 | 1 | 0
 | | 9 | 1 | 1
(10 rows)

The fifth row where the GROUPING function on the job column (gf_job) returns 1 indicates this is a subtotal over all jobs. Note that the row
contains a subtotal value of 9 in the employees column.

The fourth row where the GROUPING function on the job column as well as on the loc column returns 0 indicates this is a base aggregate of all rows
where loc is BOSTON and job is null, which is the row inserted for this example. The employees column contains 1, which is the count of the
single such row inserted.

Also note that in the ninth row (next to last) the GROUPING function on the job column returns 0 while the GROUPING function on the loc column
returns 1 indicating this is a subtotal over all locations where the job column is null, which again, is a count of the single row inserted for this example.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 261

11.4.6.5 GROUPING_ID Function

The GROUPING_ID function provides a simplification of the GROUPING function in order to determine the subtotal level of a row in the result set from a
ROLLBACK, CUBE , or GROUPING SETS extension.

The GROUPING function takes only one column expression and returns an indication of whether or not a row is a subtotal over all values of the given
column. Thus, multiple GROUPING functions may be required to interpret the level of subtotals for queries with multiple grouping columns.

The GROUPING_ID function accepts one or more column expressions that have been used in the ROLLBACK, CUBE , or GROUPING SETS extensions
and returns a single integer that can be used to determine over which of these columns a subtotal has been aggregated.

The general syntax for use of the GROUPING_ID function is shown by the following.

SELECT [<expr> ...,]
 GROUPING_ID(<col_expr_1> [, <col_expr_2>] ...)
 [, <expr>] ...
FROM ...
GROUP BY [...,]
 { ROLLUP | CUBE | GROUPING SETS }([...,] <col_expr_1>
 [, <col_expr_2>] [, ...]) [, ...]

The GROUPING_ID function takes one or more parameters that must be expressions of dimension columns specified in the expression list of a ROLLUP,
CUBE , or GROUPING SETS extension of the GROUP BY clause.

The GROUPING_ID function returns an integer value. This value corresponds to the base-10 interpretation of a bit vector consisting of the concatenated
1’s and 0’s that would be returned by a series of GROUPING functions specified in the same left-to-right order as the ordering of the parameters specified
in the GROUPING_ID function.

The following query shows how the returned values of the GROUPING_ID function represented in column gid correspond to the values returned by two
GROUPING functions on columns loc and dname .

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",
 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
ORDER BY 6, 1, 2;

In the following output, note the relationship between a bit vector consisting of the gf_loc value and gf_dname value compared to the integer given
in gid .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 262

loc | dname | employees | gf_loc | gf_dname | gid
---------+------------+-----------+--------+----------+-----
BOSTON | OPERATIONS | 3 | 0 | 0 | 0
BOSTON | RESEARCH | 5 | 0 | 0 | 0
CHICAGO | SALES | 6 | 0 | 0 | 0
NEW YORK | ACCOUNTING | 3 | 0 | 0 | 0
BOSTON | | 8 | 0 | 1 | 1
CHICAGO | | 6 | 0 | 1 | 1
NEW YORK | | 3 | 0 | 1 | 1
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
 | | 17 | 1 | 1 | 3
(12 rows)

The following table provides specific examples of the GROUPING_ID function calculations based on the GROUPING function return values for four rows
of the output.

loc dname
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

BOSTON OPERATIONS 0 * 2¹ + 0 * 2⁰ 0

BOSTON null 0 * 2¹ + 1 * 2⁰ 1

null ACCOUNTING 1 * 2¹ + 0 * 2⁰ 2

null null 1 * 2¹ + 1 * 2⁰ 3

The following table summarizes how the GROUPING_ID function return values correspond to the grouping columns over which aggregation occurs.

Aggregation by Column
Bit Vector

gf_loc gf_dname

GROUPING_ID

gid

loc, dname 0 0 0

loc 0 1 1

dname 1 0 2

Grand Total 1 1 3

So to display only those subtotals by dname , the following simplified query can be used with a HAVING clause based on the GROUPING_ID function.

SELECT loc, dname, COUNT(*) AS "employees",
 GROUPING(loc) AS "gf_loc", GROUPING(dname) AS "gf_dname",
 GROUPING_ID(loc, dname) AS "gid"
FROM emp e, dept d
WHERE e.deptno = d.deptno
GROUP BY CUBE (loc, dname)
HAVING GROUPING_ID(loc, dname) = 2
ORDER BY 6, 1, 2;

The following is the result of the query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 263

loc | dname | employees | gf_loc | gf_dname | gid
----+------------+-----------+--------+----------+-----
 | ACCOUNTING | 3 | 1 | 0 | 2
 | OPERATIONS | 3 | 1 | 0 | 2
 | RESEARCH | 5 | 1 | 0 | 2
 | SALES | 6 | 1 | 0 | 2
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 264

11.5 Profile Management

Advanced Server allows a database superuser to create named profiles. Each profile defines rules for password management that augment password
and md5 authentication. The rules in a profile can:

count failed login attempts
lock an account due to excessive failed login attempts
mark a password for expiration
define a grace period after a password expiration
define rules for password complexity
define rules that limit password re-use

A profile is a named set of password attributes that allow you to easily manage a group of roles that share comparable authentication requirements. If the
password requirements change, you can modify the profile to have the new requirements applied to each user that is associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a user connects to the server, the server enforces the profile that is
associated with their login role. Profiles are shared by all databases within a cluster, but each cluster may have multiple profiles. A single user with access
to multiple databases will use the same profile when connecting to each database within the cluster.

Advanced Server creates a profile named default that is associated with a new role when the role is created unless an alternate profile is specified. If
you upgrade to Advanced Server from a previous server version, existing roles will automatically be assigned to the default profile. You cannot delete
the default profile.

The default profile specifies the following attributes:

FAILED_LOGIN_ATTEMPTS UNLIMITED

PASSWORD_LOCK_TIME UNLIMITED

PASSWORD_LIFE_TIME UNLIMITED

PASSWORD_GRACE_TIME UNLIMITED

PASSWORD_REUSE_TIME UNLIMITED

PASSWORD_REUSE_MAX UNLIMITED

PASSWORD_VERIFY_FUNCTION NULL

PASSWORD_ALLOW_HASHED TRUE

A database superuser can use the ALTER PROFILE command to modify the values specified by the default profile. For more information about
modifying a profile, see Altering a Profile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 265

11.5.1 Creating a New Profile

Use the CREATE PROFILE command to create a new profile. The syntax is:

CREATE PROFILE <profile_name>
 [LIMIT {<parameter value>} ...];

Include the LIMIT clause and one or more space-delimited parameter / value pairs to specify the rules enforced by Advanced Server.

Parameters:Parameters:

profile_name specifies the name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

Advanced Server supports the value shown below for each parameter :

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user may make before the server locks the user out of their account for
the length of time specified by PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED – the connecting user may make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that has been locked because of
FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.
UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may be used before the user is prompted to provide a new password.
Include the PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE_TIME clause to specify the number of days that will pass after the
password expires before connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the password will expire on the day specified
by the default value of PASSWORD_GRACE_TIME , and the user will not be allowed to execute any command until a new password is provided. Supported
values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the
grace period expires, a user will be allowed to connect, but will not be allowed to execute any command until they update their expired password.
Supported values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a password. The PASSWORD_REUSE_TIME and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 266

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a password. The PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. The PASSWORD_REUSE_TIME
and PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

An INTEGER value greater than or equal to 0 .
DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password to be allowed for use or not. If you specify the value as TRUE , the system allows
a user to change the password by specifying a hash computed encrypted password on the client side. However, if you specify the value as FALSE , then a
password must be specified in a plain-text form in order to be validated effectively, else an error will be thrown if a server receives an encrypted password.
Supported values are:

A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT - the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

NoteNote

The PASSWORD_ALLOW_HASHED is not an Oracle-compatible parameter.
Use DROP PROFILE command to remove the profile.

ExamplesExamples

The following command creates a profile named acctg . The profile specifies that if a user has not authenticated with the correct password in five
attempts, the account will be locked for one day:

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales . The profile specifies that a user must change their password every 90 days:

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has passed, they will be issued a warning at login. After a grace period
of 3 days, their account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts . The profile specifies that a user cannot re-use a password within 180 days of the last use of the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 267

The following command creates a profile named accts . The profile specifies that a user cannot re-use a password within 180 days of the last use of the
password, and must change their password at least 5 times before re-using the password:

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources ; the profile calls a user-defined function named password_rules that will verify that
the password provided meets their standards for complexity:

CREATE PROFILE resources LIMIT
 PASSWORD_VERIFY_FUNCTION password_rules;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 268

11.5.1.1 Creating a Password Function

When specifying PASSWORD_VERIFY_FUNCTION , you can provide a customized function that specifies the security rules that will be applied when your
users change their password. For example, you can specify rules that stipulate that the new password must be at least n characters long, and may not
contain a specific value.

The password function has the following signature:

<function_name> (<user_name> VARCHAR2,
 <new_password> VARCHAR2,
 <old_password> VARCHAR2) RETURN boolean

Where:Where:

user_name is the name of the user.

new_password is the new password.

old_password is the user's previous password. If you reference this parameter within your function:

When a database superuser changes their password, the third parameter will always be NULL .

When a user with the CREATEROLE attribute changes their password, the parameter will pass the previous password if the statement includes the
REPLACE clause. Note that the REPLACE clause is optional syntax for a user with the CREATEROLE privilege.

When a user that is not a database superuser and does not have the CREATEROLE attribute changes their password, the third parameter will contain the
previous password for the role.

The function returns a Boolean value. If the function returns true and does not raise an exception, the password is accepted; if the function returns false or
raises an exception, the password is rejected. If the function raises an exception, the specified error message is displayed to the user. If the function does
not raise an exception, but returns false, the following error message is displayed:

ERROR: password verification for the specified password failed

The function must be owned by a database superuser, and reside in the sys schema.

Example:Example:

The following example creates a profile and a custom function; then, the function is associated with the profile. The following CREATE PROFILE
command creates a profile named acctg_pwd_profile :

CREATE PROFILE acctg_pwd_profile;

The following commands create a (schema-qualified) function named verify_password :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 269

CREATE OR REPLACE FUNCTION sys.verify_password(user_name varchar2,
new_password varchar2, old_password varchar2)
RETURN boolean IMMUTABLE
IS
BEGIN
 IF (length(new_password) < 5)
 THEN
 raise_application_error(-20001, 'too short');
 END IF;

 IF substring(new_password FROM old_password) IS NOT NULL
 THEN
 raise_application_error(-20002, 'includes old password');
 END IF;

 RETURN true;
END;

The function first ensures that the password is at least 5 characters long, and then compares the new password to the old password. If the new password
contains fewer than 5 characters, or contains the old password, the function raises an error.

The following statement sets the ownership of the verify_password function to the enterprisedb database superuser:

ALTER FUNCTION verify_password(varchar2, varchar2, varchar2) OWNER TO
enterprisedb;

Then, the verify_password function is associated with the profile:

ALTER PROFILE acctg_pwd_profile LIMIT PASSWORD_VERIFY_FUNCTION
verify_password;

The following statements confirm that the function is working by first creating a test user (alice) , and then attempting to associate invalid and valid
passwords with her role:

CREATE ROLE alice WITH LOGIN PASSWORD 'temp_password' PROFILE
acctg_pwd_profile;

Then, when alice connects to the database and attempts to change her password, she must adhere to the rules established by the profile function. A
non-superuser without CREATEROLE must include the REPLACE clause when changing a password:

edb=> ALTER ROLE alice PASSWORD 'hey';
ERROR: missing REPLACE clause

The new password must be at least 5 characters long:

edb=> ALTER USER alice PASSWORD 'hey' REPLACE 'temp_password';
ERROR: EDB-20001: too short
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 5 at procedure/function invocation statement

If the new password is acceptable, the command completes without error:

edb=> ALTER USER alice PASSWORD 'hello' REPLACE 'temp_password';
ALTER ROLE

If alice decides to change her password, the new password must not contain the old password:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 270

If alice decides to change her password, the new password must not contain the old password:

edb=> ALTER USER alice PASSWORD 'helloworld' REPLACE 'hello';
ERROR: EDB-20002: includes old password
CONTEXT: edb-spl function verify_password(character varying,character
varying,character varying) line 10 at procedure/function invocation statement

To remove the verify function, set password_verify_function to NULL :

ALTER PROFILE acctg_pwd_profile LIMIT password_verify_function NULL;

Then, all password constraints will be lifted:

edb=# ALTER ROLE alice PASSWORD 'hey';
ALTER ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 271

11.5.2 Altering a Profile

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server supports two forms of the command:

ALTER PROFILE <profile_name> RENAME TO <new_name>;

ALTER PROFILE <profile_name>
 LIMIT {<parameter value>}[...];

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by Advanced Server, or use ALTER
PROFILE...RENAME TO to change the name of a profile.

Parameters:Parameters:

profile_name specifies the name of the profile.

new_name specifies the new name of the profile.

parameter specifies the attribute limited by the profile.

value specifies the parameter limit.

See the table in Creating a New Profile, for a complete list of accepted parameter/value pairs.

ExamplesExamples

The following example modifies a profile named acctg_profile :

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile will count failed connection attempts when a login role attempts to connect to the server. The profile specifies that if a user has not
authenticated with the correct password in three attempts, the account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile :

ALTER PROFILE acctg_profile RENAME TO payables_profile;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 272

11.5.3 Dropping a Profile

Use the DROP PROFILE command to drop a profile. The syntax is:

DROP PROFILE [IF EXISTS] <profile_name> [CASCADE|RESTRICT];

Include the IF EXISTS clause to instruct the server to not throw an error if the specified profile does not exist. The server will issue a notice if the profile
does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated with the profile to the default profile, and then drop the
profile. Include the optional RESTRICT clause to instruct the server to not drop any profile that is associated with a role. This is the default behavior.

ParametersParameters

profile_name

The name of the profile being dropped.

ExamplesExamples

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile with the default profile, and then drops the
acctg_profile profile.

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile if there are any roles associated with the profile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 273

11.5.4 Associating a Profile with an Existing Role

After creating a profile, you can use the ALTER USER... PROFILE or ALTER ROLE... PROFILE command to associate the profile with a role. The
command syntax related to profile management functionality is:

ALTER USER|ROLE <name> [[WITH] option[…]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| PASSWORD SET AT '<timestamp>'
| LOCK TIME '<timestamp>'
| STORE PRIOR PASSWORD {'<password>' '<timestamp>} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE command that are supported by Advanced Server, please see the
PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a role, or to change which pre-defined profile is
associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time, and unlock the role at the time
indicated by the PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to specify a date/time when the password associated with the
role will expire. If you omit the AT 'timestamp' keywords, the password will expire immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...] clause to modify the password history, adding the new
password and the time the password was set.

Each login role may only have one profile. To discover the profile that is currently associated with a login role, query the profile column of the
DBA_USERS view.

ParametersParameters

name

The name of the role with which the specified profile will be associated.

password

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 274

https://www.postgresql.org/docs/current/static/sql-commands.html

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value for timestamp , enclose the value in single-quotes.

ExamplesExamples

The following command uses the ALTER USER... PROFILE command to associate a profile named acctg with a user named john :

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLE... PROFILE command to associate a profile named acctg with a user named john :

ALTER ROLE john PROFILE acctg_profile;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 275

11.5.5 Unlocking a Locked Account

A database superuser can use clauses of the ALTER USER|ROLE... command to lock or unlock a role. The syntax is:

ALTER USER|ROLE <name>
 ACCOUNT {LOCK|UNLOCK}
 LOCK TIME '<timestamp>'

Include the ACCOUNT LOCK clause to lock a role immediately; when locked, a role’s LOGIN functionality is disabled. When you specify the ACCOUNT
LOCK clause without the LOCK TIME clause, the state of the role will not change until a superuser uses the ACCOUNT UNLOCK clause to unlock the
role.

Use the ACCOUNT UNLOCK clause to unlock a role.

Use the LOCK TIME 'timestamp' clause to instruct the server to lock the account at the time specified by the given timestamp for the length of time
specified by the PASSWORD_LOCK_TIME parameter of the profile associated with this role.

Combine the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock an account at a specified time until the account is unlocked
by a superuser invoking the ACCOUNT UNLOCK clause.

ParametersParameters

name

The name of the role that is being locked or unlocked.

timestamp

The date and time at which the role will be locked. When specifying a value for timestamp , enclose the value in single-quotes.

NoteNote

This command (available only in Advanced Server) is implemented to support Oracle-styled profile management.

ExamplesExamples

The following example uses the ACCOUNT LOCK clause to lock the role named john . The account will remain locked until the account is unlocked with
the ACCOUNT UNLOCK clause:

ALTER ROLE john ACCOUNT LOCK;

The following example uses the ACCOUNT UNLOCK clause to unlock the role named john :

ALTER USER john ACCOUNT UNLOCK;

The following example uses the LOCK TIME 'timestamp' clause to lock the role named john on September 4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’;

The role will remain locked for the length of time specified by the PASSWORD_LOCK_TIME parameter.

The following example combines the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock the role named john on September

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 276

The following example combines the LOCK TIME 'timestamp' clause and the ACCOUNT LOCK clause to lock the role named john on September
4, 2015:

ALTER ROLE john LOCK TIME ‘September 4 12:00:00 2015’ ACCOUNT LOCK;

The role will remain locked until a database superuser uses the ACCOUNT UNLOCK command to unlock the role.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 277

11.5.6 Creating a New Role Associated with a Profile

A database superuser can use clauses of the CREATE USER|ROLE command to assign a named profile to a role when creating the role, or to specify
profile management details for a role. The command syntax related to profile management functionality is:

CREATE USER|ROLE <name> [[WITH] <option> […]]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| LOCK TIME '<timestamp>'

For information about the administrative clauses of the CREATE USER or CREATE ROLE command that are supported by Advanced Server, see the
PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

CREATE ROLE|USER... PROFILE adds a new role with an associated profile to an Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles created with the CREATE ROLE command are (by default) not login
roles. To create a login account with the CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile management; these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a role, or to change which pre-defined profile is
associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time, and unlock the role at the time
indicated by the PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp' keywords to specify a date/time when the password associated
with the role will expire. If you omit the AT 'timestamp' keywords, the password will expire immediately.

Each login role may only have one profile. To discover the profile that is currently associated with a login role, query the profile column of the
DBA_USERS view.

ParametersParameters

name

The name of the role.

profile_name

The name of the profile associated with the role.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 278

https://www.postgresql.org/docs/current/static/sql-commands.html

timestamp

The date and time at which the clause will be enforced. When specifying a value for timestamp , enclose the value in single-quotes.

ExamplesExamples

The following example uses CREATE USER to create a login role named john who is associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd .

The following example uses CREATE ROLE to create a login role named john who is associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server, using the password 1safepwd .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 279

11.5.7 Backing up Profile Management Functions

A profile may include a PASSWORD_VERIFY_FUNCTION clause that refers to a user-defined function that specifies the behavior enforced by Advanced
Server. Profiles are global objects; they are shared by all of the databases within a cluster. While profiles are global objects, user-defined functions are
database objects.

Invoking pg_dumpall with the –g or –r option will create a script that recreates the definition of any existing profiles, but that does not recreate the
user-defined functions that are referred to by the PASSWORD_VERIFY_FUNCTION clause. You should use the pg_dump utility to explicitly dump (and
later restore) the database in which those functions reside.

The script created by pg_dump will contain a command that includes the clause and function name:

ALTER PROFILE… LIMIT PASSWORD_VERIFY_FUNCTION <function_name>

to associate the restored function with the profile with which it was previously associated.

If the PASSWORD_VERIFY_FUNCTION clause is set to DEFAULT or NULL , the behavior will be replicated by the script generated by the
pg_dumpall –g or pg_dumpall –r command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 280

11.6 Optimizer Hints

When you invoke a DELETE, INSERT, SELECT or UPDATE command, the server generates a set of execution plans; after analyzing those execution
plans, the server selects a plan that will (generally) return the result set in the least amount of time. The server's choice of plan is dependent upon several
factors:

The estimated execution cost of data handling operations.
Parameter values assigned to parameters in the Query Tuning section of the postgresql.conf file.
Column statistics that have been gathered by the ANALYZE command.

As a rule, the query planner will select the least expensive plan. You can use an optimizer hint to influence the server as it selects a query plan. An
optimizer hint is a directive (or multiple directives) embedded in a comment-like syntax that immediately follows a DELETE, INSERT, SELECT or
UPDATE command. Keywords in the comment instruct the server to employ or avoid a specific plan when producing the result set.

SynopsisSynopsis

{ DELETE | INSERT | SELECT | UPDATE } /*+ { <hint> [<comment>] } [...] */
 <statement_body>

{ DELETE | INSERT | SELECT | UPDATE } --+ { <hint> [<comment>] } [...]
 <statement_body>

Optimizer hints may be included in either of the forms shown above. Note that in both forms, a plus sign (+) must immediately follow the /* or --
opening comment symbols, with no intervening space, or the server will not interpret the following tokens as hints.

If you are using the first form, the hint and optional comment may span multiple lines. The second form requires all hints and comments to occupy a single
line; the remainder of the statement must start on a new line.

DescriptionDescription

Please Note:

The database server will always try to use the specified hints if at all possible.
If a planner method parameter is set so as to disable a certain plan type, then this plan will not be used even if it is specified in a hint, unless there
are no other possible options for the planner. Examples of planner method parameters are enable_indexscan, enable_seqscan,
enable_hashjoin, enable_mergejoin , and enable_nestloop . These are all Boolean parameters.
Remember that the hint is embedded within a comment. As a consequence, if the hint is misspelled or if any parameter to a hint such as view, table,
or column name is misspelled, or non-existent in the SQL command, there will be no indication that any sort of error has occurred. No syntax error
will be given and the entire hint is simply ignored.
If an alias is used for a table name in the SQL command, then the alias name, not the original table name, must be used in the hint. For example, in
the command, SELECT /*+ FULL(acct) */ * FROM accounts acct ..., acct , the alias for accounts , must be specified in the
FULL hint, not the table name, accounts .

Use the EXPLAIN command to ensure that the hint is correctly formed and the planner is using the hint. See the Advanced Server documentation set for
information on the EXPLAIN command.

In general, optimizer hints should not be used in production applications (where table data changes throughout the life of the application). By ensuring
that dynamic columns are ANALYZED frequently, the column statistics will be updated to reflect value changes, and the planner will use such information
to produce the least cost plan for any given command execution. Use of optimizer hints defeats the purpose of this process and will result in the same plan
regardless of how the table data changes.

ParametersParameters

hint

An optimizer hint directive.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 281

http://www.enterprisedb.com/docs/en/9.3/pg/sql-analyze.html

comment

A string with additional information. Note that there are restrictions as to what characters may be included in the comment. Generally, comment may
only consist of alphabetic, numeric, the underscore, dollar sign, number sign and space characters. These must also conform to the syntax of an identifier.
Any subsequent hint will be ignored if the comment is not in this form.

statement_body

The remainder of the DELETE, INSERT, SELECT , or UPDATE command.

The following sections describe the optimizer hint directives in more detail.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 282

11.6.1 Default Optimization Modes

There are a number of optimization modes that can be chosen as the default setting for an Advanced Server database cluster. This setting can also be
changed on a per session basis by using the ALTER SESSION command as well as in individual DELETE, SELECT , and UPDATE commands within
an optimizer hint. The configuration parameter that controls these default modes is named OPTIMIZER_MODE .

The following table shows the possible values.

Hint Description

ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved from the result set. This is the default.

FIRST_RO
WS

Optimizes for retrieval of only the first row of the result set.

FIRST_RO
WS_10

Optimizes for retrieval of the first 10 rows of the results set.

FIRST_RO
WS_100

Optimizes for retrieval of the first 100 rows of the result set.

FIRST_RO
WS_1000

Optimizes for retrieval of the first 1000 rows of the result set.

FIRST_RO
WS(n)

Optimizes for retrieval of the first n rows of the result set. This form may not be used as the object of the ALTER SESSION SET
OPTIMIZER_MODE command. It may only be used in the form of a hint in a SQL command.

These optimization modes are based upon the assumption that the client submitting the SQL command is interested in viewing only the first “n” rows of the
result set and will then abandon the remainder of the result set. Resources allocated to the query are adjusted as such.

ExamplesExamples

Alter the current session to optimize for retrieval of the first 10 rows of the result set.

ALTER SESSION SET OPTIMIZER_MODE = FIRST_ROWS_10;

The current value of the OPTIMIZER_MODE parameter can be shown by using the SHOW command. Note that this command is a utility dependent
command. In PSQL, the SHOW command is used as follows:

SHOW OPTIMIZER_MODE;

optimizer_mode

 first_rows_10
(1 row)

The SHOW command, compatible with Oracle databases, has the following syntax:

SHOW PARAMETER OPTIMIZER_MODE;

NAME
--
VALUE
--
optimizer_mode
first_rows_10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 283

The following example shows an optimization mode used in a SELECT command as a hint:

SELECT /*+ FIRST_ROWS(7) */ * FROM emp;

empno| ename | job | mgr | hiredate | sal | comm | deptno
-----+-------+----------+------+--------------------+---------+-------+-------
7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00| 30
7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00| 30
7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 | MARTIN| SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 | KING | PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 | TURNER| SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 | MILLER| CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 284

11.6.2 Access Method Hints

The following hints influence how the optimizer accesses relations to create the result set.

Hint Description

FULL(table) Perform a full sequential scan on table .

INDEX(table [index] [...]) Use index on table to access the relation.

NO_INDEX(table [index]
[...])

Do not use index on table to access the relation.

In addition, the ALL_ROWS, FIRST_ROWS , and FIRST_ROWS(n) hints can be used.

ExamplesExamples

The sample application does not have sufficient data to illustrate the effects of optimizer hints so the remainder of the examples in this section will use a
banking database created by the pgbench application located in the Advanced Server bin subdirectory.

The following steps create a database named, bank , populated by the tables, pgbench_accounts, pgbench_branches, pgbench_tellers ,
and pgbench_history . The –s 20 option specifies a scaling factor of twenty, which results in the creation of twenty branches, each with 100,000
accounts, resulting in a total of 2,000,000 rows in the pgbench_accounts table and twenty rows in the pgbench_branches table. Ten tellers are
assigned to each branch resulting in a total of 200 rows in the pgbench_tellers table.

The following initializes the pgbench application in the bank database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 285

createdb -U enterprisedb bank
CREATE DATABASE

pgbench -i -s 20 -U enterprisedb bank

NOTICE: table "pgbench_history" does not exist, skipping
NOTICE: table "pgbench_tellers" does not exist, skipping
NOTICE: table "pgbench_accounts" does not exist, skipping
NOTICE: table "pgbench_branches" does not exist, skipping
creating tables...
100000 of 2000000 tuples (5%) done (elapsed 0.11 s, remaining 2.10 s)
200000 of 2000000 tuples (10%) done (elapsed 0.22 s, remaining 1.98 s)
300000 of 2000000 tuples (15%) done (elapsed 0.33 s, remaining 1.84 s)
400000 of 2000000 tuples (20%) done (elapsed 0.42 s, remaining 1.67 s)
500000 of 2000000 tuples (25%) done (elapsed 0.52 s, remaining 1.57 s)
600000 of 2000000 tuples (30%) done (elapsed 0.62 s, remaining 1.45 s)
700000 of 2000000 tuples (35%) done (elapsed 0.73 s, remaining 1.35 s)
800000 of 2000000 tuples (40%) done (elapsed 0.87 s, remaining 1.31 s)
900000 of 2000000 tuples (45%) done (elapsed 0.98 s, remaining 1.19 s)
1000000 of 2000000 tuples (50%) done (elapsed 1.09 s, remaining 1.09 s)
1100000 of 2000000 tuples (55%) done (elapsed 1.22 s, remaining 1.00 s)
1200000 of 2000000 tuples (60%) done (elapsed 1.36 s, remaining 0.91 s)
1300000 of 2000000 tuples (65%) done (elapsed 1.51 s, remaining 0.82 s)
1400000 of 2000000 tuples (70%) done (elapsed 1.65 s, remaining 0.71 s)
1500000 of 2000000 tuples (75%) done (elapsed 1.78 s, remaining 0.59 s)
1600000 of 2000000 tuples (80%) done (elapsed 1.93 s, remaining 0.48 s)
1700000 of 2000000 tuples (85%) done (elapsed 2.10 s, remaining 0.37 s)
1800000 of 2000000 tuples (90%) done (elapsed 2.23 s, remaining 0.25 s)
1900000 of 2000000 tuples (95%) done (elapsed 2.37 s, remaining 0.12 s)
2000000 of 2000000 tuples (100%) done (elapsed 2.48 s, remaining 0.00 s)
vacuum...
set primary keys...
done.

A total of 500,00 transactions are then processed. This will populate the pgbench_history table with 500,000 rows.

pgbench -U enterprisedb -t 500000 bank

starting vacuum...end.
transaction type: <builtin: TPC-B (sort of)>
scaling factor: 20
query mode: simple
number of clients: 1
number of threads: 1
number of transactions per client: 500000
number of transactions actually processed: 500000/500000
latency average: 0.000 ms
tps = 1464.338375 (including connections establishing)
tps = 1464.350357 (excluding connections establishing)

The table definitions are shown below:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 286

\d pgbench_accounts

 Table "public.pgbench_accounts"
 Column | Type | Modifiers
----------+---------------+-----------
 aid | integer | not null
 bid | integer |
 abalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)

\d pgbench_branches

 Table "public.pgbench_branches"
 Column | Type | Modifiers
----------+---------------+-----------
 bid | integer | not null
 bbalance | integer |
 filler | character(88) |
Indexes:
 "pgbench_branches_pkey" PRIMARY KEY, btree (bid)

\d pgbench_tellers

 Table "public.pgbench_tellers"
 Column | Type | Modifiers
----------+---------------+-----------
 tid | integer | not null
 bid | integer |
 tbalance | integer |
 filler | character(84) |
Indexes:
 "pgbench_tellers_pkey" PRIMARY KEY, btree (tid)

\d pgbench_history

 Table "public.pgbench_history"
 Column | Type | Modifiers
--------+-----------------------------+-----------
 tid | integer |
 bid | integer |
 aid | integer |
 delta | integer |
 mtime | timestamp without time zone |
 filler | character(22) |

The EXPLAIN command shows the plan selected by the query planner. In the following example, aid is the primary key column, so an indexed search is
used on index, pgbench_accounts_pkey .

EXPLAIN SELECT * FROM pgbench_accounts WHERE aid = 100;

 QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45
rows=1 width=97)
 Index Cond: (aid = 100)
(2 rows)

The FULL hint is used to force a full sequential scan instead of using the index as shown below:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 287

The FULL hint is used to force a full sequential scan instead of using the index as shown below:

EXPLAIN SELECT /*+ FULL(pgbench_accounts) */ * FROM pgbench_accounts WHERE
aid = 100;

 QUERY PLAN

Seq Scan on pgbench_accounts (cost=0.00..58781.69 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

The NO_INDEX hint forces a parallel sequential scan instead of use of the index as shown below:

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ *
FROM pgbench_accounts WHERE aid = 100;

 QUERY PLAN

 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1
 width=97)
 Filter: (aid = 100)
(4 rows)

In addition to using the EXPLAIN command as shown in the prior examples, more detailed information regarding whether or not a hint was used by the
planner can be obtained by setting the trace_hints configuration parameter as follows:

SET trace_hints TO on;

The SELECT command with the NO_INDEX hint is repeated below to illustrate the additional information produced when the trace_hints
configuration parameters is set.

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_pkey) */ *
FROM pgbench_accounts WHERE aid = 100;

INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]
rejected due to NO_INDEX hint.
 QUERY PLAN

 Gather (cost=1000.00..45094.80 rows=1 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..44094.70 rows=1
width=97)
 Filter: (aid = 100)
(4 rows)

Note that if a hint is ignored, the INFO: [HINTS] line will not appear. This may be an indication that there was a syntax error or some other misspelling
in the hint as shown in the following example where the index name is misspelled.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 288

EXPLAIN SELECT /*+ NO_INDEX(pgbench_accounts pgbench_accounts_xxx) */ * FROM
pgbench_accounts WHERE aid = 100;

 QUERY PLAN

Index Scan using pgbench_accounts_pkey on pgbench_accounts (cost=0.43..8.45
rows=1 width=97)
 Index Cond: (aid = 100)
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 289

11.6.3 Specifying a Join Order

Include the ORDERED directive to instruct the query optimizer to join tables in the order in which they are listed in the FROM clause. If you do not include
the ORDERED keyword, the query optimizer will choose the order in which to join the tables.

For example, the following command allows the optimizer to choose the order in which to join the tables listed in the FROM clause:

SELECT e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

The following command instructs the optimizer to join the tables in the ordered specified:

SELECT /*+ ORDERED */ e.ename, d.dname, h.startdate
 FROM emp e, dept d, jobhist h
 WHERE d.deptno = e.deptno
 AND h.empno = e.empno;

In the ORDERED version of the command, Advanced Server will first join emp e with dept d before joining the results with jobhist h . Without
the ORDERED directive, the join order is selected by the query optimizer.

NoteNote

The ORDERED directive does not work for Oracle-style outer joins (those joins that contain a '+' sign).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 290

11.6.4 Joining Relations Hints

When two tables are to be joined, there are three possible plans that may be used to perform the join.

Nested Loop Join – A table is scanned once for every row in the other joined table.
Merge Sort Join – Each table is sorted on the join attributes before the join starts. The two tables are then scanned in parallel and the matching rows
are combined to form the join rows.
Hash Join – A table is scanned and its join attributes are loaded into a hash table using its join attributes as hash keys. The other joined table is then
scanned and its join attributes are used as hash keys to locate the matching rows from the first table.

The following table lists the optimizer hints that can be used to influence the planner to use one type of join plan over another.

Hint Description

USE_HASH(table [...]) Use a hash join for table .

NO_USE_HASH(table [...]) Do not use a hash join for table .

USE_MERGE(table [...]) Use a merge sort join for table .

NO_USE_MERGE(table
[...])

Do not use a merge sort join for table .

USE_NL(table [...]) Use a nested loop join for table .

NO_USE_NL(table [...]) Do not use a nested loop join for table .

ExamplesExamples

In the following example, the USE_HASH hint is used for a join on the pgbench_branches and pgbench_accounts tables. The query plan shows
that a hash join is used by creating a hash table from the join attribute of the pgbench_branches table.

EXPLAIN SELECT /*+ USE_HASH(b) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Hash Join (cost=21.45..81463.06 rows=2014215 width=12)
 Hash Cond: (a.bid = b.bid)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
(5 rows)

Next, the NO_USE_HASH(a b) hint forces the planner to use an approach other than hash tables. The result is a merge join.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 291

EXPLAIN SELECT /*+ NO_USE_HASH(a b) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
(9 rows)

Finally, the USE_MERGE hint forces the planner to use a merge join.

EXPLAIN SELECT /*+ USE_MERGE(a) */ b.bid, a.aid, abalance FROM
pgbench_branches b, pgbench_accounts a WHERE b.bid = a.bid;

 QUERY PLAN

 Merge Join (cost=333526.08..368774.94 rows=2014215 width=12)
 Merge Cond: (b.bid = a.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=333504.45..343575.53 rows=2014215 width=12)
 -> Sort (cost=333504.45..338539.99 rows=2014215 width=12)
 Sort Key: a.bid
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=12)
(9 rows)

In this three-table join example, the planner first performs a hash join on the pgbench_branches and pgbench_history tables, then finally
performs a hash join of the result with the pgbench_accounts table.

EXPLAIN SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history h, pgbench_branches b,
pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

This plan is altered by using hints to force a combination of a merge sort join and a hash join.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 292

EXPLAIN SELECT /*+ USE_MERGE(h b) USE_HASH(a) */ h.mtime, h.delta, b.bid, a.aid FROM
pgbench_history h, pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid = a.aid;

 QUERY PLAN

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 293

11.6.5 Global Hints

Thus far, hints have been applied directly to tables that are referenced in the SQL command. It is also possible to apply hints to tables that appear in a view
when the view is referenced in the SQL command. The hint does not appear in the view, itself, but rather in the SQL command that references the view.

When specifying a hint that is to apply to a table within a view, the view and table names are given in dot notation within the hint argument list.

SynopsisSynopsis

<hint>(<view>.<table>)

ParametersParameters

hint

Any of the hints in table Access Method Hints, Joining Relations Hints.

view

The name of the view containing table .

table

The table on which the hint is to be applied.

ExamplesExamples

A view named, tx , is created from the three-table join of pgbench_history, pgbench_branches , and pgbench_accounts shown in the final
example of Joining Relations Hints.

CREATE VIEW tx AS SELECT h.mtime, h.delta, b.bid, a.aid FROM pgbench_history
h, pgbench_branches b, pgbench_accounts a WHERE h.bid = b.bid AND h.aid =
a.aid;

The query plan produced by selecting from this view is shown below:

EXPLAIN SELECT * FROM tx;

 QUERY PLAN

 Hash Join (cost=86814.29..123103.29 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Hash Join (cost=21.45..15081.45 rows=500000 width=20)
 Hash Cond: (h.bid = b.bid)
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=21.20..21.20 rows=20 width=4)
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(9 rows)

The same hints that were applied to this join at the end of Joining Relations Hints can be applied to the view as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 294

EXPLAIN SELECT /*+ USE_MERGE(tx.h tx.b) USE_HASH(tx.a) */ * FROM tx;

 QUERY PLAN

 Hash Join (cost=152583.39..182562.49 rows=500000 width=20)
 Hash Cond: (h.aid = a.aid)
 -> Merge Join (cost=65790.55..74540.65 rows=500000 width=20)
 Merge Cond: (b.bid = h.bid)
 -> Sort (cost=21.63..21.68 rows=20 width=4)
 Sort Key: b.bid
 -> Seq Scan on pgbench_branches b (cost=0.00..21.20 rows=20 width=4)
 -> Materialize (cost=65768.92..68268.92 rows=500000 width=20)
 -> Sort (cost=65768.92..67018.92 rows=500000 width=20)
 Sort Key: h.bid
 -> Seq Scan on pgbench_history h (cost=0.00..8185.00 rows=500000 width=20)
 -> Hash (cost=53746.15..53746.15 rows=2014215 width=4)
 -> Seq Scan on pgbench_accounts a (cost=0.00..53746.15 rows=2014215 width=4)
(13 rows)

In addition to applying hints to tables within stored views, hints can be applied to tables within subqueries as illustrated by the following example. In this
query on the sample application emp table, employees and their managers are listed by joining the emp table with a subquery of the emp table
identified by the alias, b .

SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename" FROM emp a,
(SELECT * FROM emp) b WHERE a.mgr = b.empno;

 empno | ename | mgr empno | mgr ename
-------+--------+-----------+-----------
 7369 | SMITH | 7902 | FORD
 7499 | ALLEN | 7698 | BLAKE
 7521 | WARD | 7698 | BLAKE
 7566 | JONES | 7839 | KING
 7654 | MARTIN | 7698 | BLAKE
 7698 | BLAKE | 7839 | KING
 7782 | CLARK | 7839 | KING
 7788 | SCOTT | 7566 | JONES
 7844 | TURNER | 7698 | BLAKE
 7876 | ADAMS | 7788 | SCOTT
 7900 | JAMES | 7698 | BLAKE
 7902 | FORD | 7566 | JONES
 7934 | MILLER | 7782 | CLARK
(13 rows)

The plan chosen by the query planner is shown below:

EXPLAIN SELECT a.empno, a.ename, b.empno "mgr empno", b.ename "mgr ename"
FROM emp a, (SELECT * FROM emp) b WHERE a.mgr = b.empno;

 QUERY PLAN

 Hash Join (cost=1.32..2.64 rows=13 width=22)
 Hash Cond: (a.mgr = emp.empno)
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Hash (cost=1.14..1.14 rows=14 width=11)
 -> Seq Scan on emp (cost=0.00..1.14 rows=14 width=11)
(5 rows)

A hint can be applied to the emp table within the subquery to perform an index scan on index, emp_pk , instead of a table scan. Note the difference in the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 295

A hint can be applied to the emp table within the subquery to perform an index scan on index, emp_pk , instead of a table scan. Note the difference in the
query plans.

EXPLAIN SELECT /*+ INDEX(b.emp emp_pk) */ a.empno, a.ename, b.empno "mgr
empno", b.ename "mgr ename" FROM emp a, (SELECT * FROM emp) b WHERE a.mgr =
b.empno;

 QUERY PLAN

 Merge Join (cost=4.17..13.11 rows=13 width=22)
 Merge Cond: (a.mgr = emp.empno)
 -> Sort (cost=1.41..1.44 rows=14 width=16)
 Sort Key: a.mgr
 -> Seq Scan on emp a (cost=0.00..1.14 rows=14 width=16)
 -> Index Scan using emp_pk on emp (cost=0.14..12.35 rows=14 width=11)
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 296

11.6.6 Using the APPEND Optimizer Hint

By default, Advanced Server will add new data into the first available free-space in a table (vacated by vacuumed records). Include the APPEND directive
after an INSERT or SELECT command to instruct the server to bypass mid-table free space, and affix new rows to the end of the table. This optimizer
hint can be particularly useful when bulk loading data.

The syntax is:

/*+APPEND*/

For example, the following command, compatible with Oracle databases, instructs the server to append the data in the INSERT statement to the end of
the sales table:

INSERT /*+APPEND*/ INTO sales VALUES
(10, 10, '01-Mar-2011', 10, 'OR');

Note that Advanced Server supports the APPEND hint when adding multiple rows in a single INSERT statement:

INSERT /*+APPEND*/ INTO sales VALUES
(20, 20, '01-Aug-2011', 20, 'NY'),
(30, 30, '01-Feb-2011', 30, 'FL'),
(40, 40, '01-Nov-2011', 40, 'TX');

The APPEND hint can also be included in the SELECT clause of an INSERT INTO statement:

INSERT INTO sales_history SELECT /*+APPEND*/ FROM sales;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 297

11.6.7 Parallelism Hints

The PARALLEL optimizer hint is used to force parallel scanning.

The NO_PARALLEL optimizer hint prevents usage of a parallel scan.

SynopsisSynopsis

PARALLEL (<table> [<parallel_degree> | DEFAULT])

NO_PARALLEL (<table>)

DescriptionDescription

Parallel scanning is the usage of multiple background workers to simultaneously perform a scan of a table (that is, in parallel) for a given query. This
process provides performance improvement over other methods such as the sequential scan.

ParametersParameters

table

The table to which the parallel hint is to be applied.

parallel_degree | DEFAULT

parallel_degree is a positive integer that specifies the desired number of workers to use for a parallel scan. If specified, the lesser of
parallel_degree and configuration parameter max_parallel_workers_per_gather is used as the planned number of workers. For

information on the max_parallel_workers_per_gather parameter, see Asynchronous Behavior located under Resource
Consumption in the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/runtime-config-resource.html

If DEFAULT is specified, then the maximum possible parallel degree is used.

If both parallel_degree and DEFAULT are omitted, then the query optimizer determines the parallel degree. In this case, if table has been set
with the parallel_workers storage parameter, then this value is used as the parallel degree, otherwise the optimizer uses the maximum possible
parallel degree as if DEFAULT was specified. For information on the parallel_workers storage parameter, see the Storage Parameters
located under CREATE TABLE in the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-createtable.html

Regardless of the circumstance, the parallel degree never exceeds the setting of configuration parameter max_parallel_workers_per_gather .

ExamplesExamples

The following configuration parameter settings are in effect:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 298

https://www.postgresql.org/docs/current/static/runtime-config-resource.html
https://www.postgresql.org/docs/current/static/sql-createtable.html

SHOW max_worker_processes;

 max_worker_processes

 8
(1 row)

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 2
(1 row)

The following example shows the default scan on table pgbench_accounts . Note that a sequential scan is shown in the query plan.

SET trace_hints TO on;

EXPLAIN SELECT * FROM pgbench_accounts;

 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

The following example uses the PARALLEL hint. In the query plan, the Gather node, which launches the background workers, indicates that two workers
are planned to be used.

NoteNote

If trace_hints is set to on , the INFO: [HINTS] lines appear stating that PARALLEL has been accepted for pgbench_accounts as
well as other hint information. For the remaining examples, these lines will not be displayed as they generally show the same output (that is,
trace_hints has been reset to off).

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

INFO: [HINTS] SeqScan of [pgbench_accounts] rejected due to PARALLEL hint.
INFO: [HINTS] PARALLEL on [pgbench_accounts] accepted.
INFO: [HINTS] Index Scan of [pgbench_accounts].[pgbench_accounts_pkey]
rejected due to PARALLEL hint.
 QUERY PLAN

 Gather (cost=1000.00..244418.06 rows=2014215 width=97)
 Workers Planned: 2
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..41996.56 rows=839256 width=97)
(3 rows)

Now, the max_parallel_workers_per_gather setting is increased:

SET max_parallel_workers_per_gather TO 6;

SHOW max_parallel_workers_per_gather;

 max_parallel_workers_per_gather

 6
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 299

The same query on pgbench_accounts is issued again with no parallel degree specification in the PARALLEL hint. Note that the number of planned
workers has increased to 4 as determined by the optimizer.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..241061.04 rows=2014215 width=97)
 Workers Planned: 4
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..38639.54 rows=503554 width=97)
(3 rows)

Now, a value of 6 is specified for the parallel degree parameter of the PARALLEL hint. The planned number of workers is now returned as this specified
value:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts 6) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=97)
(3 rows)

The same query is now issued with the DEFAULT setting for the parallel degree. The results indicate that the maximum allowable number of workers is
planned.

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts DEFAULT) */ * FROM
pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..239382.52 rows=2014215 width=97)
 Workers Planned: 6
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..36961.03 rows=335702 width=97)
(3 rows)

Table pgbench_accounts is now altered so that the parallel_workers storage parameter is set to 3 .

NoteNote

This format of the ALTER TABLE command to set the parallel_workers parameter is not compatible with Oracle databases.

The parallel_workers setting is shown by the PSQL \d+ command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 300

ALTER TABLE pgbench_accounts SET (parallel_workers=3);

\d+ pgbench_accounts
 Table "public.pgbench_accounts"
 Column | Type | Modifiers | Storage | Stats target | Description
---------+---------------+-----------+----------+--------------+------------
-
 aid | integer | not null | plain | |
 bid | integer | | plain | |
 abalance| integer | | plain | |
 filler | character(84) | | extended | |
Indexes:
 "pgbench_accounts_pkey" PRIMARY KEY, btree (aid)
Options: fillfactor=100, parallel_workers=3

Now, when the PARALLEL hint is given with no parallel degree, the resulting number of planned workers is the value from the parallel_workers
parameter:

EXPLAIN SELECT /*+ PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;

 QUERY PLAN

 Gather (cost=1000.00..242522.97 rows=2014215 width=97)
 Workers Planned: 3
 -> Parallel Seq Scan on pgbench_accounts (cost=0.00..40101.47 rows=649747 width=97)
(3 rows)

Specifying a parallel degree value or DEFAULT in the PARALLEL hint overrides the parallel_workers setting.

The following example shows the NO_PARALLEL hint. Note that with trace_hints set to on , the INFO: [HINTS] message states that the
parallel scan was rejected due to the NO_PARALLEL hint.

EXPLAIN SELECT /*+ NO_PARALLEL(pgbench_accounts) */ * FROM pgbench_accounts;
INFO: [HINTS] Parallel SeqScan of [pgbench_accounts] rejected due to
NO_PARALLEL hint.
 QUERY PLAN

 Seq Scan on pgbench_accounts (cost=0.00..53746.15 rows=2014215 width=97)
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 301

11.6.8 Conflicting Hints

If a command includes two or more conflicting hints, the server will ignore the contradictory hints. The following table lists hints that are contradictory to
each other.

Hint Conflicting Hint

ALL_ROWS FIRST_ROWS - all formats

FULL(table)

INDEX(table [index])

PARALLEL(table [degree
])

INDEX(table)

FULL(table)

NO_INDEX(table)

PARALLEL(table [degree
])

INDEX(table index)

FULL(table)

NO_INDEX(table index)

PARALLEL(table [degree
])

PARALLEL(table [degree
])

FULL(table)

INDEX(table)

NO_PARALLEL(table)

USE_HASH(table) NO_USE_HASH(table)

USE_MERGE(table) NO_USE_MERGE(table)

USE_NL(table) NO_USE_NL(table)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 302

11.7 dblink_ora

dblink_ora enables you to issue arbitrary queries to a remote Oracle server. It provides an OCI-based database link that allows you to SELECT, INSERT,
UPDATE or DELETE data stored on an Oracle system from within Advanced Server.

Connecting to an Oracle DatabaseConnecting to an Oracle Database

To enable Oracle connectivity, download Oracle's freely available OCI drivers from their website, presently at:
http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

For Linux, if the Oracle instant client that you've downloaded does not include the libclntsh.so library, you must create a symbolic link named
libclntsh.so that points to the downloaded version. Navigate to the instant client directory and execute the following command:

ln -s libclntsh.so.<version> libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

Before creating a link to an Oracle server, you must direct Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH
environment variable on Linux (or PATH on Windows) to the lib directory of the Oracle client installation directory.

Alternatively, you can also set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the
oracle_home configuration parameter will override the LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in

Windows.

NoteNote

The oracle_home configuration parameter should provide the correct path to the Oracle client i.e. OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in
Windows for lib_directory .

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server,

on Linux, using the systemctl command or pg_ctl services.

on Windows, from the Windows Services console.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 303

http://www.oracle.com/technetwork/database/database-technologies/instant-client/overview/index.html

11.7.1 dblink_ora Functions and Procedures

dblink_ora supports the following functions and procedures.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 304

11.7.1.1 dblink_ora_connect()

The dblink_ora_connect() function establishes a connection to an Oracle database with user-specified connection information. The function
comes in two forms; the signature of the first form is:

dblink_ora_connect(<conn_name>, <server_name>, <service_name>, <user_name>,
<password>, <port>, <asDBA>)

Where:Where:

conn_name specifies the name of the link.

server_name specifies the name of the host.

service_name specifies the name of the service.

user_name specifies the name used to connect to the server.

password specifies the password associated with the user name.

port specifies the port number.

asDBA is True if you wish to request SYSDBA privileges on the Oracle server. This parameter is optional; if omitted, the default value is
FALSE .

The first form of dblink_ora_connect() returns a TEXT value.

The signature of the second form of the dblink_ora_connect() function is:

dblink_ora_connect(<foreign_server_name>, <asDBA>)

Where:Where:

foreign_server_name specifies the name of a foreign server.

asDBA is True if you wish to request SYSDBA privileges on the Oracle server. This parameter is optional; if omitted, the default value is
FALSE .

The second form of the dblink_ora_connect() function allows you to use the connection properties of a pre-defined foreign server when
establishing a connection to the server.

Before invoking the second form of the dblink_ora_connect() function, use the CREATE SERVER command to store the connection properties for
the link to a system table. When you call the dblink_ora_connect() function, substitute the server name specified in the CREATE SERVER
command for the name of the link.

The second form of dblink_ora_connect() returns a TEXT value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 305

11.7.1.2 dblink_ora_status()

The dblink_ora_status() function returns the database connection status. The signature is:

dblink_ora_status(<conn_name>)

Where:Where:

conn_name specifies the name of the link.

If the specified connection is active, the function returns a TEXT value of OK .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 306

11.7.1.3 dblink_ora_disconnect()

The dblink_ora_disconnect() function closes a database connection. The signature is:

dblink_ora_disconnect(<conn_name>)

Where:Where:

conn_name specifies the name of the link.

The function returns a TEXT value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 307

11.7.1.4 dblink_ora_record()

The dblink_ora_record() function retrieves information from a database. The signature is:

dblink_ora_record(<conn_name>, <query_text>)

Where:Where:

conn_name specifies the name of the link.

query_text specifies the text of the SQL SELECT statement that will be invoked on the Oracle server.

The function returns a SETOF record.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 308

11.7.1.5 dblink_ora_call()

The dblink_ora_call() function executes a non- SELECT statement on an Oracle database and returns a result set. The signature is:

dblink_ora_call(<conn_name>, <command>, <iterations>)

Where:Where:

conn_name specifies the name of the link.

command specifies the text of the SQL statement that will be invoked on the Oracle server.

iterations specifies the number of times the statement is executed.

The function returns a SETOF record.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 309

11.7.1.6 dblink_ora_exec()

The dblink_ora_exec() procedure executes a DML or DDL statement in the remote database. The signature is:

dblink_ora_exec(<conn_name>, <command>)

Where:Where:

conn_name specifies the name of the link.

command specifies the text of the INSERT, UPDATE , or DELETE SQL statement that will be invoked on the Oracle server.

The function returns a VOID .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 310

11.7.1.7 dblink_ora_copy()

The dblink_ora_copy() function copies an Oracle table to an EDB table. The dblink_ora_copy() function returns a BIGINT value that
represents the number of rows copied. The signature is:

dblink_ora_copy(<conn_name>, <command>, <schema_name>, <table_name>,
<truncate>, <count>)

Where:Where:

conn_name specifies the name of the link.

command specifies the text of the SQL SELECT statement that will be invoked on the Oracle server.

schema_name specifies the name of the target schema.

table_name specifies the name of the target table.

truncate specifies if the server should TRUNCATE the table prior to copying; specify TRUE to indicate that the server should TRUNCATE the
table. truncate is optional; if omitted, the value is FALSE .

count instructs the server to report status information every n record, where n is the number specified. During the execution of the function,
Advanced Server raises a notice of severity INFO with each iteration of the count. For example, if FeedbackCount is 10, dblink_ora_copy()
raises a notice every 10 records. count is optional; if omitted, the value is 0 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 311

11.7.2 Calling dblink_ora Functions

The following command establishes a connection using the dblink_ora_connect() function:

SELECT dblink_ora_connect('acctg', 'localhost', 'xe', 'hr', 'pwd', 1521);

The example connects to a service named xe running on port 1521 (on the localhost) with a user name of hr and a password of pwd . You can
use the connection name acctg to refer to this connection when calling other dblink_ora functions.

The following command uses the dblink_ora_copy() function over a connection named edb_conn to copy the empid and deptno columns
from a table (on an Oracle server) named ora_acctg to a table located in the public schema on an instance of Advanced Server named as_acctg .
The TRUNCATE option is enforced, and a feedback count of 3 is specified:

edb=# SELECT dblink_ora_copy('edb_conn','select empid, deptno FROM
ora_acctg', 'public', 'as_acctg', true, 3);

INFO: Row: 0
INFO: Row: 3
INFO: Row: 6
INFO: Row: 9
INFO: Row: 12

 dblink_ora_copy

 12

(1 row)

The following SELECT statement uses dblink_ora_record() function and the acctg connection to retrieve information from the Oracle server:

SELECT * FROM dblink_ora_record('acctg', 'SELECT first_name from employees') AS t1(id VARCHAR);

The command retrieves a list that includes all of the entries in the first_name column of the employees table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 312

11.8 Open Client Library

The Open Client Library provides application interoperability with the Oracle Call Interface – an application that was formerly “locked in” can now work with
either an EDB Postgres Advanced Server or an Oracle database with minimal to no changes to the application code. The EDB implementation of the Open
Client Library is written in C.

The following diagram compares the Open Client Library and Oracle Call Interface application stacks.

For detailed usage information about the Open Client Library and the supported functions, see EDB OCL Connector.

NoteNote

EDB does not support use of the Open Client Library with Oracle Real Application Clusters (RAC) and Oracle Exadata; the aforementioned Oracle
products have not been evaluated nor certified with this EDB product.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 313

https://www.enterprisedb.com/docs/ocl_connector/latest/

11.9 Oracle Catalog Views

The Oracle Catalog Views provide information about database objects in a manner compatible with the Oracle data dictionary views. Information about the
supported views is now available in the Database Compatibility for Oracle Developers Catalog Views Guide, available at:

https://www.enterprisedb.com/docs/epas/latest/epas_compat_cat_views/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 314

https://www.enterprisedb.com/docs/epas/latest/epas_compat_cat_views/

11.10 Tools and Utilities

Compatible tools and utility programs can allow a developer to work with Advanced Server in a familiar environment. The tools supported by Advanced
Server include:

EDB*Plus
EDB*Loader
EDB*Wrap
The Dynamic Runtime Instrumentation Tools Architecture (DRITA)

For detailed information about the functionality supported by EDB Postgres Advanced Server, see Tools, utilities, and components.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 315

11.11 ECPGPlus

EDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus. ECPGPlus allows you to include embedded SQL commands in C applications;
when you use ECPGPlus to compile an application that contains embedded SQL commands, the SQL code is syntax-checked and translated into C.

ECPGPlus supports Pro*C compatible syntax in C programs when connected to an Advanced Server database. ECPGPlus supports:

Oracle Dynamic SQL – Method 4 (ODS-M4).
Pro*C compatible anonymous blocks.
A CALL statement compatible with Oracle databases.

As part of ECPGPlus' Pro*C compatibility, you do not need to include the BEGIN DECLARE SECTION and END DECLARE SECTION directives.

For more information about using ECPGPlus, see the EDB Postgres Advanced Server ECPG Connector Guide available from the EDB website at:

https://www.enterprisedb.com/docs/epas/latest/ecpgplus_guide/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 316

https://www.enterprisedb.com/docs/epas/latest/ecpgplus_guide/

11.12 System Catalog Tables

The system catalog tables contain definitions of database objects that are available to Advanced Server; the layout of the system tables is subject to
change. If you are writing an application that depends on information stored in the system tables, it would be prudent to use an existing catalog view, or
create a catalog view to isolate the application from changes to the system table.

For detailed information about the system catalog tables, see the Database Compatibility for Oracle Developers Catalog Views Guide, available at:

https://www.enterprisedb.com/docs/epas/latest/epas_compat_cat_views/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 317

https://www.enterprisedb.com/docs/epas/latest/epas_compat_cat_views/

12 Database Compatibility for Oracle Developers Reference Guide

Database Compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server (Advanced
Server) environment with minimal or no changes to the application code.

This guide provides reference material about the compatible data types supported by Advanced Server. Reference information about:

Compatible SQL Language syntax is provided in the Database Compatibility for Oracle Developers SQL Guide.
Compatible Catalog Views is provided in the Database Compatibility for Oracle Developers Catalog Views Guide.

Developing an application that is compatible with Oracle databases in the Advanced Server requires special attention to which features are used in the
construction of the application. For example, developing a compatible application means selecting:

Data types to define the application’s database tables that are compatible with Oracle databases
SQL statements that are compatible with Oracle SQL
System and built-in functions for use in SQL statements and procedural logic that are compatible with Oracle databases
Stored Procedure Language (SPL) to create database server-side application logic for stored procedures, functions, triggers, and packages
System catalog views that are compatible with Oracle’s data dictionary

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 318

12.1 The SQL Language

The following sections describe the subset of the Advanced Server SQL language compatible with Oracle databases. The following SQL syntax, data types,
and functions work in both EDB Postgres Advanced Server and Oracle.

The Advanced Server documentation set includes syntax and commands for extended functionality (functionality that does not provide database
compatibility for Oracle or support Oracle-styled applications) that is not included in this guide.

This section is organized into the following sections:

General discussion of Advanced Server SQL syntax and language elements
Data types
Built-in functions

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 319

12.1.1 SQL Syntax

This section describes the general syntax of SQL. It forms the foundation for understanding the following chapters that include detail about how the SQL
commands are applied to define and modify data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 320

12.1.1.1 Lexical Structure

SQL input consists of a sequence of commands. A command is composed of a sequence of tokens, terminated by a semicolon (;). The end of the input
stream also terminates a command. Which tokens are valid depends on the syntax of the particular command.

A token can be a key word, an identifier, a quoted identifier, a literal (or constant), or a special character symbol. Tokens are normally separated by
whitespace (space, tab, new line), but need not be if there is no ambiguity (which is generally only the case if a special character is adjacent to some other
token type).

Additionally, comments can occur in SQL input. They are not tokens -they are effectively equivalent to whitespace.

For example, the following is (syntactically) valid SQL input:

SELECT * FROM MY_TABLE;
UPDATE MY_TABLE SET A = 5;
INSERT INTO MY_TABLE VALUES (3, 'hi there');

This is a sequence of three commands, one per line (although this is not required; more than one command can be on a line, and commands can usually be
split across lines).

The SQL syntax is not very consistent regarding what tokens identify commands and which are operands or parameters. The first few tokens are generally
the command name, so in the above example we would usually speak of a SELECT , an UPDATE , and an INSERT command. But for instance the
UPDATE command always requires a SET token to appear in a certain position, and this particular variation of INSERT also requires a VALUES token

in order to be complete. The precise syntax rules for each command are described in Database Compatibility for Oracle Developers SQL Guide.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 321

12.1.1.2 Identifiers and Key Words

Tokens such as SELECT , UPDATE , or VALUES in the example above are examples of key words, that is, words that have a fixed meaning in the SQL
language. The tokens MY_TABLE and A are examples of identifiers. They identify names of tables, columns, or other database objects, depending on the
command they are used in. Therefore they are sometimes simply called, “names”. Key words and identifiers have the same lexical structure, meaning that
one cannot know whether a token is an identifier or a key word without knowing the language.

SQL identifiers and key words must begin with a letter (a-z or A-Z). Subsequent characters in an identifier or key word can be letters, underscores,
digits (0-9), dollar signs ($), or number signs (#).

Identifier and key word names are case insensitive. Therefore

UPDATE MY_TABLE SET A = 5;

can equivalently be written as:

uPDaTE my_TabLE SeT a = 5;

A convention often used is to write key words in upper case and names in lower case, e.g.,

UPDATE my_table SET a = 5;

There is a second kind of identifier: the delimited identifier or quoted identifier. It is formed by enclosing an arbitrary sequence of characters in double-
quotes ("). A delimited identifier is always an identifier, never a key word. So "select" could be used to refer to a column or table named "select" ,
whereas an unquoted select would be taken as a key word and would therefore provoke a parse error when used where a table or column name is expected.
The example can be written with quoted identifiers like this:

UPDATE "my_table" SET "a" = 5;

Quoted identifiers can contain any character, except the character with the numeric code zero.

To include a double quote, use two double quotes. This allows you to construct table or column names that would otherwise not be possible (such as ones
containing spaces or ampersands). The length limitation still applies.

Quoting an identifier also makes it case-sensitive, whereas unquoted names are always folded to lower case. For example, the identifiers FOO , foo , and
"foo" are considered the same by Advanced Server, but "Foo" and "FOO" are different from these three and each other. The folding of unquoted

names to lower case is not compatible with Oracle databases. In Oracle syntax, unquoted names are folded to upper case: for example, foo is equivalent
to "FOO" not "foo" . If you want to write portable applications you are advised to always quote a particular name or never quote it.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 322

12.1.1.3 Constants

The kinds of implicitly-typed constants in Advanced Server are strings and numbers. Constants can also be specified with explicit types, which can enable
more accurate representation and more efficient handling by the system. These alternatives are discussed in the following subsections.

String Constants

A string constant in SQL is an arbitrary sequence of characters bounded by single quotes (') , for example 'This is a string' . To include a
single-quote character within a string constant, write two adjacent single quotes, e.g. 'Dianne''s horse' . Note that this is not the same as a double-
quote character (") .

Numeric Constants

Numeric constants are accepted in these general forms:

digits
digits.[digits][e[+-]digits]
[digits].digits[e[+-]digits]
digitse[+-]digits

where digits is one or more decimal digits (0 through 9). At least one digit must be before or after the decimal point, if one is used. At least one digit
must follow the exponent marker (e) , if one is present. There may not be any spaces or other characters embedded in the constant. Note that any leading
plus or minus sign is not actually considered part of the constant; it is an operator applied to the constant.

These are some examples of valid numeric constants:

42
3.5
4.
.001
5e2
1.925e-3

A numeric constant that contains neither a decimal point nor an exponent is initially presumed to be type INTEGER if its value fits in type INTEGER (32
bits); otherwise it is presumed to be type BIGINT if its value fits in type BIGINT (64 bits); otherwise it is taken to be type NUMBER . Constants that
contain decimal points and/or exponents are always initially presumed to be type NUMBER .

The initially assigned data type of a numeric constant is just a starting point for the type resolution algorithms. In most cases the constant will be
automatically coerced to the most appropriate type depending on context. When necessary, you can force a numeric value to be interpreted as a specific
data type by casting it as described in the following section.

Constants of Other Types

CASTCAST

A constant of an arbitrary type can be entered using the following notation:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 323

CAST('string' AS type)

The string constant’s text is passed to the input conversion routine for the type called type . The result is a constant of the indicated type. The explicit type
cast may be omitted if there is no ambiguity as to the type the constant must be (for example, when it is assigned directly to a table column), in which case it
is automatically coerced.

CAST can also be used to specify runtime type conversions of arbitrary expressions.

CAST (MULTISET)CAST (MULTISET)

MULTISET is an extension to CAST that converts subquery results into a nested table type. The synopsis is:

CAST (MULTISET (< subquery >) AS < datatype >)

Where subquery is a query returning one or more rows and datatype is a nested table type.

CAST(MULTISET) is used to store a collection of data in a table.

ExampleExample

The following example demonstrates using MULTISET :

edb=# CREATE OR REPLACE TYPE project_table_t AS TABLE OF VARCHAR2(25);
CREATE TYPE
edb=# CREATE TABLE projects (person_id NUMBER(10), project_name VARCHAR2(20));
CREATE TABLE
edb=# CREATE TABLE pers_short (person_id NUMBER(10), last_name VARCHAR2(25));
CREATE TABLE

edb=# INSERT INTO projects VALUES (1, 'Teach');
INSERT 0 1
edb=# INSERT INTO projects VALUES (1, 'Code');
INSERT 0 1
edb=# INSERT INTO projects VALUES (2, 'Code');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (1, 'Morgan');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (2, 'Kolk');
INSERT 0 1
edb=# INSERT INTO pers_short VALUES (3, 'Scott');
INSERT 0 1
edb=# COMMIT;
COMMIT

edb=# SELECT e.last_name, CAST(MULTISET(
edb(# SELECT p.project_name
edb(# FROM projects p
edb(# WHERE p.person_id = e.person_id
edb(# ORDER BY p.project_name) AS project_table_t)
edb-# FROM pers_short e;
 last_name | project_table_t
-----------+-----------------
 Morgan | {Code,Teach}
 Kolk | {Code}
 Scott | {}
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 324

12.1.1.4 Comments

A comment is an arbitrary sequence of characters beginning with double dashes and extending to the end of the line, e.g.:

-- This is a standard SQL comment

Alternatively, C-style block comments can be used:

/* multiline comment
* block
*/

where the comment begins with /* and extends to the matching occurrence of */.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 325

12.1.2 Data Types

The following table shows the built-in general-purpose data types:

Name Alias Description

BLOB LONG RAW, RAW(n), BYTEA Binary data

BOOLEAN Logical Boolean (true/false)

CHAR [(n)] CHARACTER [(n)] Fixed-length character string of n characters

CLOB LONG, LONG VARCHAR Long character string

DATE TIMESTAMP Date and time to the second

DOUBLE PRECISION FLOAT, FLOAT(25) – FLOAT(53) Double precision floating-point number

INTEGER INT, BINARY_INTEGER, PLS_INTEGER Signed four-byte integer

NUMBER DEC, DECIMAL, NUMERIC Exact numeric with optional decimal places

NUMBER(p [, s]) DEC(p [, s]),DECIMAL(p [, s
]),NUMERIC(p [, s])

Exact numeric of maximum precision, p , and optional
scale, s

REAL FLOAT(1) – FLOAT(24) Single precision floating-point number

TIMESTAMP [(p)] Date and time with optional, fractional second precision,
p

TIMESTAMP [(p)] WITH
TIME ZONE

Date and time with optional, fractional second precision,
p , and with time zone

VARCHAR2(n) CHAR VARYING(n), CHARACTER
VARYING(n), VARCHAR(n)

Variable-length character string with a maximum length of
n characters

XMLTYPE XML data

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 326

12.1.2.1 Numeric Types

Numeric types consist of four-byte integers, four-byte and eight-byte floating-point numbers, and fixed-precision decimals. The following table lists the
available types:

Name Storage
Size

Description Range

BINARY_INTEGER 4 bytes Signed integer, Alias for INTEGER -2,147,483,648 to +2,147,483,647

DOUBLE
PRECISION

8 bytes Variable-precision, inexact 15 decimal digits precision

INTEGER 4 bytes Usual choice for integer -2,147,483,648 to +2,147,483,647

NUMBER Variable User-specified precision, exact Up to 1000 digits of precision

NUMBER(p [, s]
)

Variable
Exact numeric of maximum precision, p , and optional
scale, s

Up to 1000 digits of precision

PLS_INTEGER 4 bytes Signed integer, Alias for INTEGER -2,147,483,648 to +2,147,483,647

REAL 4 bytes Variable-precision, inexact 6 decimal digits precision

ROWID 8 bytes Signed 8 bit integer. -9223372036854775808 to
9223372036854775807

The following sections describe the types in detail.

Integer Types

The BINARY_INTEGER , INTEGER , PLS_INTEGER , and ROWID types store whole numbers (without fractional components) as specified in table
Numeric Types. Attempts to store values outside of the allowed range will result in an error.

Arbitrary Precision Numbers

The type, NUMBER , can store practically an unlimited number of digits of precision and perform calculations exactly. It is especially recommended for
storing monetary amounts and other quantities where exactness is required. However, the NUMBER type is very slow compared to the floating-point types
described in the next section.

In what follows we use these terms: The scale of a NUMBER is the count of decimal digits in the fractional part, to the right of the decimal point. The
precision of a NUMBER is the total count of significant digits in the whole number, that is, the number of digits to both sides of the decimal point. So

the number 23.5141 has a precision of 6 and a scale of 4. Integers can be considered to have a scale of zero.

Both the precision and the scale of the NUMBER type can be configured. To declare a column of type NUMBER use the syntax

NUMBER(precision, scale)

The precision must be positive, the scale zero or positive. Alternatively,

NUMBER(precision)

selects a scale of 0. Specifying NUMBER without any precision or scale creates a column in which numeric values of any precision and scale can be stored,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 327

selects a scale of 0. Specifying NUMBER without any precision or scale creates a column in which numeric values of any precision and scale can be stored,
up to the implementation limit on precision. A column of this kind will not coerce input values to any particular scale, whereas NUMBER columns with a
declared scale will coerce input values to that scale. (The SQL standard requires a default scale of 0, i.e., coercion to integer precision. For maximum
portability, it is best to specify the precision and scale explicitly.)

If the precision or scale of a value is greater than the declared precision or scale of a column, the system will attempt to round the value. If the value cannot
be rounded so as to satisfy the declared limits, an error is raised.

Floating-Point Types

The data types REAL and DOUBLE PRECISION are inexact, variable-precision numeric types. In practice, these types are usually implementations of
IEEE Standard 754 for Binary Floating-Point Arithmetic (single and double precision, respectively), to the extent that the underlying processor, operating
system, and compiler support it.

Inexact means that some values cannot be converted exactly to the internal format and are stored as approximations, so that storing and printing back out
a value may show slight discrepancies. Managing these errors and how they propagate through calculations is the subject of an entire branch of
mathematics and computer science and will not be discussed further here, except for the following points:

If you require exact storage and calculations (such as for monetary amounts), use the NUMBER type instead.

If you want to do complicated calculations with these types for anything important, especially if you rely on certain behavior in boundary cases (infinity,
underflow), you should evaluate the implementation carefully.

Comparing two floating-point values for equality may or may not work as expected.

On most platforms, the REAL type has a range of at least 1E-37 to 1E+37 with a precision of at least 6 decimal digits. The DOUBLE PRECISION
type typically has a range of around 1E-307 to 1E+308 with a precision of at least 15 digits. Values that are too large or too small will cause an error.
Rounding may take place if the precision of an input number is too high. Numbers too close to zero that are not representable as distinct from zero will
cause an underflow error.

Advanced Server also supports the SQL standard notations FLOAT and FLOAT(p) for specifying inexact numeric types. Here, p specifies the minimum
acceptable precision in binary digits. Advanced Server accepts FLOAT(1) to FLOAT(24) as selecting the REAL type, while FLOAT(25) to
FLOAT(53) as selecting DOUBLE PRECISION . Values of p outside the allowed range draw an error. FLOAT with no precision specified is taken to

mean DOUBLE PRECISION .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 328

12.1.2.2 Character Types

The following table lists the general-purpose character types available in Advanced Server:

Name Description

CHAR[(n)] Fixed-length character string, blank-padded to the size specified by n

CLOB Large variable-length up to 1 GB

LONG Variable unlimited length.

NVARCHAR(n) Variable-length national character string, with limit

NVARCHAR2(n) Variable-length national character string, with limit

STRING Alias for VARCHAR2

VARCHAR(n) Variable-length character string, with limit (considered deprecated, but supported for compatibility)

VARCHAR2(n) Variable-length character string, with limit

Where n is a positive integer; these types can store strings up to n characters in length. An attempt to assign a value that exceeds the length of n will
result in an error, unless the excess characters are all spaces, in which case the string will be truncated to the maximum length.

The storage requirement for data of these types is the actual string plus 1 byte if the string is less than 127 bytes, or 4 bytes if the string is 127 bytes or
greater. In the case of CHAR , the padding also requires storage. Long strings are compressed by the system automatically, so the physical requirement on
disk may be less. Long values are stored in background tables so they do not interfere with rapid access to the shorter column values.

The database character set determines the character set used to store textual values.

CHAR

If you do not specify a value for n , n will default to 1 . If the string to be assigned is shorter than n , values of type CHAR will be space-padded to the
specified width (n), and will be stored and displayed that way.

Padding spaces are treated as semantically insignificant. That is, trailing spaces are disregarded when comparing two values of type CHAR , and they will
be removed when converting a CHAR value to one of the other string types.

If you explicitly cast an over-length value to a CHAR(n) type, the value will be truncated to n characters without raising an error (as specified by the SQL
standard).

VARCHAR, VARCHAR2, NVARCHAR and NVARCHAR2

If the string to be assigned is shorter than n , values of type VARCHAR , VARCHAR2 , NVARCHAR and NVARCHAR2 will store the shorter string without
padding.

NoteNote: The trailing spaces are semantically significant in VARCHAR values.

If you explicitly cast a value to a VARCHAR type, an over-length value will be truncated to n characters without raising an error (as specified by the SQL
standard).

CLOB

You can store a large character string in a CLOB type. CLOB is semantically equivalent to VARCHAR2 except no length limit is specified. Generally, you
should use a CLOB type if the maximum string length is not known.

The longest possible character string that can be stored in a CLOB type is about 1 GB.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 329

NoteNote: The CLOB data type is actually a DOMAIN based on the PostgreSQL TEXT data type. For information on a DOMAIN , see the PostgreSQL core
documentation at https://www.postgresql.org/docs/current/static/sql-createdomain.html

Thus, usage of the CLOB type is limited by what can be done for TEXT such as a maximum size of approximately 1 GB.

For usage of larger amounts of data, instead of using the CLOB data type, use the PostgreSQL Large Objects feature that relies on the
pg_largeobject system catalog. For information on large objects, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/largeobjects.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 330

https://www.postgresql.org/docs/current/static/sql-createdomain.html
https://www.postgresql.org/docs/current/static/largeobjects.html

12.1.2.3 Binary Data

The following table shows data types that allow the storage of binary strings:

Name Storage Size Description

BINAR
Y

The length of the binary string. Fixed-length binary string, with a length
between 1 and 8300.

BLOB The actual binary string plus 1 byte if the binary string is less than 127 bytes, or 4 bytes if
the binary string is 127 bytes or greater.

Variable-length binary string, with a
maximum size of 1 GB.

VARBI
NARY

The length of the binary string Variable-length binary string, with a length
between 1 and 8300.

A binary string is a sequence of octets (or bytes). Binary strings are distinguished from characters strings by two characteristics: First, binary strings
specifically allow storing octets of value zero and other "non-printable" octets (defined as octets outside the range 32 to 126). Second, operations on binary
strings process the actual bytes, whereas the encoding and processing of character strings depends on locale settings.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 331

12.1.2.4 Date/Time Types

The following discussion of the date/time types assumes that the configuration parameter, edb_redwood_date , has been set to TRUE whenever a
table is created or altered.

Advanced Server supports the date/time types shown in the following table:

Name Storage
Size

Description Low Value High Value Resolution

DATE 8 bytes Date and time 4713 BC 5874897 AD 1 second

INTERVAL DAY TO SECOND
[(p)]

12 bytes Period of time -178000000
years

178000000
years

1 microsecond / 14
digits

INTERVAL YEAR TO MONTH 12 bytes Period of time -178000000
years

178000000
years

1 microsecond / 14
digits

TIMESTAMP [(p)] 8 bytes Date and time 4713 BC 5874897 AD 1 microsecond

TIMESTAMP [(p)] WITH TIME
ZONE

8 bytes Date and time with time
zone

4713 BC 5874897 AD 1 microsecond

When DATE appears as the data type of a column in the data definition language (DDL) commands, CREATE TABLE or ALTER TABLE , it is translated
to TIMESTAMP at the time the table definition is stored in the database. Thus, a time component will also be stored in the column along with the date.

When DATE appears as a data type of a variable in an SPL declaration section, or the data type of a formal parameter in an SPL procedure or an SPL
function, or the return type of an SPL function, it is always translated to TIMESTAMP and thus can handle a time component if present.

TIMESTAMP accepts an optional precision value p which specifies the number of fractional digits retained in the seconds field. The allowed range of p
is from 0 to 6 with the default being 6 .

When TIMESTAMP values are stored as double precision floating-point numbers (currently the default), the effective limit of precision may be less than 6.
TIMESTAMP values are stored as seconds before or after midnight 2000-01-01. Microsecond precision is achieved for dates within a few years of 2000-

01-01, but the precision degrades for dates further away. When TIMESTAMP values are stored as eight-byte integers (a compile-time option),
microsecond precision is available over the full range of values. However eight-byte integer timestamps have a more limited range of dates than shown
above: from 4713 BC up to 294276 AD.

TIMESTAMP (p) WITH TIME ZONE is similar to TIMESTAMP (p) , but includes the time zone as well.

INTERVAL Types

INTERVAL values specify a period of time. Values of INTERVAL type are composed of fields that describe the value of the data. The following table lists
the fields allowed in an INTERVAL type:

Field Name INTERVAL Values Allowed

YEAR Integer value (positive or negative)

MONTH 0 through 11

DAY Integer value (positive or negative)

HOUR 0 through 23

MINUTE 0 through 59

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 332

SECOND 0 through 59.9(p) where 9(p) is the precision of fractional
seconds

Field Name INTERVAL Values Allowed

The fields must be presented in descending order – from YEARS to MONTHS , and from DAYS to HOURS , MINUTES and then SECONDS .

Advanced Server supports two INTERVAL types compatible with Oracle databases.

The first variation supported by Advanced Server is INTERVAL DAY TO SECOND [(p)] . INTERVAL DAY TO SECOND [(p)] stores a time
interval in days, hours, minutes and seconds.

p specifies the precision of the second field.

Advanced Server interprets the value:

INTERVAL '1 2:34:5.678' DAY TO SECOND(3)

as 1 day, 2 hours, 34 minutes, 5 seconds and 678 thousandths of a second.

Advanced Server interprets the value:

INTERVAL '1 23' DAY TO HOUR

as 1 day and 23 hours.

Advanced Server interprets the value:

INTERVAL '2:34' HOUR TO MINUTE

as 2 hours and 34 minutes.

Advanced Server interprets the value:

INTERVAL '2:34:56.129' HOUR TO SECOND(2)

as 2 hours, 34 minutes, 56 seconds and 13 thousandths of a second. Note that the fractional second is rounded up to 13 because of the specified precision.

The second variation supported by Advanced Server that is compatible with Oracle databases is INTERVAL YEAR TO MONTH . This variation stores a
time interval in years and months.

Advanced Server interprets the value:

INTERVAL '12-3' YEAR TO MONTH

as 12 years and 3 months.

Advanced Server interprets the value:

INTERVAL '456' YEAR(2)

as 12 years and 3 months.

Advanced Server interprets the value:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 333

INTERVAL '300' MONTH

as 25 years.

Date/Time Input

Date and time input is accepted in ISO 8601 SQL-compatible format, the Oracle default dd-MON-yy format, as well as a number of other formats
provided that there is no ambiguity as to which component is the year, month, and day. However, use of the TO_DATE function is strongly recommended
to avoid ambiguities.

Any date or time literal input needs to be enclosed in single quotes, like text strings. The following SQL standard syntax is also accepted:

type 'value'

type is either DATE or TIMESTAMP .

value is a date/time text string.

Dates

The following block shows some possible input formats for dates, all of which equate to January 8, 1999.

Example
January 8, 1999
1999-01-08
1999-Jan-08
Jan-08-1999
08-Jan-1999
08-Jan-99
Jan-08-99
19990108
990108

The date values can be assigned to a DATE or TIMESTAMP column or variable. The hour, minute, and seconds fields will be set to zero if the date value is
not appended with a time value.

Times

Some examples of the time component of a date or time stamp are shown in the following table:

Example Description

04:05:06.789 ISO 8601

04:05:06 ISO 8601

04:05 ISO 8601

040506 ISO 8601

04:05 AM Same as 04:05; AM does not affect value

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 334

04:05 PM Same as 16:05; input hour must be <=
12

Example Description

Time Stamps

Valid input for time stamps consists of a concatenation of a date and a time. The date portion of the time stamp can be formatted according to any of the
examples shown in the block under section Dates . The time portion of the time stamp can be formatted according to any of examples shown in table
under section Times .

The following is an example of a time stamp which follows the Oracle default format.

08-JAN-99 04:05:06

The following is an example of a time stamp which follows the ISO 8601 standard.

1999-01-08 04:05:06

Date/Time Output

The default output format of the date/time types will be either (dd-MON-yy) referred to as the Redwood date style, compatible with Oracle databases, or
(yyyy-mm-dd) referred to as the ISO 8601 format, depending upon the application interface to the database. Applications that use JDBC such as SQL
Interactive always present the date in ISO 8601 form. Other applications such as PSQL present the date in Redwood form.

The following table shows examples of the output formats for the two styles, Redwood and ISO 8601:

Description Example

Redwood style 31-DEC-05 07:37:16

ISO 8601/SQL standard
1997-12-17
07:37:16

Internals

Advanced Server uses Julian dates for all date/time calculations. Julian dates correctly predict or calculate any date after 4713 BC based on the
assumption that the length of the year is 365.2425 days.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 335

12.1.2.5 Boolean Types

Advanced Server provides the standard SQL type BOOLEAN . BOOLEAN can have one of only two states: TRUE or FALSE . A third state, UNKNOWN , is
represented by the SQL NULL value.

Name Storage Size Description

BOOLEAN 1 byte Logical Boolean (true/false)

The valid literal value for representing the true state is TRUE . The valid literal for representing the false state is FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 336

12.1.2.6 XML Type

The XMLTYPE data type is used to store XML data. Its advantage over storing XML data in a character field is that it checks the input values for well-
formedness, and there are support functions to perform type-safe operations on it.

The XML type can store well-formed “documents”, as defined by the XML standard, as well as “content” fragments, which are defined by the production
XMLDecl? content in the XML standard. Roughly, this means that content fragments can have more than one top-level element or character node.

NoteNote

Oracle does not support the storage of content fragments in XMLTYPE columns.

The following example shows the creation and insertion of a row into a table with an XMLTYPE column.

CREATE TABLE books (
 content XMLTYPE
);

INSERT INTO books VALUES (XMLPARSE (DOCUMENT '<?xml
version="1.0"?><book><title>Manual</title><chapter>...</chapter></book>'));

SELECT * FROM books;

 content
--
 <book><title>Manual</title><chapter>...</chapter></book>
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 337

12.1.3 Functions and Operators

Advanced Server provides a large number of functions and operators for the built-in data types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 338

12.1.3.1 Logical Operators

The usual logical operators are available: AND , OR , NOT

SQL uses a three-valued Boolean logic where the null value represents "unknown". Observe the following truth tables:

AND/OR Truth Table

a b a AND b a OR b

True True True True

True False False True

True Null Null True

False False False False

False Null False Null

Null Null Null Null

NOT Truth Table

a NOT a

True False

False True

Null Null

The operators AND and OR are commutative, that is, you can switch the left and right operand without affecting the result.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 339

12.1.3.2 Comparison Operators

The usual comparison operators are shown in the following table:

Operator Description

< Less than

> Greater than

<= Less than or equal to

>= Greater than or equal to

= Equal

<> Not equal

!= Not equal

Comparison operators are available for all data types where this makes sense. All comparison operators are binary operators that return values of type
BOOLEAN; expressions like 1 < 2 < 3 are not valid (because there is no < operator to compare a Boolean value with 3).

In addition to the comparison operators, the special BETWEEN construct is available.

a BETWEEN x AND y

is equivalent to

a >= x AND a <= y

Similarly,

a NOT BETWEEN x AND y

is equivalent to

a < x OR a > y

There is no difference between the two respective forms apart from the CPU cycles required to rewrite the first one into the second one internally.

To check whether a value is or is not null, use the constructs

expression IS NULL

expression IS NOT NULL

Do not write expression = NULL because NULL is not "equal to" NULL . (The null value represents an unknown value, and it is not known whether
two unknown values are equal.) This behavior conforms to the SQL standard.

Some applications may expect that expression = NULL returns true if expression evaluates to the null value. It is highly recommended that
these applications be modified to comply with the SQL standard.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 340

12.1.3.3 Mathematical Functions and Operators

Mathematical operators are provided for many Advanced Server types. For types without common mathematical conventions for all possible permutations
(e.g., date/time types) the actual behavior is described in subsequent sections.

The following table shows the available mathematical operators:

Operator Description Example Result

+ Addition 2 + 3 5

- Subtraction 2 – 3 -1

* Multiplication 2 * 3 6

/ Division (See the following note) 4 / 2 2

** Exponentiation Operator
2 **
3

8

NoteNote

If the db_dialect configuration parameter in the postgresql.conf file is set to redwood , then division of a pair of INTEGER data
types does not result in a truncated value. Any fractional result is retained as shown by the following example:

edb=# SET db_dialect TO redwood;
SET
edb=# SHOW db_dialect;
 db_dialect

 redwood
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;
 ?column?

 3.3333333333333333
(1 row)

This behavior is compatible with Oracle databases where there is no native INTEGER data type, and any INTEGER data type specification is internally
converted to NUMBER(38) , which results in retaining any fractional result.

If the db_dialect configuration parameter is set to postgres , then division of a pair of INTEGER data types results in a truncated value as shown
by the following example:

edb=# SET db_dialect TO postgres;
SET
edb=# SHOW db_dialect;
 db_dialect

 postgres
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS INTEGER) FROM dual;
 ?column?

 3
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 341

This behavior is compatible with PostgreSQL databases where division involving any pair of INTEGER , SMALLINT , or BIGINT data types results in
truncation of the result. The same truncated result is returned by Advanced Server when db_dialect is set to postgres as shown in the previous
example.

Note however, that even when db_dialect is set to redwood , only division with a pair of INTEGER data types results in no truncation of the result.
Division that includes only SMALLINT or BIGINT data types, with or without an INTEGER data type, does result in truncation in the PostgreSQL
fashion without retaining the fractional portion as shown by the following where INTEGER and SMALLINT are involved in the division:

edb=# SHOW db_dialect;
 db_dialect

 redwood
(1 row)

edb=# SELECT CAST('10' AS INTEGER) / CAST('3' AS SMALLINT) FROM dual;
 ?column?

 3
(1 row)

The following table shows the available mathematical functions. Many of these functions are provided in multiple forms with different argument types.
Except where noted, any given form of a function returns the same data type as its argument. The functions working with DOUBLE PRECISION data are
mostly implemented on top of the host system’s C library; accuracy and behavior in boundary cases may therefore vary depending on the host system.

Function Return Type Description Example Result

ABS(x) Same as x Absolute value ABS(-17.4) 17.4

CEIL(DOUBLE PRECISION
or NUMBER)

Same as input Smallest integer not less than argument CEIL(-42.8) -42

EXP(DOUBLE PRECISION
or NUMBER) Same as input Exponential EXP(1.0)

2.7182
8182845
90452

FLOOR(DOUBLE PRECISION
or NUMBER)

Same as input Largest integer not greater than argument FLOOR(-42.8) 43

LN(DOUBLE PRECISION or
NUMBER) Same as input Natural logarithm LN(2.0)

0.6931
4718055
99453

LOG(b NUMBER, x
NUMBER) NUMBER Logarithm to base b

LOG(2.0,
64.0)

6.0000
0000000
00000

MOD(y, x) Same as argument types Remainder of y/x MOD(9, 4) 1

NVL(x, y)
Same as argument types;
where both arguments are
of the same data type

If x is null, then NVL returns y NVL(9, 0) 9

POWER(a DOUBLE
PRECISION, b DOUBLE
PRECISION)

DOUBLE PRECISION a raised to the power of b POWER(9.0,
3.0)

729.00
0000000
000000
0

POWER(a NUMBER, b
NUMBER)

NUMBER a raised to the power of b POWER(9.0,
3.0)

729.00
0000000
000000
0

ROUND(DOUBLE PRECISION
or NUMBER)

Same as input Round to nearest integer ROUND(42.4) 42

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 342

ROUND(v NUMBER, s
INTEGER)

NUMBER Round to s decimal places
ROUND(42.438
2, 2)

42.44

SIGN(DOUBLE PRECISION
or NUMBER)

Same as input Sign of the argument (-1, 0, +1) SIGN(-8.4) -1

SQRT(DOUBLE PRECISION
or NUMBER) Same as input Square root SQRT(2.0)

1.4142
1356237
3095

TRUNC(DOUBLE PRECISION
or NUMBER)

Same as input Truncate toward zero TRUNC(42.8) 42

TRUNC(v NUMBER, s
INTEGER)

NUMBER Truncate to s decimal places
TRUNC(42.438
2, 2)

42.43

WIDTH_BUCKET(op
NUMBER, b1 NUMBER, b2
NUMBER, count INTEGER)

INTEGER
Return the bucket to which op would be
assigned in an equidepth histogram with
count buckets, in the range b1 to b2

WIDTH_BUCKET
(5.35, 0.024,
10.06, 5)

3

Function Return Type Description Example Result

The following table shows the available trigonometric functions. All trigonometric functions take arguments and return values of type DOUBLE
PRECISION .

Function Description

ACOS(x) Inverse cosine

ASIN(x) Inverse sine

ATAN(x) Inverse tangent

ATAN2(x, y) Inverse tangent of x/y

COS(x) Cosine

SIN(x) Sine

TAN(x) Tangent

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 343

12.1.3.4 String Functions and Operators

This section describes functions and operators for examining and manipulating string values. Strings in this context include values of the types CHAR ,
VARCHAR2 , and CLOB . Unless otherwise noted, all of the functions listed below work on all of these types, but be wary of potential effects of automatic

padding when using the CHAR type. Generally, the functions described here also work on data of non-string types by converting that data to a string
representation first.

Function Return
Type

Description Example Res
ult

string || string CLOB String concatenation 'Enterprise' || 'DB'

En
ter
pri
seD
B

CONCAT(string,
string)

CLOB String concatenation 'a' || 'b' ab

HEXTORAW(varcha
r2) RAW Converts a VARCHAR2 value to a RAW value HEXTORAW('303132')

'0
12
'

RAWTOHEX(raw) VARC
HAR2

Converts a RAW value to a HEXADECIMAL value RAWTOHEX('012')

'3
031
32
'

INSTR(string,
set, [start [,
occurrence]
])

INTE
GER

Finds the location of a set of characters in a string, starting at position
start in the string, string , and looking for the first, second, third

and so on occurrences of the set. Returns 0 if the set is not found.

INSTR('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PI',1,3)

30

INSTRB(string,
set)

INTE
GER

Returns the position of the set within the string . Returns 0 if
set is not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED PEPPERS',
'PICK')

13

INSTRB(string,
set, start)

INTE
GER

Returns the position of the set within the string , beginning at
start . Returns 0 if set is not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PICK', 14)

30

INSTRB(string,
set, start,
occurrence)

INTE
GER

Returns the position of the specified occurrence of set within the
string , beginning at start . Returns 0 if set is not found.

INSTRB('PETER PIPER
PICKED a PECK of
PICKLED
PEPPERS','PICK', 1, 2)

30

LOWER(string) CLOB Convert string to lower case LOWER('TOM') to
m

SUBSTR(string,
start [, count
])

CLOB
Extract substring starting from start and going for count
characters. If count is not specified, the string is clipped from the
start till the end.

SUBSTR('This is a
test',6,2) is

SUBSTRB(string,
start [, count
])

CLOB Same as SUBSTR except start and count are in number of bytes.
SUBSTRB('abc',3)

(assuming a double-byte
character set)

c

SUBSTR2(string,
start [, count
])

CLOB Alias for SUBSTR .
SUBSTR2('This is a
test',6,2) is

SUBSTR2(string,
start [, count
])

CLOB Alias for SUBSTRB .
SUBSTR2('abc',3)

(assuming a double-byte
character set)

c

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 344

SUBSTR4(string,
start [, count
])

CLOB Alias for SUBSTR .
SUBSTR4('This is a
test',6,2) is

SUBSTR4(string,
start [, count
])

CLOB Alias for SUBSTRB .
SUBSTR4('abc',3)

(assuming a double-byte
character set)

c

SUBSTRC(string,
start [, count
])

CLOB Alias for SUBSTR .
SUBSTRC('This is a
test',6,2) is

SUBSTRC(string,
start [, count
])

CLOB Alias for SUBSTRB .
SUBSTRC('abc',3)

(assuming a double-byte
character set)

c

TRIM([LEADING |
TRAILING | BOTH] [
characters] FROM
string)

CLOB Remove the longest string containing only the characters (a space by
default) from the start/end/both ends of the string.

TRIM(BOTH 'x' FROM
'xTomxx')

To
m

LTRIM(string
[, set]) CLOB

Removes all the characters specified in set from the left of a given
string . If set is not specified, a blank space is used as default.

LTRIM('abcdefghi',
'abc')

de
fgh
i

RTRIM(string
[, set]) CLOB

Removes all the characters specified in set from the right of a given
string . If set is not specified, a blank space is used as default.

RTRIM('abcdefghi',
'ghi')

ab
cde
f

UPPER(string) CLOB Convert string to upper case UPPER('tom') TO
M

Function Return
Type

Description Example Res
ult

Additional string manipulation functions are available and are listed in the following table. Some of them are used internally to implement the SQL-
standard string functions listed in the above table.

Function Return Type Description Example

R
es
ul
t

ASCII(string) INTEGER ASCII code of the first byte of the argument ASCII('x')
1
2
0

CHR(INTEGER) CLOB Character with the given ASCII code CHR(65) A

DECODE(expr,
expr1a, expr1b [,
expr2a, expr2b]... [,
default])

Same as argument
types of
expr1b,
expr2b,...,
default

Finds first match of expr with expr1a, expr2a , etc. When match
found, returns corresponding parameter pair, expr1b, expr2b , etc. If
no match found, returns default . If no match found and default not
specified, returns null.

DECODE(3,
1,'One',
2,'Two',
3,'Three',
'Not found')

T
h
r
e
e

INITCAP(strin
g)

CLOB
Convert the first letter of each word to uppercase and the rest to lowercase.
Words are sequences of alphanumeric characters separated by non-
alphanumeric characters.

INITCAP('hi
THOMAS')

H
i
T
h
o
m
a
s

LENGTH INTEGER Returns the number of characters in a string value.
LENGTH('Côte
d''Azur')

1
1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 345

LENGTHC INTEGER This function is identical in functionality to LENGTH ; the function name is
supported for compatibility.

LENGTHC('Côte
d''Azur')

1
1

LENGTH2 INTEGER This function is identical in functionality to LENGTH ; the function name is
supported for compatibility.

LENGTH2('Côte
d''Azur')

1
1

LENGTH4 INTEGER This function is identical in functionality to LENGTH ; the function name is
supported for compatibility.

LENGTH4('Côte
d''Azur')

1
1

LENGTHB INTEGER Returns the number of bytes required to hold the given value.
LENGTHB('Côte
d''Azur')

1
2

LPAD(string,
length INTEGER
[, fill])

CLOB
Fill up string to size, length by prepending the characters, fill (a
space by default). If string is already longer than length then it is
truncated (on the right).

LPAD('hi', 5,
'xy')

x
y
x
h
i

REPLACE(strin
g,
search_string
[,
replace_string
]

CLOB
Replaces one value in a string with another. If you do not specify a value for
replace_string , the search_string value when found, is

removed.

REPLACE(
'GEORGE',
'GE', 'EG')

E
G
O
R
E
G

RPAD(string,
length INTEGER
[, fill])

CLOB
Fill up string to size, length by appending the characters, fill (a
space by default). If string is already longer than length then it is
truncated.

RPAD('hi', 5,
'xy')

h
i
x
y
x

TRANSLATE(str
ing, from,
to)

CLOB
Any character in string that matches a character in the from set is
replaced by the corresponding character in the to set.

TRANSLATE('123
45', '14',
'ax')

a
2
3
x
5

Function Return Type Description Example

R
es
ul
t

Truncation of String Text Resulting from Concatenation with NULL

NoteNote

This section describes a functionality that is not compatible with Oracle databases, which may lead to some inconsistency when converting data
from Oracle to Advanced Server.

For Advanced Server, when a column value is NULL , the concatenation of the column with a text string may result in either of the following:

Return of the text string
Disappearance of the text string (that is, a null result)

The result is dependent upon the data type of the NULL column and the way in which the concatenation is done.

If one uses the string concatenation operator ‘||’ , then the types that have implicit coercion to text as listed in Table Data Types with Implicit Coercion
to Text will not truncate the string if one of the input parameters is NULL , whereas for other types it will truncate the string unless the explicit type cast is
used (that is, ::text). Also, to see the consistent behavior in the presence of nulls, one can use the CONCAT function.

The following query lists the data types that have implicit coercion to text:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 346

SELECT castsource::regtype, casttarget::regtype, castfunc::regproc,
 CASE castcontext
 WHEN 'e' THEN 'explicit'
 WHEN 'a' THEN 'implicit in assignment'
 WHEN 'i' THEN 'implicit in expressions'
 END as castcontext,
 CASE castmethod
 WHEN 'f' THEN 'function'
 WHEN 'i' THEN 'input/output function'
 WHEN 'b' THEN 'binary-coercible'
 END as castmethod
FROM pg_cast
 WHERE casttarget::regtype::text = 'text'
 AND castcontext='i';

The result of the query is listed in the following table:

castsource casttarget castfunc castcontext castmethod

character text pg_catalog.text implicit in
expressions

function

character varying text - implicit in
expressions

binary-coercible

"char" text pg_catalog.text implicit in
expressions

function

name text pg_catalog.text implicit in
expressions

function

pg_node_tree text - implicit in
expressions

binary-coercible

pg_ndistinct text - implicit in
expressions

input/output
function

pg_dependencies text - implicit in
expressions

input/output
function

integer text - implicit in
expressions

input/output
function

smallint text - implicit in
expressions

input/output
function

oid text - implicit in
expressions

input/output
function

date text - implicit in
expressions

input/output
function

double precision text - implicit in
expressions

input/output
function

real text - implicit in
expressions

input/output
function

time with time zone text - implicit in
expressions

input/output
function

time without time zone text - implicit in
expressions

input/output
function

timestamp with time zone text - implicit in
expressions

input/output
function

interval text - implicit in
expressions

input/output
function

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 347

bigint text - implicit in
expressions

input/output
function

numeric text - implicit in
expressions

input/output
function

timestamp without time
zone

text - implicit in
expressions

input/output
function

record text - implicit in
expressions

input/output
function

boolean text pg_catalog.text implicit in
expressions

function

bytea text - implicit in
expressions

input/output
function

castsource casttarget castfunc castcontext castmethod

For information on the column output, see the pg_cast system catalog in the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/catalog-pg-cast.html

So for example, data type UUID is not in this list and therefore does not have the implicit coercion to text. As a result, certain concatenation attempts with
a NULL UUID column results in a truncated text result.

The following table is created for this example with a single row with all NULL column values.

CREATE TABLE null_concat_types (
 boolean_type BOOLEAN,
 uuid_type UUID,
 char_type CHARACTER
);

INSERT INTO null_concat_types VALUES (NULL, NULL, NULL);

Columns boolean_type and char_type have the implicit coercion to text while column uuid_type does not.

Thus, string concatenation with the concatenation operator ‘||‘ against columns boolean_type or char_type results in the following:

SELECT 'x=' || boolean_type || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

SELECT 'x=' || char_type || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

But concatenation with column uuid_type results in the loss of the x= string:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 348

https://www.postgresql.org/docs/current/static/catalog-pg-cast.html

SELECT 'x=' || uuid_type || 'y' FROM null_concat_types;

 ?column?

 y
(1 row)

However, using explicit casting with ::text prevents the loss of the x= string:

SELECT 'x=' || uuid_type::text || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

Using the CONCAT function also preserves the x= string:

SELECT CONCAT('x=',uuid_type) || 'y' FROM null_concat_types;

 ?column?

 x=y
(1 row)

Thus, depending upon the data type of a NULL column, explicit casting or the CONCAT function should be used to avoid loss of some text string.

SYS_GUID

The SYS_GUID function generates and returns a globally unique identifier; the identifier takes the form of 16 bytes of RAW data. The SYS_GUID
function is based on the uuid-ossp module to generate universally unique identifiers. The synopsis is:

SYS_GUID()

ExampleExample

The following example adds a column to the table EMP , inserts a unique identifier, and returns a 16-byte RAW value:

edb=# CREATE TABLE EMP(C1 RAW (16) DEFAULT SYS_GUID() PRIMARY KEY, C2 INT);
CREATE TABLE
edb=# INSERT INTO EMP(C2) VALUES (1);
INSERT 0 1
edb=# SELECT * FROM EMP;
 c1 | c2
------------------------------------+----
 \xb944970d3a1b42a7a2119265c49cbb7f | 1
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 349

12.1.3.5 Pattern Matching String Functions

Advanced Server offers support for the REGEXP_COUNT , REGEXP_INSTR and REGEXP_SUBSTR functions. These functions search a string for a
pattern specified by a regular expression, and return information about occurrences of the pattern within the string. The pattern should be a POSIX-style
regular expression; for more information about forming a POSIX-style regular expression, please refer to the core documentation at:

https://www.postgresql.org/docs/current/static/functions-matching.html

REGEXP_COUNT

REGEXP_COUNT searches a string for a regular expression, and returns a count of the times that the regular expression occurs. The signature is:

INTEGER REGEXP_COUNT
(
 srcstr TEXT,
 pattern TEXT,
 position DEFAULT 1
 modifier DEFAULT NULL
)

ParametersParameters

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_COUNT will search.

position

position is an integer value that indicates the position in the source string at which REGEXP_COUNT will begin searching. The default value is 1 .

modifier

modifier specifies values that control the pattern matching behavior. The default value is NULL . For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/functions-matching.html

ExampleExample

In the following simple example, REGEXP_COUNT returns a count of the number of times the letter i is used in the character string
'reinitializing' :

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 1) FROM DUAL;
 regexp_count

 5
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 350

https://www.postgresql.org/docs/current/static/functions-matching.html
https://www.postgresql.org/docs/current/static/functions-matching.html

In the first example, the command instructs REGEXP_COUNT begins counting in the first position; if we modify the command to start the count on the 6th
position:

edb=# SELECT REGEXP_COUNT('reinitializing', 'i', 6) FROM DUAL;
 regexp_count

 3
(1 row)

REGEXP_COUNT returns 3 ; the count now excludes any occurrences of the letter i that occur before the 6th position.

REGEXP_INSTR

REGEXP_INSTR searches a string for a POSIX-style regular expression. This function returns the position within the string where the match was located.
The signature is:

INTEGER REGEXP_INSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 returnparam INT DEFAULT 0,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0,
)

Parameters:Parameters:

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_INSTR will search.

position

position specifies an integer value that indicates the start position in a source string. The default value is 1 .

occurrence

occurrence specifies which match is returned if more than one occurrence of the pattern occurs in the string that is searched. The default value is 1 .

returnparam

returnparam is an integer value that specifies the location within the string that REGEXP_INSTR should return. The default value is 0 . Specify:

0 to return the location within the string of the first character that matches pattern .

A value greater than 0 to return the position of the first character following the end of the pattern .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 351

modifier

modifier specifies values that control the pattern matching behavior. The default value is NULL . For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern that will be returned by REGEXP_INSTR . The default value of
subexpression is 0 .

If you specify a value for subexpression , you must include one (or more) set of parentheses in the pattern that isolate a portion of the value being
searched for. The value specified by subexpression indicates which set of parentheses should be returned; for example, if subexpression is 2 ,
REGEXP_INSTR will return the position of the second set of parentheses.

ExampleExample

In the following simple example, REGEXP_INSTR searches a string that contains the a phone number for the first occurrence of a pattern that contains
three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_instr

 1
(1 row)

The command instructs REGEXP_INSTR to return the position of the first occurrence. If we modify the command to return the start of the second
occurrence of three consecutive digits:

edb=# SELECT REGEXP_INSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_instr

 5
(1 row)

REGEXP_INSTR returns 5 ; the second occurrence of three consecutive digits begins in the 5th position.

REGEXP_SUBSTR

The REGEXP_SUBSTR function searches a string for a pattern specified by a POSIX compliant regular expression. REGEXP_SUBSTR returns the string
that matches the pattern specified in the call to the function. The signature of the function is:

TEXT REGEXP_SUBSTR
(
 srcstr TEXT,
 pattern TEXT,
 position INT DEFAULT 1,
 occurrence INT DEFAULT 1,
 modifier TEXT DEFAULT NULL,
 subexpression INT DEFAULT 0
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 352

https://www.postgresql.org/docs/current/static/functions-matching.html

Parameters:Parameters:

srcstr

srcstr specifies the string to search.

pattern

pattern specifies the regular expression for which REGEXP_SUBSTR will search.

position

position specifies an integer value that indicates the start position in a source string. The default value is 1 .

occurrence

occurrence specifies which match is returned if more than one occurrence of the pattern occurs in the string that is searched. The default value is 1 .

modifier

modifier specifies values that control the pattern matching behavior. The default value is NULL . For a complete list of the modifiers supported by
Advanced Server, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/functions-matching.html

subexpression

subexpression is an integer value that identifies the portion of the pattern that will be returned by REGEXP_SUBSTR . The default value of
subexpression is 0 .

If you specify a value for subexpression , you must include one (or more) set of parentheses in the pattern that isolate a portion of the value being
searched for. The value specified by subexpression indicates which set of parentheses should be returned; for example, if subexpression is 2 ,
REGEXP_SUBSTR will return the value contained within the second set of parentheses.

ExampleExample

In the following simple example, REGEXP_SUBSTR searches a string that contains a phone number for the first set of three consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 1) FROM DUAL;
 regexp_substr

 800
(1 row)

It locates the first occurrence of three digits and returns the string (800) ; if we modify the command to check for the second occurrence of three
consecutive digits:

edb=# SELECT REGEXP_SUBSTR('800-555-1212', '[0-9][0-9][0-9]', 1, 2) FROM DUAL;
 regexp_substr

 555
(1 row)

REGEXP_SUBSTR returns 555 , the contents of the second substring.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 353

https://www.postgresql.org/docs/current/static/functions-matching.html

12.1.3.6 Pattern Matching Using the LIKE Operator

Advanced Server provides pattern matching using the traditional SQL LIKE operator. The syntax for the LIKE operator is as follows.

string LIKE pattern [ESCAPE escape-character]
string NOT LIKE pattern [ESCAPE escape-character]

Every pattern defines a set of strings. The LIKE expression returns TRUE if string is contained in the set of strings represented by pattern . As
expected, the NOT LIKE expression returns FALSE if LIKE returns TRUE , and vice versa. An equivalent expression is NOT (string LIKE
pattern) .

If pattern does not contain percent signs or underscore, then the pattern only represents the string itself; in that case LIKE acts like the equals
operator. An underscore (_) in pattern stands for (matches) any single character; a percent sign (%) matches any string of zero or more characters.

Some examples:

'abc' LIKE 'abc' true
'abc' LIKE 'a%' true
'abc' LIKE '_b_' true
'abc' LIKE 'c' false

LIKE pattern matches always cover the entire string. To match a pattern anywhere within a string, the pattern must therefore start and end with a
percent sign.

To match a literal underscore or percent sign without matching other characters, the respective character in pattern must be preceded by the escape
character. The default escape character is the backslash but a different one may be selected by using the ESCAPE clause. To match the escape character
itself, write two escape characters.

Note that the backslash already has a special meaning in string literals, so to write a pattern constant that contains a backslash you must write two
backslashes in an SQL statement. Thus, writing a pattern that actually matches a literal backslash means writing four backslashes in the statement. You
can avoid this by selecting a different escape character with ESCAPE ; then a backslash is not special to LIKE anymore. (But it is still special to the
string literal parser, so you still need two of them.)

It’s also possible to select no escape character by writing ESCAPE '' . This effectively disables the escape mechanism, which makes it impossible to turn
off the special meaning of underscore and percent signs in the pattern.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 354

12.1.3.7 Data Type Formatting Functions

The Advanced Server formatting functions described in the following table provide a powerful set of tools for converting various data types (date/time,
integer, floating point, numeric) to formatted strings and for converting from formatted strings to specific data types. These functions all follow a common
calling convention: the first argument is the value to be formatted and the second argument is a string template that defines the output or input format.

Function Return
Type

Description Example Result

TO_CHAR(DATE
[, format])

VARC
HAR2

Convert a date/time to a string with output,
format . If omitted default format is DD-

MON-YY.

TO_CHAR(SYSDATE, 'MM/DD/YYYY
HH12:MI:SS AM')

07/25/2007
09:43:02
AM

TO_CHAR(TIMEST
AMP [, format
])

VARC
HAR2

Convert a timestamp to a string with
output, format . If omitted default
format is DD-MON-YY.

TO_CHAR (CURRENT_TIMESTAMP,
'MM/DD/YYYY HH12:MI:SS AM')

08/13/2015
08:55:22
PM

TO_CHAR(INTEGE
R [, format])

VARC
HAR2

Convert an integer to a string with output,
format TO_CHAR(2412, '999,999S') 2,412+

TO_CHAR(NUMBER
[, format])

VARC
HAR2

Convert a decimal number to a string with
output, format TO_CHAR(10125.35, '999,999.99') 10,125.35

TO_CHAR(DOUBLE
PRECISION,
format)

VARC
HAR2

Convert a floating-point number to a string
with output, format

TO_CHAR (CAST(123.5282 AS REAL),
'999.99') 123.53

TO_DATE(string
[, format])

TIME
STAM
P

Convert a date or timestamp formatted
string to a TIMESTAMP data type

TO_DATE('2007-07-04 13:39:10',
'YYYY-MM-DD HH24:MI:SS')

TO_DATE('2007-07-04','YYYY-MM-DD')

04-JUL-07
13:39:10

04-JUL-07
00:00:00

TO_NUMBER(stri
ng [, format
])

NUMB
ER

Convert a number formatted string to a
NUMBER data type TO_NUMBER('2,412-', '999,999S') -2412

TO_TIMESTAMP(s
tring, format)

TIME
STAM
PTZ

Convert a timestamp formatted string to a
TIMESTAMPTZ data type

TO_TIMESTAMP('05 Dec 2000 08:30:25
pm', 'DD Mon YYYY hh12:mi:ss pm')

05-DEC-00
20:30:25
+05:30

TO_TIMESTAMP_T
Z(string,
format)

TIME
STAM
PTZ

Convert a timestamp formatted string to a
TIMESTAMPTZ data type

TO_TIMESTAMP_TZ ('2003/12/13
10:13:18 -8:00', 'YYYY/MM/DD
HH:MI:SS TZH:TZM')

13-DEC-03
23:43:18
+05:30

TO_CHAR, TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ

In an output template string (for TO_CHAR), there are certain patterns that are recognized and replaced with appropriately-formatted data from the value
to be formatted. Any text that is not a template pattern is simply copied verbatim. Similarly, in an input template string (for anything but TO_CHAR),
template patterns identify the parts of the input data string to be looked at and the values to be found there.

If you do not specify a date, month, or year when calling TO_TIMESTAMP , TO_TIMESTAMP_TZ or TO_DATE , then by default the output format
considers the first date of a current month or current year respectively. In the following example, date, month, and year is not specified in the input string;
TO_TIMESTAMP , TO_TIMESTAMP_TZ , and TO_DATE returns a default value of the first date of a current month and current year.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 355

edb=# select to_timestamp('12', 'HH');
 to_timestamp

 01-MAY-20 12:00:00 +05:30
(1 row)

edb=# select to_timestamp_tz('12', 'HH');
 to_timestamp_tz

 01-MAY-20 12:00:00 +05:30
(1 row)

edb=# select to_date('12', 'HH');
 to_date

 01-MAY-20 12:00:00
(1 row)

The following table shows the template patterns available for formatting date values using the TO_CHAR , TO_DATE , TO_TIMESTAMP , and
TO_TIMESTAMP_TZ functions.

Pattern Description

HH Hour of day (01-12)

HH12 Hour of day (01-12)

HH24 Hour of day (00-23)

MI Minute (00-59)

SS Second (00-59)

SSSS
S

Seconds past midnight (0-86399)

FFn Fractional seconds where n is an optional integer from 1 to 9 for the number of digits to return. If omitted, the default is 6.

AM
or
A.M.
or PM
or
P.M.

Meridian indicator (uppercase)

am
or
a.m.
or pm
or
p.m.

Meridian indicator (lowercase)

Y,YY
Y

Year (4 and more digits) with comma

YEAR Year (spelled out)

SYEA
R

Year (spelled out) (BC dates prefixed by a minus sign)

YYYY Year (4 and more digits)

SYYY
Y

Year (4 and more digits) (BC dates prefixed by a minus sign)

YYY Last 3 digits of year

YY Last 2 digits of year

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 356

Y Last digit of year

IYYY ISO year (4 and more digits)

IYY Last 3 digits of ISO year

IY Last 2 digits of ISO year

I Last 1 digit of ISO year

BC
or
B.C.
or AD
or
A.D.

Era indicator (uppercase)

bc
or
b.c.
or ad
or
a.d.

Era indicator (lowercase)

MONT
H

Full uppercase month name

Mont
h

Full mixed-case month name

mont
h

Full lowercase month name

MON Abbreviated uppercase month name (3 chars in English, localized lengths vary)

Mon Abbreviated mixed-case month name (3 chars in English, localized lengths vary)

mon Abbreviated lowercase month name (3 chars in English, localized lengths vary)

MM Month number (01-12)

DAY Full uppercase day name

Day Full mixed-case day name

day Full lowercase day name

DY Abbreviated uppercase day name (3 chars in English, localized lengths vary)

Dy Abbreviated mixed-case day name (3 chars in English, localized lengths vary)

dy Abbreviated lowercase day name (3 chars in English, localized lengths vary)

DDD Day of year (001-366)

DD Day of month (01-31)

D Day of week (1-7; Sunday is 1)

W Week of month (1-5) (The first week starts on the first day of the month)

WW Week number of year (1-53) (The first week starts on the first day of the year)

IW ISO week number of year; the first Thursday of the new year is in week 1

CC Century (2 digits); the 21st century starts on 2001-01-01

SCC Same as CC except BC dates are prefixed by a minus sign

J Julian Day (days since January 1, 4712 BC)

Q Quarter

RM Month in Roman numerals (I-XII; I=January) (uppercase)

rm Month in Roman numerals (i-xii; i=January) (lowercase)

Pattern Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 357

RR

First 2 digits of the year when given only the last 2 digits of the year. Result is based upon an algorithm using the current year and the given
2-digit year. The first 2 digits of the given 2-digit year will be the same as the first 2 digits of the current year with the following exceptions: If
the given 2-digit year is <50 and the last 2 digits of the current year is >= 50, then the first 2 digits for the given year is 1 greater than the
first 2 digits of the current year. If the given 2-digit year is >= 50 and the last 2 digits of the current year is <50, then the first 2 digits for the
given year is 1 less than the first 2 digits of the current year.

RRRR Only affects TO_DATE function. Allows specification of 2-digit or 4-digit year. If 2-digit year given, then returns first 2 digits of year like RR
format. If 4-digit year given, returns the given 4-digit year.

TZH Time-zone hours

TZM Time-zone minutes

Pattern Description

Date and Time Modifiers

Certain modifiers may be applied to any template pattern to alter its behavior. For example, FMMonth is the Month pattern with the FM modifier. The
following table shows the modifier patterns for date/time formatting.

Modifier Description Example

FM prefix Fill mode (suppress padding blanks and zeros) FMMonth

TH suffix Uppercase ordinal number suffix DDTH

th suffix Lowercase ordinal number suffix DDth

FX prefix Fixed format global option (see usage notes)
FX Month DD
Day

SP suffix Spell mode DDSP

Usage notes for date/time formatting:

FM suppresses leading zeroes and trailing blanks that would otherwise be added to make the output of a pattern fixed-width.

TO_TIMESTAMP , TO_TIMESTAMP_TZ , and TO_DATE skip multiple blank spaces in the input string if the FX option is not used. FX must be
specified as the first item in the template. For example:

TO_TIMESTAMP('2000 - JUN', 'YYYY-MON') is correct, but
TO_TIMESTAMP('2000 JUN', 'FXYYYY MON') and
TO_TIMESTAMP_TZ('2000 JUN', 'FXYYYY MON') returns an error
because TO_TIMESTAMP and TO_TIMESTAMP_TZ expects one space
only.

Ordinary text is allowed in TO_CHAR templates and will be output literally.

In conversions from string to timestamp , timestamptz , or date , the CC field is ignored if there is a YYY , YYYY or Y,YYY field. If CC
is used with YY or Y then the year is computed as (CC-1)*100+YY .

The following table shows some examples of the use of the TO_CHAR and TO_DATE functions:

Expression Result

TO_CHAR(CURRENT_TIMESTAMP, 'Day, DD HH12:MI:SS') 'Tuesday , 06 05:39:18'

TO_CHAR(CURRENT_TIMESTAMP, 'FM-Day, FMDD HH12:MI:SS') 'Tuesday, 6 05:39:18'

TO_CHAR(-0.1, '99.99') ' -.10'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 358

TO_CHAR(-0.1, 'FM9.99') '-.1'

TO_CHAR(0.1, '0.9') ' 0.1'

TO_CHAR(12, '9990999.9') ' 0012.0'

TO_CHAR(12, 'FM9990999.9') '0012.'

TO_CHAR(485, '999') ' 485'

TO_CHAR(-485, '999') '-485'

TO_CHAR(1485, '9,999') ' 1,485'

TO_CHAR(1485, '9G999') ' 1,485'

TO_CHAR(148.5, '999.999') ' 148.500'

TO_CHAR(148.5, 'FM999.999') '148.5'

TO_CHAR(148.5, 'FM999.990') '148.500'

TO_CHAR(148.5, '999D999') ' 148.500'

TO_CHAR(3148.5, '9G999D999') ' 3,148.500'

TO_CHAR(-485, '999S') '485-'

TO_CHAR(-485, '999MI') '485-'

TO_CHAR(485, '999MI') '485 '

TO_CHAR(485, 'FM999MI') '485'

TO_CHAR(-485, '999PR') '<485>'

TO_CHAR(485, 'L999') '$ 485'

TO_CHAR(485, 'RN') ' CDLXXXV'

TO_CHAR(485, 'FMRN') 'CDLXXXV'

TO_CHAR(5.2, 'FMRN') 'V'

TO_CHAR(12, '99V999') ' 12000'

TO_CHAR(12.4, '99V999') ' 12400'

TO_CHAR(12.45, '99V9') ' 125'

Expression Result

The following table shows some examples of the use of the TO_TIMESTAMP_TZ function:

Expression Result

TO_TIMESTAMP_TZ('12-JAN-2010', 'DD-MONTH-YYYY') '12-JAN-10 00:00:00 +05:30'

TO_TIMESTAMP_TZ('03-APR-07 09:12:21 P.M','DD-MON-YY HH12:MI:SS A.M') '03-APR-07 09:12:21 +05:30'

TO_TIMESTAMP_TZ('2003/12/13 10:13:18 -8:00', 'YYYY/MM/DD HH:MI:SS
TZH:TZM')

'13-DEC-03 23:43:18 +05:30'

TO_TIMESTAMP_TZ('20-MAR-20 04:30:00 +08:00', 'DD-MON-YY HH:MI:SS
TZH:TZM')

'20-MAR-20 02:00:00 +05:30'

TO_TIMESTAMP_TZ('10-Sep-02 14:10:10.123000', 'DD-MON-RR HH24:MI:SS.FF') '10-SEP-02 14:10:10.123
+05:30'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 359

IMMUTABLE TO_CHAR(TIMESTAMP, format) Function

There are certain cases of the TO_CHAR function that can result in usage of an IMMUTABLE form of the function. Basically, a function is IMMUTABLE
if the function does not modify the database, and the function returns the same, consistent value dependent upon only its input parameters. That is, the
settings of configuration parameters, the locale, the content of the database, etc. do not affect the results returned by the function.

For more information about function volatility categories VOLATILE , STABLE , and IMMUTABLE , see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/xfunc-volatility.html

A particular advantage of an IMMUTABLE function is that it can be used in the CREATE INDEX command to create an index based on that function.

In order for the TO_CHAR function to use the IMMUTABLE form the following conditions must be satisfied:

The first parameter of the TO_CHAR function must be of data type TIMESTAMP .
The format specified in the second parameter of the TO_CHAR function must not affect the return value of the function based on factors such as
language, locale, etc. For example a format of 'YYYY-MM-DD HH24:MI:SS' can be used for an IMMUTABLE form of the function since,
regardless of locale settings, the result of the function is the date and time expressed solely in numeric form. However, a format of 'DD-MON-
YYYY' cannot be used for an IMMUTABLE form of the function because the 3-character abbreviation of the month may return different results
depending upon the locale setting.

Format patterns that result in a non-immutable function include any variations of spelled out or abbreviated months (MONTH, MON) , days (DAY,
DY) , median indicators (AM, PM) , or era indicators (BC, AD) .

For the following example, a table with a TIMESTAMP column is created.

CREATE TABLE ts_tbl (ts_col TIMESTAMP);

The following shows the successful creation of an index with the IMMUTABLE form of the TO_CHAR function.

edb=# CREATE INDEX ts_idx ON ts_tbl (TO_CHAR(ts_col,'YYYY-MM-DD HH24:MI:SS'));
CREATE INDEX
edb=# \dS ts_idx
 Index "public.ts_idx"
 Column | Type | Definition
---------+-------------------+---
 to_char | character varying | to_char(ts_col, 'YYYY-MM-DD HH24:MI:SS'::character varying)
btree, for table "public.ts_tbl"

The following results in an error because the format specified in the TO_CHAR function prevents the use of the IMMUTABLE form since the 3-character
month abbreviation, MON , may result in different return values based on the locale setting.

edb=# CREATE INDEX ts_idx_2 ON ts_tbl (TO_CHAR(ts_col, 'DD-MON-YYYY'));
ERROR: functions in index expression must be marked IMMUTABLE

TO_NUMBER

The following table lists the template patterns available for formatting numeric values:

Pattern Description

9 Value with the specified number of digits

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 360

https://www.postgresql.org/docs/current/static/xfunc-volatility.html

0 Value with leading zeroes

.
(period)

Decimal point

, (comma) Group (thousand) separator

$ Dollar sign

S Sign anchored to number (uses locale).

L Currency symbol (uses locale)

Pattern Description

Note that 9 results in a value with the same number of digits as there are 9s . If a digit is not available, the server ignores the corresponding 9s . The S
pattern does not support + and $ pattern does not support decimal points in the expression.

The following table shows some examples of the use of the TO_NUMBER function:

Expression Result

TO_NUMBER('-65', 'S99') ' -65'

TO_NUMBER('$65', 'L99') ' 65'

TO_NUMBER('9678584', '9999999') ' 9678584'

TO_NUMBER('123,456,789', '999,999,999') ' 123456789'

TO_NUMBER('1210.73', '9999.99') ' 1210.73'

TO_NUMBER('1210.73') ' 1210.73'

TO_NUMBER('0101.010','FM99999999.99999') ' 101.010'

Numeric Modifiers

The following table shows the modifier pattern for numeric formatting:

Pattern Description Example

FM prefix Fill mode (suppress trailing zeroes and padding blanks) FM99.99

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 361

12.1.3.8 Date/Time Functions and Operators

The Date/Time Functions table shows the available functions for date/time value processing, with details appearing in the following subsections. The
following table illustrates the behaviors of the basic arithmetic operators (+, -) . For formatting functions, refer to IMMUTABLE TO_CHAR(TIMESTAMP,
format) Function. You should be familiar with the background information on date/time data types, see Date/Time Types.

Operator Example Result

plus (+) DATE '2001-09-28' + 7 05-OCT-01
00:00:00

plus (+) TIMESTAMP '2001-09-28 13:30:00' + 3 01-OCT-01
13:30:00

minus (-) DATE '2001-10-01' – 7 24-SEP-01
00:00:00

minus (-) TIMESTAMP '2001-09-28 13:30:00' - 3 25-SEP-01
13:30:00

minus (-) TIMESTAMP '2001-09-29 03:00:00' - TIMESTAMP '2001-09-27
12:00:00'

@ 1 day 15 hours

In the date/time functions of the following table the use of the DATE and TIMESTAMP data types are interchangeable.

Function Return
Type

Description Example Result

ADD_MONTHS
(DATE,
NUMBER)

DATE Add months to a date
ADD_MONTHS ('28-FEB-97',
,3.8)

31-MAY-97
00:00:00

CURRENT_DATE DATE Current date CURRENT_DATE 04-JUL-07

CURRENT_TIMES
TAMP

TIME
STAM
P

Returns the current date and time CURRENT_TIMESTAMP
04-JUL-07
15:33:23.48
4

EXTRACT(field
FROM
TIMESTAMP)

DOUB
LE
PREC
ISIO
N

Get subfield
EXTRACT(hour FROM TIMESTAMP
'2001-02-16 20:38:40') 20

LAST_DAY(DATE
) DATE

Returns the last day of the month represented by the
given date. If the given date contains a time portion,
it is carried forward to the result unchanged

LAST_DAY('14-APR-98')
30-APR-98
00:00:00

LOCALTIMESTAM
P [
(precision)]

TIME
STAM
P

Current date and time (start of current transaction) LOCALTIMESTAMP
04-JUL-07
15:33:23.48
4

MONTHS_BETWEE
N (DATE,
DATE)

NUMB
ER Number of months between two dates

MONTHS_BETWEEN ('28-FEB-07',
'30-NOV-06') 3

NEXT_DAY(DATE
, dayofweek)

DATE Date falling on dayofweek following specified
date

NEXT_DAY('16-APR-07',FRI') 20-APR-07
00:00:00

NEW_TIME(DATE
, VARCHAR,
VARCHAR)

DATE Converts a date and time to an alternate time zone
NEW_TIME (TO_DATE
'2005/05/29 01:45', 'AST',
'PST')

2005/05/29
21:45:00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 362

NUMTODSINTERV
AL(NUMBER,
INTERVAL)

INTE
RVAL

Converts a number to a specified day or second
interval

SELECT numtodsinterval(100,
‘hour’);

4 days
04:00:00

NUMTOYMINTERV
AL(NUMBER,
INTERVAL)

INTE
RVAL

Converts a number to a specified year or month
interval

SELECT numtoyminterval(100,
‘month’);

8 years 4
mons

ROUND(DATE [,
format])

DATE Date rounded according to format ROUND(TO_DATE('29-MAY-
05'),'MON')

01-JUN-05
00:00:00

SYS_EXTRACT_U
TC(TIMESTAMP
WITH TIME
ZONE)

TIME
STAM
P

Returns Coordinated Universal Time
SYS_EXTRACT_UTC(CAST ('24-
MAR-11 12:30:00PM -04:00' AS
TIMESTAMP WITH TIME ZONE))

 24-MAR-11
16:30:00

SYSDATE DATE Returns current date and time SYSDATE 01-AUG-12
11:12:34

SYSTIMESTAMP(
)

TIME
STAM
P

Returns current date and time SYSTIMESTAMP

01-AUG-12
11:11:23.
665229 -
07:00

TRUNC(DATE
[format])

DATE Truncate according to format TRUNC(TO_DATE ('29-MAY-05'),
'MON')

01-MAY-05
00:00:00

Function Return
Type

Description Example Result

ADD_MONTHS

The ADD_MONTHS functions adds (or subtracts if the second parameter is negative) the specified number of months to the given date. The resulting day of
the month is the same as the day of the month of the given date except when the day is the last day of the month in which case the resulting date always
falls on the last day of the month.

Any fractional portion of the number of months parameter is truncated before performing the calculation.

If the given date contains a time portion, it is carried forward to the result unchanged.

The following are examples of the ADD_MONTHS function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 363

SELECT ADD_MONTHS('13-JUN-07',4) FROM DUAL;

 add_months

 13-OCT-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-DEC-06',2) FROM DUAL;

 add_months

 28-FEB-07 00:00:00
(1 row)

SELECT ADD_MONTHS('31-MAY-04',-3) FROM DUAL;

 add_months

 29-FEB-04 00:00:00
(1 row)

CURRENT DATE/TIME

Advanced Server provides a number of functions that return values related to the current date and time. These functions all return values based on the
start time of the current transaction.

CURRENT_DATE
CURRENT_TIMESTAMP
LOCALTIMESTAMP
LOCALTIMESTAMP(precision)

CURRENT_DATE returns the current date and time based on the start time of the current transaction. The value of CURRENT_DATE will not change if
called multiple times within a transaction.

SELECT CURRENT_DATE FROM DUAL;

 date

 06-AUG-07

CURRENT_TIMESTAMP returns the current date and time. When called from a single SQL statement, it will return the same value for each occurrence
within the statement. If called from multiple statements within a transaction, may return different values for each occurrence. If called from a function,
may return a different value than the value returned by current_timestamp in the caller.

SELECT CURRENT_TIMESTAMP, CURRENT_TIMESTAMP FROM DUAL;

 current_timestamp | current_timestamp
----------------------------------+----------------------------------
 02-SEP-13 17:52:29.261473 +05:00 | 02-SEP-13 17:52:29.261474 +05:00

LOCALTIMESTAMP can optionally be given a precision parameter which causes the result to be rounded to that many fractional digits in the seconds
field. Without a precision parameter, the result is given to the full available precision.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 364

SELECT LOCALTIMESTAMP FROM DUAL;

 timestamp

 06-AUG-07 16:11:35.973
(1 row)

SELECT LOCALTIMESTAMP(2) FROM DUAL;

 timestamp

 06-AUG-07 16:11:44.58
(1 row)

Since these functions return the start time of the current transaction, their values do not change during the transaction. This is considered a feature: the
intent is to allow a single transaction to have a consistent notion of the “current” time, so that multiple modifications within the same transaction bear the
same time stamp. Other database systems may advance these values more frequently.

EXTRACT

The EXTRACT function retrieves subfields such as year or hour from date/time values. The EXTRACT function returns values of type DOUBLE
PRECISION . The following are valid field names:

YEAR

The year field

SELECT EXTRACT(YEAR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2001
(1 row)

MONTH

The number of the month within the year (1 - 12)

SELECT EXTRACT(MONTH FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 2
(1 row)

DAY

The day (of the month) field (1 - 31)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 365

SELECT EXTRACT(DAY FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 16
(1 row)

HOUR

The hour field (0 - 23)

SELECT EXTRACT(HOUR FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 20
(1 row)

MINUTE

The minutes field (0 - 59)

SELECT EXTRACT(MINUTE FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 38
(1 row)

SECOND

The seconds field, including fractional parts (0 - 59)

SELECT EXTRACT(SECOND FROM TIMESTAMP '2001-02-16 20:38:40') FROM DUAL;

 date_part

 40
(1 row)

MONTHS_BETWEEN

The MONTHS_BETWEEN function returns the number of months between two dates. The result is a numeric value which is positive if the first date is
greater than the second date or negative if the first date is less than the second date.

The result is always a whole number of months if the day of the month of both date parameters is the same, or both date parameters fall on the last day of
their respective months.

The following are some examples of the MONTHS_BETWEEN function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 366

SELECT MONTHS_BETWEEN('15-DEC-06','15-OCT-06') FROM DUAL;

 months_between

 2
(1 row)

SELECT MONTHS_BETWEEN('15-OCT-06','15-DEC-06') FROM DUAL;

 months_between

 -2
(1 row)

SELECT MONTHS_BETWEEN('31-JUL-00','01-JUL-00') FROM DUAL;

 months_between

 0.967741935
(1 row)

SELECT MONTHS_BETWEEN('01-JAN-07','01-JAN-06') FROM DUAL;

 months_between

 12
(1 row)

NEXT_DAY

The NEXT_DAY function returns the first occurrence of the given weekday strictly greater than the given date. At least the first three letters of the
weekday must be specified - e.g., SAT . If the given date contains a time portion, it is carried forward to the result unchanged.

The following are examples of the NEXT_DAY function.

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'SUNDAY') FROM DUAL;

 next_day

 19-AUG-07 00:00:00
(1 row)

SELECT NEXT_DAY(TO_DATE('13-AUG-07','DD-MON-YY'),'MON') FROM DUAL;

 next_day

 20-AUG-07 00:00:00
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 367

NEW_TIME

The NEW_TIME function converts a date and time from one time zone to another. NEW_TIME returns a value of type DATE . The syntax is:

NEW_TIME(DATE, time_zone1, time_zone2)

time_zone1 and time_zone2 must be string values from the Time Zone column of the following table:

Time Zone Offset from UTC Description

AST UTC+4 Atlantic Standard Time

ADT UTC+3 Atlantic Daylight Time

BST UTC+11 Bering Standard Time

BDT UTC+10 Bering Daylight Time

CST UTC+6 Central Standard Time

CDT UTC+5 Central Daylight Time

EST UTC+5 Eastern Standard Time

EDT UTC+4 Eastern Daylight Time

GMT UTC Greenwich Mean Time

HST UTC+10 Alaska-Hawaii Standard Time

HDT UTC+9 Alaska-Hawaii Daylight Time

MST UTC+7 Mountain Standard Time

MDT UTC+6 Mountain Daylight Time

NST UTC+3:30 Newfoundland Standard
Time

PST UTC+8 Pacific Standard Time

PDT UTC+7 Pacific Daylight Time

YST UTC+9 Yukon Standard Time

YDT UTC+8 Yukon Daylight Time

Following is an example of the NEW_TIME function:

SELECT NEW_TIME(TO_DATE('08-13-07 10:35:15','MM-DD-YY HH24:MI:SS'),'AST',
'PST') "Pacific Standard Time" FROM DUAL;

Pacific Standard Time

 13-AUG-07 06:35:15
(1 row)

NUMTODSINTERVAL

The NUMTODSINTERVAL function converts a numeric value to a time interval that includes day through second interval units. When calling the function,
specify the smallest fractional interval type to be included in the result set. The valid interval types are DAY , HOUR , MINUTE , and SECOND .

The following example converts a numeric value to a time interval that includes days and hours:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 368

SELECT numtodsinterval(100, ‘hour’);
numtodsinterval

4 days 04:00:00
(1 row)

The following example converts a numeric value to a time interval that includes minutes and seconds:

SELECT numtodsinterval(100, ‘second’);
numtodsinterval

1 min 40 secs
(1 row)

NUMTOYMINTERVAL

The NUMTOYMINTERVAL function converts a numeric value to a time interval that includes year through month interval units. When calling the function,
specify the smallest fractional interval type to be included in the result set. The valid interval types are YEAR and MONTH .

The following example converts a numeric value to a time interval that includes years and months:

SELECT numtoyminterval(100, ‘month’);
numtoyminterval

8 years 4 mons
(1 row)

The following example converts a numeric value to a time interval that includes years only:

SELECT numtoyminterval(100, ‘year’);
numtoyminterval

100 years
(1 row)

ROUND

The ROUND function returns a date rounded according to a specified template pattern. If the template pattern is omitted, the date is rounded to the
nearest day. The following table shows the template patterns for the ROUND function.

Pattern Description

CC, SCC Returns January 1, cc 01 where cc is first 2 digits of the given year if last 2 digits <= 50, or 1 greater than the first 2
digits of the given year if last 2 digits > 50; (for AD years)

SYYY, YYYY,
YEAR, SYEAR, YYY,
YY, Y

Returns January 1, yyyy where yyyy is rounded to the nearest year; rounds down on June 30, rounds up on July 1

IYYY, IYY, IY, I Rounds to the beginning of the ISO year which is determined by rounding down if the month and day is on or before June
30th, or by rounding up if the month and day is July 1st or later

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 369

Q
Returns the first day of the quarter determined by rounding down if the month and day is on or before the 15th of the
second month of the quarter, or by rounding up if the month and day is on the 16th of the second month or later of the
quarter

MONTH, MON, MM,
RM

Returns the first day of the specified month if the day of the month is on or prior to the 15th; returns the first day of the
following month if the day of the month is on the 16th or later

WW Round to the nearest date that corresponds to the same day of the week as the first day of the year

IW Round to the nearest date that corresponds to the same day of the week as the first day of the ISO year

W Round to the nearest date that corresponds to the same day of the week as the first day of the month

DDD, DD, J Rounds to the start of the nearest day; 11:59:59 AM or earlier rounds to the start of the same day; 12:00:00 PM or later
rounds to the start of the next day

DAY, DY, D Rounds to the nearest Sunday

HH, HH12, HH24 Round to the nearest hour

MI Round to the nearest minute

Pattern Description

Following are examples of usage of the ROUND function.

The following examples round to the nearest hundred years.

SELECT TO_CHAR(ROUND(TO_DATE('1950','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-1901
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-2001
(1 row)

The following examples round to the nearest year.

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-2000
(1 row)

The following examples round to the nearest ISO year. The first example rounds to 2004 and the ISO year for 2004 begins on December 29th of 2003. The
second example rounds to 2005 and the ISO year for 2005 begins on January 3rd of that same year.

(An ISO year begins on the first Monday from which a 7 day span, Monday thru Sunday, contains at least 4 days of the new year. Thus, it is possible for the
beginning of an ISO year to start in December of the prior year.)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 370

SELECT TO_CHAR(ROUND(TO_DATE('30-JUN-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

 ISO Year

 03-JAN-2005
(1 row)

The following example round to the nearest quarter:

SELECT ROUND(TO_DATE('15-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-APR-07 00:00:00
(1 row)

The following example round to the nearest month:

SELECT ROUND(TO_DATE('15-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-JAN-08 00:00:00
(1 row)

The following examples round to the nearest week. The first day of 2007 lands on a Monday so in the first example, January 18th is closest to the Monday
that lands on January 15th. In the second example, January 19th is closer to the Monday that falls on January 22nd.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 371

SELECT ROUND(TO_DATE('18-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 22-JAN-07 00:00:00
(1 row)

The following examples round to the nearest ISO week. An ISO week begins on a Monday. In the first example, January 1, 2004 is closest to the Monday that
lands on December 29, 2003. In the second example, January 2, 2004 is closer to the Monday that lands on January 5, 2004.

SELECT ROUND(TO_DATE('01-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

SELECT ROUND(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 05-JAN-04 00:00:00
(1 row)

The following examples round to the nearest week where a week is considered to start on the same day as the first day of the month.

SELECT ROUND(TO_DATE('05-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 08-MAR-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 01-MAR-07 00:00:00
(1 row)

The following examples round to the nearest day.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 372

SELECT ROUND(TO_DATE('04-AUG-07 11:59:59 AM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 05-AUG-07 00:00:00
(1 row)

The following examples round to the start of the nearest day of the week (Sunday).

SELECT ROUND(TO_DATE('08-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

SELECT ROUND(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 12-AUG-07 00:00:00
(1 row)

The following examples round to the nearest hour.

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:29','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour"
FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour" FROM
DUAL;

 Hour

 09-AUG-07 09:00:00
(1 row)

The following examples round to the nearest minute.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 373

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:29','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

SELECT TO_CHAR(ROUND(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:31:00
(1 row)

SYSDATE

The SYSDATE function returns the current date and time (timestamp without timezone) of the operating system on which the database server resides. The
function is STABLE and requires no arguments.

When called from a single SQL statement, it will return the same value for each occurrence within the statement. If called from multiple statements within
a transaction, may return different values for each occurrence. If called from a function, may return a different value than the value returned by SYSDATE
in the caller.

The following example demonstrates a call to SYSDATE :

SELECT SYSDATE, SYSDATE FROM DUAL;
 sysdate | sysdate
--------------------+--------------------
 28-APR-20 16:45:28 | 28-APR-20 16:45:28
(1 row)

TRUNC

The TRUNC function returns a date truncated according to a specified template pattern. If the template pattern is omitted, the date is truncated to the
nearest day. The following table shows the template patterns for the TRUNC function.

Pattern Description

CC, SCC Returns January 1, cc 01 where cc is first 2 digits of the given year

SYYY, YYYY, YEAR, SYEAR,
YYY, YY, Y

Returns January 1, yyyy where yyyy is the given year

IYYY, IYY, IY, I Returns the start date of the ISO year containing the given date

Q Returns the first day of the quarter containing the given date

MONTH, MON, MM, RM Returns the first day of the specified month

WW Returns the largest date just prior to, or the same as the given date that corresponds to the same day of the
week as the first day of the year

IW Returns the start of the ISO week containing the given date

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 374

W Returns the largest date just prior to, or the same as the given date that corresponds to the same day of the
week as the first day of the month

DDD, DD, J Returns the start of the day for the given date

DAY, DY, D Returns the start of the week (Sunday) containing the given date

HH, HH12, HH24 Returns the start of the hour

MI Returns the start of the minute

Pattern Description

Following are examples of usage of the TRUNC function.

The following example truncates down to the hundred years unit.

SELECT TO_CHAR(TRUNC(TO_DATE('1951','YYYY'),'CC'),'DD-MON-YYYY') "Century" FROM DUAL;

 Century

 01-JAN-1901
(1 row)

The following example truncates down to the year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-1999','DD-MON-YYYY'),'Y'),'DD-MON-YYYY') "Year" FROM DUAL;

 Year

 01-JAN-1999
(1 row)

The following example truncates down to the beginning of the ISO year.

SELECT TO_CHAR(TRUNC(TO_DATE('01-JUL-2004','DD-MON-YYYY'),'IYYY'),'DD-MON-YYYY') "ISO Year" FROM DUAL;

 ISO Year

 29-DEC-2003
(1 row)

The following example truncates down to the start date of the quarter.

SELECT TRUNC(TO_DATE('16-FEB-07','DD-MON-YY'),'Q') "Quarter" FROM DUAL;

 Quarter

 01-JAN-07 00:00:00
(1 row)

The following example truncates to the start of the month.

SELECT TRUNC(TO_DATE('16-DEC-07','DD-MON-YY'),'MONTH') "Month" FROM DUAL;

 Month

 01-DEC-07 00:00:00
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 375

The following example truncates down to the start of the week determined by the first day of the year. The first day of 2007 lands on a Monday so the
Monday just prior to January 19th is January 15th.

SELECT TRUNC(TO_DATE('19-JAN-07','DD-MON-YY'),'WW') "Week" FROM DUAL;

 Week

 15-JAN-07 00:00:00
(1 row)

The following example truncates to the start of an ISO week. An ISO week begins on a Monday. January 2, 2004 falls in the ISO week that starts on Monday,
December 29, 2003.

SELECT TRUNC(TO_DATE('02-JAN-04','DD-MON-YY'),'IW') "ISO Week" FROM DUAL;

 ISO Week

 29-DEC-03 00:00:00
(1 row)

The following example truncates to the start of the week where a week is considered to start on the same day as the first day of the month.

SELECT TRUNC(TO_DATE('21-MAR-07','DD-MON-YY'),'W') "Week" FROM DUAL;

 Week

 15-MAR-07 00:00:00
(1 row)

The following example truncates to the start of the day.

SELECT TRUNC(TO_DATE('04-AUG-07 12:00:00 PM','DD-MON-YY HH:MI:SS AM'),'J')
"Day" FROM DUAL;

 Day

 04-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the week (Sunday).

SELECT TRUNC(TO_DATE('09-AUG-07','DD-MON-YY'),'DAY') "Day of Week" FROM DUAL;

 Day of Week

 05-AUG-07 00:00:00
(1 row)

The following example truncates to the start of the hour.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 376

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30','DD-MON-YY HH:MI'),'HH'),'DD-MON-YY HH24:MI:SS') "Hour"
FROM DUAL;

 Hour

 09-AUG-07 08:00:00
(1 row)

The following example truncates to the minute.

SELECT TO_CHAR(TRUNC(TO_DATE('09-AUG-07 08:30:30','DD-MON-YY
HH:MI:SS'),'MI'),'DD-MON-YY HH24:MI:SS') "Minute" FROM DUAL;

 Minute

 09-AUG-07 08:30:00
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 377

12.1.3.9 Sequence Manipulation Functions

This section describes Advanced Server’s functions for operating on sequence objects. Sequence objects (also called sequence generators or just
sequences) are special single-row tables created with the CREATE SEQUENCE command. A sequence object is usually used to generate unique
identifiers for rows of a table. The sequence functions, listed below, provide simple, multiuser-safe methods for obtaining successive sequence values from
sequence objects.

sequence.NEXTVAL
sequence.CURRVAL

sequence is the identifier assigned to the sequence in the CREATE SEQUENCE command. The following describes the usage of these functions.

NEXTVAL

Advance the sequence object to its next value and return that value. This is done atomically: even if multiple sessions execute NEXTVAL concurrently,
each will safely receive a distinct sequence value.

CURRVAL

Return the value most recently obtained by NEXTVAL for this sequence in the current session. (An error is reported if NEXTVAL has never been called
for this sequence in this session.) Notice that because this is returning a session-local value, it gives a predictable answer whether or not other sessions
have executed NEXTVAL since the current session did.

If a sequence object has been created with default parameters, NEXTVAL calls on it will return successive values beginning with 1. Other behaviors can
be obtained by using special parameters in the CREATE SEQUENCE command.

ImportantImportant: To avoid blocking of concurrent transactions that obtain numbers from the same sequence, a NEXTVAL operation is never rolled back; that is,
once a value has been fetched it is considered used, even if the transaction that did the NEXTVAL later aborts. This means that aborted transactions may
leave unused "holes" in the sequence of assigned values.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 378

12.1.3.10 Conditional Expressions

The following section describes the SQL-compliant conditional expressions available in Advanced Server.

CASE

The SQL CASE expression is a generic conditional expression, similar to if/else statements in other languages:

CASE WHEN condition THEN result
 [WHEN ...]
 [ELSE result]
END

CASE clauses can be used wherever an expression is valid. condition is an expression that returns a BOOLEAN result. If the result is TRUE then the
value of the CASE expression is the result that follows the condition. If the result is FALSE any subsequent WHEN clauses are searched in the same
manner. If no WHEN condition is TRUE then the value of the CASE expression is the result in the ELSE clause. If the ELSE clause is omitted
and no condition matches, the result is NULL .

An example:

SELECT * FROM test;

 a

 1
 2
 3
(3 rows)

SELECT a,
 CASE WHEN a=1 THEN 'one'
 WHEN a=2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

The data types of all the result expressions must be convertible to a single output type.

The following “simple” CASE expression is a specialized variant of the general form above:

CASE expression
 WHEN value THEN result
 [WHEN ...]
 [ELSE result]
END

The expression is computed and compared to all the value specifications in the WHEN clauses until one is found that is equal. If no match is found,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 379

The expression is computed and compared to all the value specifications in the WHEN clauses until one is found that is equal. If no match is found,
the result in the ELSE clause (or a null value) is returned.

The example above can be written using the simple CASE syntax:

SELECT a,
 CASE a WHEN 1 THEN 'one'
 WHEN 2 THEN 'two'
 ELSE 'other'
 END
FROM test;

 a | case
---+-------
 1 | one
 2 | two
 3 | other
(3 rows)

A CASE expression does not evaluate any subexpressions that are not needed to determine the result. For example, this is a possible way of avoiding a
division-by-zero failure:

SELECT ... WHERE CASE WHEN x <> 0 THEN y/x > 1.5 ELSE false END;

COALESCE

The COALESCE function returns the first of its arguments that is not null. Null is returned only if all arguments are null.

COALESCE(value [, value2] ...)

It is often used to substitute a default value for null values when data is retrieved for display or further computation. For example:

SELECT COALESCE(description, short_description, '(none)') ...

Like a CASE expression, COALESCE will not evaluate arguments that are not needed to determine the result; that is, arguments to the right of the first
non-null argument are not evaluated. This SQL-standard function provides capabilities similar to NVL and IFNULL , which are used in some other
database systems.

NULLIF

The NULLIF function returns a null value if value1 and value2 are equal; otherwise it returns value1 .

NULLIF(value1, value2)

This can be used to perform the inverse operation of the COALESCE example given above:

SELECT NULLIF(value1, '(none)') ...

If value1 is (none), return a null, otherwise return value1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 380

NVL

The NVL function returns the first of its arguments that is not null. NVL evaluates the first expression; if that expression evaluates to NULL , NVL
returns the second expression.

NVL(expr1, expr2)

The return type is the same as the argument types; all arguments must have the same data type (or be coercible to a common type). NVL returns NULL if
all arguments are NULL . '' is considered as unknown and if the arguments data type are not coercible to the common data type then NVL throws an
error.

ExamplesExamples

1. The following example computes a bonus for non-commissioned employees, If an employee is a commissioned employee,
this expression returns the employees commission; if the employee is not a commissioned employee (that is, his commission is NULL), this
expression returns a bonus that is 10% of his salary.

bonus = NVL(emp.commission, emp.salary * .10)

2. In the following example, the type of 1 is numeric and the type of '' is considered as unknown. Therefore PostgreSQL decides that the common type
ought to be numeric and tries to interpret the empty string as a numeric value, which produces the indicated error.

NVL2

NVL2 evaluates an expression, and returns either the second or third expression, depending on the value of the first expression. If the first expression is
not NULL , NVL2 returns the value in expr2 ; if the first expression is NULL , NVL2 returns the value in expr3 .

NVL2(expr1, expr2, expr3)

The return type is the same as the argument types; all arguments must have the same data type (or be coercible to a common type).

The following example computes a bonus for commissioned employees - if a given employee is a commissioned employee, this expression returns an
amount equal to 110% of his commission; if the employee is not a commissioned employee (that is, his commission is NULL), this expression returns 0 .

bonus = NVL2(emp.commission, emp.commission * 1.1, 0)

GREATEST and LEAST

The GREATEST and LEAST functions select the largest or smallest value from a list of any number of expressions.

GREATEST(value [, value2] ...)
LEAST(value [, value2] ...)

The expressions must all be convertible to a common data type, which will be the type of the result. Null values in the list are ignored. The result will be null
only if all the expressions evaluate to null.

edb==# selectselect nvl('',1);
ERROR: invalid input syntax forfor typetype numeric:
""

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 381

NoteNote

The GREATEST and LEAST are not in the SQL standard, but are a common extension.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 382

12.1.3.11 Aggregate Functions

Aggregate functions compute a single result value from a set of input values. The built-in aggregate functions are listed in the following tables.

Function Argument Type Return Type Description

AVG
(expre
ssion)

INTEGER, REAL,
DOUBLE
PRECISION,
NUMBER

NUMBER for any integer type, DOUBLE PRECISION for a floating-point
argument, otherwise the same as the argument data type

The average (arithmetic
mean) of all input values

COUNT(
*)

BIGINT Number of input rows

COUNT
(expre
ssion)

Any BIGINT
Number of input rows for
which the value of
expression is not null

MAX
(expre
ssion)

Any numeric, string,
date/time, or bytea
type

Same as argument type
Maximum value of
expression across all input
values

MIN
(expre
ssion)

Any numeric, string,
date/time, or bytea
type

Same as argument type
Minimum value of
expression across all input
values

SUM
(expre
ssion)

INTEGER, REAL,
DOUBLE
PRECISION,
NUMBER

BIGINT for SMALLINT or INTEGER arguments, NUMBER for BIGINT
arguments, DOUBLE PRECISION for floating-point arguments, otherwise the
same as the argument data type

Sum of expression across
all input values

It should be noted that except for COUNT , these functions return a null value when no rows are selected. In particular, SUM of no rows returns null, not
zero as one might expect. The COALESCE function may be used to substitute zero for null when necessary.

The following table shows the aggregate functions typically used in statistical analysis. (These are separated out merely to avoid cluttering the listing of
more-commonly-used aggregates.) Where the description mentions N , it means the number of input rows for which all the input expressions are non-null.
In all cases, null is returned if the computation is meaningless, for example when N is zero.

Function Argument Type Return Type Description

CORR(Y, X) DOUBLE PRECISION DOUBLE PRECISION Correlation coefficient

COVAR_POP(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Population covariance

COVAR_SAMP(Y
, X)

DOUBLE PRECISION DOUBLE PRECISION Sample covariance

REGR_AVGX(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Average of the independent variable (sum (X) /
N)

REGR_AVGY(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Average of the dependent variable (sum (Y) / N)

REGR_COUNT(Y
, X)

DOUBLE PRECISION DOUBLE PRECISION Number of input rows in which both expressions are
nonnull

REGR_INTERCE
PT(Y, X)

DOUBLE PRECISION DOUBLE PRECISION y-intercept of the least-squares-fit linear equation
determined by the (X, Y) pairs

REGR_R2(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Square of the correlation coefficient

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 383

REGR_SLOPE(Y
, X)

DOUBLE PRECISION DOUBLE PRECISION Slope of the least-squares-fit linear equation
determined by the (X, Y) pairs

REGR_SXX(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Sum (X2) – sum (X) 2 / N (“sum of squares” of the
independent variable)

REGR_SXY(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Sum (X*Y) – sum (X) * sum (Y) / N (“sum of
products” of independent times dependent variable)

REGR_SYY(Y,
X)

DOUBLE PRECISION DOUBLE PRECISION Sum (Y2) – sum (Y) 2 / N (“sum of squares” of the
dependent variable)

STDDEV(expre
ssion)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER Historic alias for STDDEV_SAMP

STDDEV_POP(e
xpression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER Population standard deviation of the input values

STDDEV_SAMP(
expression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER Sample standard deviation of the input values

VARIANCE(exp
ression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER Historical alias for VAR_SAMP

VAR_POP(expr
ession)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER

Population variance of the input values (square of
the population standard deviation)

VAR_SAMP(exp
ression)

INTEGER, REAL,
DOUBLE PRECISION,
NUMBER

DOUBLE PRECISION for floating-
point arguments, otherwise NUMBER

Sample variance of the input values (square of the
sample standard deviation)

Function Argument Type Return Type Description

LISTAGG

Advanced Server has added the LISTAGG function to support string aggregation. LISTAGG is an aggregate function that concatenates data from
multiple rows into a single row in an ordered manner. You can optionally include a custom delimiter for your data.

The LISTAGG function mandates the use of an ORDER BY clause under a WITHIN GROUP clause to concatenate values of the measure column, and
then generate the ordered aggregated data.

ObjectiveObjective

LISTAGG can be used without any grouping. In this case, the LISTAGG function operates on all rows in a table and returns a single row.
LISTAGG can be used with the GROUP BY clause. In this case, the LISTAGG function operates on each group and returns an aggregated

output for each group.
LISTAGG can be used with the OVER clause. In this case, the LISTAGG function partitions a query result set into groups based on the

expression in the query_partition_by_clause and then aggregates data in each group.

SynopsisSynopsis

LISTAGG(<measure_expr> [, <delimiter>]) WITHIN GROUP(<order_by_clause>)
[OVER <query_partition_by_clause>]

ParametersParameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 384

measure_expr

measure_expr (mandatory) specifies the column or expression that assigns a value to aggregate. NULL values are ignored.

delimiter

delimiter (optional) specifies a string that separates the concatenated values in the result row. The delimiter can be a NULL value, string,
character literal, column name, or constant expression. If ignored, the LISTAGG function uses a NULL value by default.

order_by_clause

order_by_clause (mandatory) determines the sort order in which the concatenated values are returned.

query_partition_by_clause

query_partition_by_clause (optional) allows LISTAGG function to be used as an analytic function and sets the range of records for each group
in the OVER clause.

Return TypeReturn Type

The LISTAGG function returns a string value.

ExamplesExamples

The following example concatenates the values in the emp table and lists all the employees separated by a delimiter comma.

First, create a table named emp and then insert records into the emp table.

edb=# CREATE TABLE emp
edb-# (EMPNO NUMBER(4) NOT NULL,
edb(# ENAME VARCHAR2(10),
edb(# JOB VARCHAR2(9),
edb(# MGR NUMBER(4),
edb(# HIREDATE DATE,
edb(# SAL NUMBER(7, 2),
edb(# COMM NUMBER(7, 2),
edb(# DEPTNO NUMBER(2));
CREATE TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 385

edb=# INSERT INTO emp VALUES
edb-# (7499, 'ALLEN', 'SALESMAN', 7698,
edb(# TO_DATE('20-FEB-1981', 'DD-MON-YYYY'), 1600, 300, 30);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7521, 'WARD', 'SALESMAN', 7698,
edb(# TO_DATE('22-FEB-1981', 'DD-MON-YYYY'), 1250, 500, 30);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7566, 'JONES', 'MANAGER', 7839,
edb(# TO_DATE('2-APR-1981', 'DD-MON-YYYY'), 2975, NULL, 20);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7654, 'MARTIN', 'SALESMAN', 7698,
edb(# TO_DATE('28-SEP-1981', 'DD-MON-YYYY'), 1250, 1400, 30);
INSERT 0 1
edb=# INSERT INTO emp VALUES
edb-# (7698, 'BLAKE', 'MANAGER', 7839,
edb(# TO_DATE('1-MAY-1981', 'DD-MON-YYYY'), 2850, NULL, 30);
INSERT 0 1

edb=# SELECT LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY ENAME) FROM emp;
 listagg

 ALLEN,BLAKE,JONES,MARTIN,WARD
(1 row)

The following example uses PARTITION BY clause with LISTAGG in emp table and generates output based on a partition by deptno that applies to
each partition and not on the entire table.

edb=# SELECT DISTINCT DEPTNO, LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY
ENAME) OVER(PARTITION BY DEPTNO) FROM emp;
 deptno | listagg
--------+-------------------------
 30 | ALLEN,BLAKE,MARTIN,WARD
 20 | JONES
(2 rows)

The following example is identical to the previous example, except it includes the GROUP BY clause.

edb=# SELECT DEPTNO, LISTAGG(ENAME, ',') WITHIN GROUP (ORDER BY ENAME) FROM
emp GROUP BY DEPTNO;
 deptno | listagg
--------+-------------------------
 20 | JONES
 30 | ALLEN,BLAKE,MARTIN,WARD
(2 rows)

MEDIAN

The MEDIAN function calculates the middle value of an expression from a given range of values; NULL values are ignored. The MEDIAN function
returns an error if a query does not reference the user-defined table.

ObjectiveObjective

MEDIAN can be used without any grouping. In this case, the MEDIAN function operates on all rows in a table and returns a single row.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 386

MEDIAN can be used without any grouping. In this case, the MEDIAN function operates on all rows in a table and returns a single row.
MEDIAN can be used with the OVER clause. In this case, the MEDIAN function partitions a query result set into groups based on the
expression specified in the PARTITION BY clause and then aggregates data in each group.

SynopsisSynopsis

MEDIAN(<median_expression>) [OVER ([PARTITION BY...])]

ParametersParameters

median_expression

median_expression (mandatory) is a target column or expression that the MEDIAN function operates on and returns a median value. It can be a
numeric, datetime, or interval data type.

PARTITION BY

PARTITION BY clause (optional) allows a MEDIAN function to be used as an analytic function and sets the range of records for each group in the
OVER clause.

Return TypesReturn Types

The return type is determined by the input data type of expression . The following table illustrates the return type for each input type.

Input Type Return Type

BIGINT NUMERIC

FLOAT, DOUBLE
PRECISION

DOUBLE PRECISION

INTEGER NUMERIC

INTERVAL INTERVAL

NUMERIC NUMERIC

REAL REAL

SMALLINT NUMERIC

TIMESTAMP TIMESTAMP

TIMESTAMPTZ TIMESTAMPTZ

ExamplesExamples

In the following example, a query returns the median salary for each department in the emp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 387

edb=# SELECT * FROM emp;
 empno| ename | job | mgr | hiredate | sal | comm | deptno
 -----+-------+---------+------+-------------------+--------+--------+-------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00| 800.00| | 20
 7499 | ALLEN | SALESMAN| 7698 | 20-FEB-81 00:00:00| 1600.00| 300.0 | 30
 7521 | WARD | SALESMAN| 7698 | 22-FEB-81 00:00:00| 1250.00| 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN| SALESMAN| 7698 | 28-SEP-81 00:00:00| 1250.00| 1400.00| 30
(5 rows)

 edb=# SELECT MEDIAN (SAL) FROM emp;
 median

 1250
 (1 row)

The following example uses PARTITION BY clause with MEDIAN in emp table and returns the median salary based on a partition by deptno :

edb=# SELECT EMPNO, ENAME, DEPTNO, MEDIAN (SAL) OVER (PARTITION BY DEPTNO)
FROM emp;
 empno | ename | deptno | median
-------+--------+--------+--------
 7369 | SMITH | 20 | 1887.5
 7566 | JONES | 20 | 1887.5
 7499 | ALLEN | 30 | 1250
 7521 | WARD | 30 | 1250
 7654 | MARTIN | 30 | 1250
(5 rows)

The MEDIAN function can be compared with PERCENTILE_CONT . In the following example, MEDIAN generates the same result as
PERCENTILE_CONT :

edb=# SELECT MEDIAN (SAL), PERCENTILE_CONT(0.5) WITHIN GROUP(ORDER BY SAL)
FROM emp;
 median | percentile_cont
--------+-----------------
 1250 | 1250
(1 row)

STATS_MODE

The STATS_MODE function takes a set of values as an argument and returns the value that occurs with the highest frequency. If multiple values are
appearing with the same frequency, the STATS_MODE function arbitrarily chooses the first value and returns only that one value.

ObjectiveObjective

STATS_MODE function can be used without any grouping. In this case, the STATS_MODE function operates on all the rows in a table and returns
a single value.
STATS_MODE can be used as an ordered-set aggregate function using the WITHIN GROUP clause. In this case, the STATS_MODE function

operates on the ordered data set.
STATS_MODE can be used with the GROUP BY clause. In this case, the STATS_MODE function operates on each group and returns the most

frequent and aggregated output for each group.

SynopsisSynopsis

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 388

STATS_MODE(<expr>)

OR

STATS_MODE() WITHIN GROUP (ORDER BY sort_expression)

ParametersParameters

expr

An expression or value to assign to the column.

Return TypeReturn Type

The STATS_MODE function returns a value that appears frequently. However, if all the values of a column are NULL , the STATS_MODE returns NULL .

ExamplesExamples

The following example returns the mode of salary in the emp table:

edb=# SELECT * FROM emp;
 empno| ename | job | mgr | hiredate | sal | comm | deptno
------+-------+---------+------+-------------------+--------+--------+-------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00| 800.00| | 20
 7499 | ALLEN | SALESMAN| 7698 | 20-FEB-81 00:00:00| 1600.00| 300.0 | 30
 7521 | WARD | SALESMAN| 7698 | 22-FEB-81 00:00:00| 1250.00| 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00| 2975.00| | 20
 7654 | MARTIN| SALESMAN| 7698 | 28-SEP-81 00:00:00| 1250.00| 1400.00| 30
(5 rows)

edb=# SELECT STATS_MODE(SAL) FROM emp;
 stats_mode

 1250.00
(1 row)

The following example uses GROUP BY and ORDER BY clause with STATS_MODE in emp table and returns the salary based on a partition by
deptno :

edb=# SELECT STATS_MODE(SAL) FROM emp GROUP BY DEPTNO ORDER BY DEPTNO;
 stats_mode

 800.00
 1250.00
(2 rows)

The following example uses the WITHIN GROUP clause with the STATS_MODE function to perform aggregation on the ordered data set.

SELECT STATS_MODE() WITHIN GROUP(ORDER BY SAL) FROM emp;
 stats_mode

 1250.00
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 389

12.1.3.12 Subquery Expressions

This section describes the SQL-compliant subquery expressions available in Advanced Server. All of the expression forms documented in this section return
Boolean (TRUE/FALSE) results.

EXISTS

The argument of EXISTS is an arbitrary SELECT statement, or subquery. The subquery is evaluated to determine whether it returns any rows. If it
returns at least one row, the result of EXISTS is TRUE ; if the subquery returns no rows, the result of EXISTS is FALSE .

EXISTS(subquery)

The subquery can refer to variables from the surrounding query, which will act as constants during any one evaluation of the subquery.

The subquery will generally only be executed far enough to determine whether at least one row is returned, not all the way to completion. It is unwise to
write a subquery that has any side effects (such as calling sequence functions); whether the side effects occur or not may be difficult to predict.

Since the result depends only on whether any rows are returned, and not on the contents of those rows, the output list of the subquery is normally
uninteresting. A common coding convention is to write all EXISTS tests in the form EXISTS(SELECT 1 WHERE ...) . There are exceptions to this
rule however, such as subqueries that use INTERSECT .

This simple example is like an inner join on deptno , but it produces at most one output row for each dept row, even though there are multiple
matching emp rows:

SELECT dname FROM dept WHERE EXISTS (SELECT 1 FROM emp WHERE emp.deptno =
dept.deptno);

 dname

 ACCOUNTING
 RESEARCH
 SALES
(3 rows)

IN

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row
of the subquery result. The result of IN is TRUE if any equal subquery row is found. The result is FALSE if no equal row is found (including the special
case where the subquery returns no rows).

expression IN (subquery)

Note that if the left-hand expression yields NULL , or if there are no equal right-hand values and at least one right-hand row yields NULL , the result of the
IN construct will be NULL , not FALSE . This is in accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS , it’s unwise to assume that the subquery will be evaluated completely.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 390

NOT IN

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row
of the subquery result. The result of NOT IN is TRUE if only unequal subquery rows are found (including the special case where the subquery returns no
rows). The result is FALSE if any equal row is found.

expression NOT IN (subquery)

Note that if the left-hand expression yields NULL , or if there are no equal right-hand values and at least one right-hand row yields NULL , the result of the
NOT IN construct will be NULL , not TRUE . This is in accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS , it’s unwise to assume that the subquery will be evaluated completely.

ANY/SOME

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean result. The result of ANY is TRUE if any true result is obtained. The result is
FALSE if no true result is found (including the special case where the subquery returns no rows).

expression operator ANY (subquery)
expression operator SOME (subquery)

SOME is a synonym for ANY . IN is equivalent to = ANY .

Note that if there are no successes and at least one right-hand row yields NULL for the operator’s result, the result of the ANY construct will be NULL ,
not FALSE . This is in accordance with SQL’s normal rules for Boolean combinations of null values.

As with EXISTS , it’s unwise to assume that the subquery will be evaluated completely.

ALL

The right-hand side is a parenthesized subquery, which must return exactly one column. The left-hand expression is evaluated and compared to each row
of the subquery result using the given operator, which must yield a Boolean result. The result of ALL is TRUE if all rows yield true (including the special
case where the subquery returns no rows). The result is FALSE if any false result is found. The result is NULL if the comparison does not return FALSE
for any row, and it returns NULL for at least one row.

expression operator ALL (subquery)

NOT IN is equivalent to <> ALL . As with EXISTS , it’s unwise to assume that the subquery will be evaluated completely.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 391

12.2 System Catalog Tables

The following system catalog tables contain definitions of database objects. The layout of the system tables is subject to change; if you are writing an
application that depends on information stored in the system tables, it would be prudent to use an existing catalog view, or create a catalog view to isolate
the application from changes to the system table.

dual

dual is a single-row, single-column table that is provided for compatibility with Oracle databases only.

Column Type Modifiers Description

dummy VARCHAR2(1) Provided for compatibility only.

edb_dir

The edb_dir table contains one row for each alias that points to a directory created with the CREATE DIRECTORY command. A directory is an alias
for a pathname that allows a user limited access to the host file system.

You can use a directory to fence a user into a specific directory tree within the file system. For example, the UTL_FILE package offers functions that
permit a user to read and write files and directories in the host file system, but only allows access to paths that the database administrator has granted
access to via a CREATE DIRECTORY command.

Column Type Modifiers Description

dirname "name" not null The name of the alias.

dirowner oid not null The OID of the user that owns the alias.

dirpath text The directory name to which access is granted.

diracl aclitem[] The access control list that determines which users may access the
alias.

edb_password_history

The edb_password_history table contains one row for each password change. The table is shared across all databases within a cluster.

Column Type References Description

passhistroleid oid pg_authid.oid The ID of a role.

passhistpassword text Role password in md5 encrypted form.

passhistpasswordsetat timestamptz The time the password was set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 392

edb_policy

The edb_policy table contains one row for each policy.

Column Type Modifiers Description

policyname name not
null

The policy name.

policygroup oid not
null

Currently unused.

policyobject oid not
null

The OID of the table secured by this policy (the object_schema plus the
object_name).

policykind char not
null

The kind of object secured by this policy: 'r' for a table, 'v' for a view, = for a synonym.
Currently always 'r'.

policyproc oid not
null

The OID of the policy function (function_schema plus policy_function).

policyinsert boolean not
null

True if the policy is enforced by INSERT statements.

policyselect boolean not
null

True if the policy is enforced by SELECT statements.

policydelete boolean not
null

True if the policy is enforced by DELETE statements.

policyupdate boolean not
null

True if the policy is enforced by UPDATE statements.

policyindex boolean not
null

Currently unused.

policyenabled boolean not
null

True if the policy is enabled.

policyupdateche
ck

boolean not
null

True if rows updated by an UPDATE statement must satisfy the policy.

policystatic boolean not
null

Currently unused.

policytype integer not
null

Currently unused.

policyopts integer not
null

Currently unused.

policyseccols int2vecto
r

not
null

The column numbers for columns listed in sec_relevant_cols .

edb_profile

The edb_profile table stores information about the available profiles. edb_profiles is shared across all databases within a cluster.

Column Type Reference
s

Description

oid oi
d

Row identifier (hidden attribute; must be explicitly selected).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 393

prfname na
me

The name of the profile.

prffailedlo
ginattempts

in
teg
er

The number of failed login attempts allowed by the profile. -1 indicates that the value from the default profile
should be used. -2 indicates no limit on failed login attempts.

prfpassword
locktime

in
teg
er

The password lock time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the account should be locked permanently.

prfpassword
lifetime

in
teg
er

The password life time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the password never expires.

prfpassword
gracetime

in
teg
er

The password grace time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the password never expires.

prfpassword
reusetime

in
teg
er

The number of seconds that a user must wait before reusing a password. -1 indicates that the value from the
default profile should be used. -2 indicates that the old passwords can never be reused.

prfpassword
reusemax

in
teg
er

The number of password changes that have to occur before a password can be reused. -1 indicates that the
value from the default profile should be used. -2 indicates that the old passwords can never be reused.

prfpassword
allowhashed

in
teg
er

The password allow hashed parameter specifies whether an encrypted password to be allowed for use or not.
The possible values can be true/on/yes/1 , false/off/no/0 , and DEFAULT .

prfpassword
verifyfuncd
b

oi
d

pg_dat
abase.o
id

The OID of the database in which the password verify function exists.

prfpassword
verifyfunc

oi
d

pg_pro
c.oid

The OID of the password verify function associated with the profile.

Column Type Reference
s

Description

edb_variable

The edb_variable table contains one row for each package level variable (each variable declared within a package).

Column Type Modi
fiers

Description

varna
me

"na
me"

not
nul
l

The name of the variable.

varpa
ckage oid

not
nul
l

The OID of the pg_namespace row that stores the package.

varty
pe oid

not
nul
l

The OID of the pg_type row that defines the type of the variable.

varac
cess

"ch
ar"

not
nul
l

+ if the variable is visible outside of the package. - if the variable is only visible within the package. Note: Public
variables are declared within the package header; private variables are declared within the package body.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 394

varsr
c

tex
t

Contains the source of the variable declaration, including any default value expressions for the variable.

varse
q

sma
lli
nt

not
nul
l

The order in which the variable was declared in the package.

Column Type Modi
fiers

Description

pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE SYNONYM command or CREATE PUBLIC SYNONYM
command.

Column Type Modifiers Description

synname "name" not
null

The name of the synonym.

synnamespace oid not
null

Replaces synowner . Contains the OID of the pg_namespace row where the synonym is
stored.

synowner oid not
null

The OID of the user that owns the synonym.

synobjschema "name" not
null

The schema in which the referenced object is defined.

synobjname "name" not
null

The name of the referenced object.

synlink text The (optional) name of the database link in which the referenced object is defined.

product_component_version

The product_component_version table contains information about feature compatibility; an application can query this table at installation or run
time to verify that features used by the application are available with this deployment.

Column Type Description

product character varying (74) The name of the product.

version character varying (74) The version number of the product.

status character varying (74) The status of the release.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 395

13 Database Compatibility for Oracle Developers Built-in Package Guide

Database Compatibility for Oracle means that an application runs in an Oracle environment as well as in the EDB Postgres Advanced Server (Advanced
Server) environment with minimal or no changes to the application code. This guide focuses solely on the features that are related to the package support
provided by Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 396

13.1 Packages

This chapter discusses the concept of packages in Advanced Server. A package is a named collection of functions, procedures, variables, cursors, user-
defined record types, and records that are referenced using a common qualifier – the package identifier. Packages have the following characteristics:

Packages provide a convenient means of organizing the functions and procedures that perform a related purpose. Permission to use the package
functions and procedures is dependent upon one privilege granted to the entire package. All of the package programs must be referenced with a
common name.
Certain functions, procedures, variables, types, etc. in the package can be declared as public. Public entities are visible and can be referenced by
other programs that are given EXECUTE privilege on the package. For public functions and procedures, only their signatures are visible - the
program names, parameters if any, and return types of functions. The SPL code of these functions and procedures is not accessible to others,
therefore applications that utilize a package are dependent only upon the information available in the signature – not in the procedural logic itself.
Other functions, procedures, variables, types, etc. in the package can be declared as private. Private entities can be referenced and used by function
and procedures within the package, but not by other external applications. Private entities are for use only by programs within the package.
Function and procedure names can be overloaded within a package. One or more functions/procedures can be defined with the same name, but with
different signatures. This provides the capability to create identically named programs that perform the same job, but on different types of input.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 397

13.1.1 Package Components

Packages consist of two main components:

The package specification: This is the public interface, (these are the elements which can be referenced outside the package). We declare all
database objects that are to be a part of our package within the specification.
The package body: This contains the actual implementation of all the database objects declared within the package specification.

The package body implements the specifications in the package specification. It contains implementation details and private declarations which are
invisible to the application. You can debug, enhance or replace a package body without changing the specifications. Similarly, you can change the body
without recompiling the calling programs because the implementation details are invisible to the application.

Package Specification Syntax

The package specification defines the user interface for a package (the API). The specification lists the functions, procedures, types, exceptions and cursors
that are visible to a user of the package.

The syntax used to define the interface for a package is:

CREATE [OR REPLACE] PACKAGE <package_name>
 [<authorization_clause>]
 { IS | AS }
 [<declaration>;] ...
 [<procedure_or_function_declaration>] ...
END [<package_name>] ;

Where authorization_clause :=

{ AUTHID DEFINER } | { AUTHID CURRENT_USER }

Where procedure_or_function_declaration :=

procedure_declaration | function_declaration

Where procedure_declaration :=

PROCEDURE proc_name [argument_list];
[restriction_pragma;]

Where function_declaration :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC];
[restriction_pragma;]

Where argument_list :=

(argument_declaration [, ...])

Where argument_declaration :=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 398

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where restriction_pragma :=

PRAGMA RESTRICT_REFERENCES(name, restrictions)

Where restrictions :=

restriction [, ...]

ParametersParameters

package_name

package_name is an identifier assigned to the package - each package must have a name unique within the schema.

AUTHID DEFINER

If you omit the AUTHID clause or specify AUTHID DEFINER , the privileges of the package owner are used to determine access privileges to database
objects.

AUTHID CURRENT_USER

If you specify AUTHID CURRENT_USER , the privileges of the current user executing a program in the package are used to determine access privileges.

declaration

declaration is an identifier of a public variable. A public variable can be accessed from outside of the package using the syntax
package_name.variable . There can be zero, one, or more public variables. Public variable definitions must come before procedure or function

declarations.

declaration can be any of the following:

Variable Declaration
Record Declaration
Collection Declaration
REF CURSOR and Cursor Variable Declaration
TYPE Definitions for Records, Collections, and REF CURSORs

Exception
Object Variable Declaration

proc_name

The name of a public procedure.

argname

The name of an argument. The argument is referenced by this name within the function or procedure body.

IN | IN OUT | OUT

The argument mode. IN declares the argument for input only. This is the default. IN OUT allows the argument to receive a value as well as return a
value. OUT specifies the argument is for output only.

argtype

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 399

argtype

The data type(s) of an argument. An argument type may be a base data type, a copy of the type of an existing column using %TYPE , or a user-defined type
such as a nested table or an object type. A length must not be specified for any base type - for example, specify VARCHAR2 , not VARCHAR2(10).

The type of a column is referenced by writing tablename.columnname %TYPE ; using this can sometimes help make a procedure independent from
changes to the definition of a table.

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if one is not supplied in the invocation. DEFAULT may not be specified for
arguments with modes IN OUT or OUT .

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the function with all-constant arguments can be immediately replaced with the function value.

restriction

The following keywords are accepted for compatibility and ignored:

RNDS

RNPS

TRUST

WNDS

WNPS

Package Body Syntax

Package implementation details reside in the package body; the package body may contain objects that are not visible to the package user. Advanced
Server supports the following syntax for the package body:

CREATE [OR REPLACE] PACKAGE BODY <package_name>
 { IS | AS }
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 [<package_initializer>]
END [<package_name>] ;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 400

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name] ;

Where procedure_body :=

[PRAGMA AUTONOMOUS_TRANSACTION;]
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...]] THEN statement; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[PRAGMA AUTONOMOUS_TRANSACTION;]
[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Where argument_list :=

(argument_declaration [, ...])

Where argument_declaration :=

argname [IN | IN OUT | OUT] argtype [DEFAULT value]

Where options_list :=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 401

option [...]

Where option :=

STRICT
LEAKPROOF
PARALLEL { UNSAFE | RESTRICTED | SAFE }
COST execution_cost
ROWS result_rows
SET config_param { TO value | = value | FROM CURRENT }

Where package_initializer :=

BEGIN
 statement; [...]
END;

ParametersParameters

package_name

package_name is the name of the package for which this is the package body. There must be an existing package specification with this name.

private_declaration

private_declaration is an identifier of a private variable that can be accessed by any procedure or function within the package. There can be zero,
one, or more private variables. private_declaration can be any of the following:

Variable Declaration
Record Declaration
Collection Declaration
REF CURSOR and Cursor Variable Declaration
TYPE Definitions for Records, Collections, and REF CURSORs

Exception
Object Variable Declaration

proc_name

The name of the procedure being created.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If subprogram declarations are included, they must be declared after all other variable, type,
and REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is considered an SPL statement unto itself. Thus, the function body may
contain nested blocks.

exception

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 402

An exception condition name such as NO_DATA_FOUND, OTHERS , etc.

func_name

The name of the function being created.

rettype

The return data type, which may be any of the types listed for argtype . As for argtype , a length must not be specified for rettype .

DETERMINISTIC

Include DETERMINISTIC to specify that the function will always return the same result when given the same argument values. A DETERMINISTIC
function must not modify the database.

NoteNote: The DETERMINISTIC keyword is equivalent to the PostgreSQL IMMUTABLE option.

NoteNote: If DETERMINISTIC is specified for a public function in the package body, it must also be specified for the function declaration in the package
specification. (For private functions, there is no function declaration in the package specification.)

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

argname

The name of a formal argument. The argument is referenced by this name within the procedure body.

IN | IN OUT | OUT

The argument mode. IN declares the argument for input only. This is the default. IN OUT allows the argument to receive a value as well as return a
value. OUT specifies the argument is for output only.

argtype

The data type(s) of an argument. An argument type may be a base data type, a copy of the type of an existing column using %TYPE , or a user-defined type
such as a nested table or an object type. A length must not be specified for any base type - for example, specify VARCHAR2 , not VARCHAR2(10) .

The type of a column is referenced by writing tablename.columnname%TYPE ; using this can sometimes help make a procedure independent from
changes to the definition of a table.

DEFAULT value

The DEFAULT clause supplies a default value for an input argument if one is not supplied in the procedure call. DEFAULT may not be specified for
arguments with modes IN OUT or OUT .

Please note: The following options are not compatible with Oracle databases; they are extensions to Oracle package syntax provided by Advanced Server
only.

STRICT

The STRICT keyword specifies that the function will not be executed if called with a NULL argument; instead the function will return NULL .

LEAKPROOF

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 403

The LEAKPROOF keyword specifies that the function will not reveal any information about arguments, other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the procedure or function cannot be executed in parallel mode. The presence of such a procedure or function forces a serial
execution plan. This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the procedure or function can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the procedure or function can be executed in parallel mode with no restriction.

execution_cost

execution_cost specifies a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function
returns a set, this is the cost per returned row. The default is 0.0025 .

result_rows

result_rows is the estimated number of rows that the query planner should expect the function to return. The default is 1000 .

SET

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the function ends.

package_initializer

The statements in the package_initializer are executed once per user’s session when the package is first referenced.

NoteNote

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended functionality for Advanced Server and are
not supported by Oracle.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 404

13.1.2 Creating Packages

A package is not an executable piece of code; rather it is a repository of code. When you use a package, you actually execute or make reference to an
element within a package.

Creating the Package Specification

The package specification contains the definition of all the elements in the package that can be referenced from outside of the package. These are called
the public elements of the package, and they act as the package interface. The following code sample is a package specification:

--
-- Package specification for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE emp_admin
IS
 FUNCTION get_dept_name (
 p_deptno NUMBER DEFAULT 10
)
 RETURN VARCHAR2;
 FUNCTION update_emp_sal (
 p_empno NUMBER,
 p_raise NUMBER
)
 RETURN NUMBER;
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
);
 PROCEDURE fire_emp (
 p_empno NUMBER
);
END emp_admin;

This code sample creates the emp_admin package specification. This package specification consists of two functions and two stored procedures. We can
also add the OR REPLACE clause to the CREATE PACKAGE statement for convenience.

Creating the Package Body

The body of the package contains the actual implementation behind the package specification. For the above emp_admin package specification, we shall
now create a package body which will implement the specifications. The body will contain the implementation of the functions and stored procedures in the
specification.

--
-- Package body for the 'emp_admin' package.
--
CREATE OR REPLACE PACKAGE BODY emp_admin

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 405

IS
 --
 -- Function that queries the 'dept' table based on the department
 -- number and returns the corresponding department name.
 --
 FUNCTION get_dept_name (
 p_deptno IN NUMBER DEFAULT 10
)
 RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 SELECT dname INTO v_dname FROM dept WHERE deptno = p_deptno;
 RETURN v_dname;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Invalid department number ' || p_deptno);
 RETURN '';
 END;
 --
 -- Function that updates an employee's salary based on the
 -- employee number and salary increment/decrement passed
 -- as IN parameters. Upon successful completion the function
 -- returns the new updated salary.
 --
 FUNCTION update_emp_sal (
 p_empno IN NUMBER,
 p_raise IN NUMBER
)
 RETURN NUMBER
 IS
 v_sal NUMBER := 0;
 BEGIN
 SELECT sal INTO v_sal FROM emp WHERE empno = p_empno;
 v_sal := v_sal + p_raise;
 UPDATE emp SET sal = v_sal WHERE empno = p_empno;
 RETURN v_sal;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno || ' not found');
 RETURN -1;
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
 END;
 --
 -- Procedure that inserts a new employee record into the 'emp' table.
 --
 PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_job VARCHAR2,
 p_sal NUMBER,
 p_hiredate DATE DEFAULT sysdate,
 p_comm NUMBER DEFAULT 0,
 p_mgr NUMBER,
 p_deptno NUMBER DEFAULT 10
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 406

 AS
 BEGIN
 INSERT INTO emp(empno, ename, job, sal, hiredate, comm, mgr, deptno)
 VALUES(p_empno, p_ename, p_job, p_sal,
 p_hiredate, p_comm, p_mgr, p_deptno);
 END;
 --
 -- Procedure that deletes an employee record from the 'emp' table based
 -- on the employee number.
 --
 PROCEDURE fire_emp (
 p_empno NUMBER
)
 AS
 BEGIN
 DELETE FROM emp WHERE empno = p_empno;
 END;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 407

13.1.3 Referencing a Package

To reference the types, items and subprograms that are declared within a package specification, we use the dot notation. For example:

package_name.type_name

package_name.item_name

package_name.subprogram_name

To invoke a function from the emp_admin package specification, we will execute the following SQL command.

SELECT emp_admin.get_dept_name(10) FROM DUAL;

Here we are invoking the get_dept_name function declared within the package emp_admin . We are passing the department number as an argument
to the function, which will return the name of the department. Here the value returned should be ACCOUNTING , which corresponds to department
number 10 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 408

13.1.4 Using Packages With User Defined Types

The following example incorporates the various user-defined types discussed in earlier chapters within the context of a package.

The package specification of emp_rpt shows the declaration of a record type, emprec_typ , and a weakly-typed REF CURSOR, emp_refcur , as
publicly accessible along with two functions and two procedures. Function, open_emp_by_dept , returns the REF CURSOR type, EMP_REFCUR .
Procedures, fetch_emp and close_refcur , both declare a weakly-typed REF CURSOR as a formal parameter.

CREATE OR REPLACE PACKAGE emp_rpt
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10)
);
 TYPE emp_refcur IS REF CURSOR;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2;
 FUNCTION open_emp_by_dept (
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR;
 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
);
 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
);
END emp_rpt;

The package body shows the declaration of several private variables - a static cursor, dept_cur , a table type, depttab_typ , a table variable,
t_dept , an integer variable, t_dept_max , and a record variable, r_emp .

CREATE OR REPLACE PACKAGE BODY emp_rpt
IS
 CURSOR dept_cur IS SELECT * FROM dept;
 TYPE depttab_typ IS TABLE of dept%ROWTYPE
 INDEX BY BINARY_INTEGER;
 t_dept DEPTTAB_TYP;
 t_dept_max INTEGER := 1;
 r_emp EMPREC_TYP;

 FUNCTION get_dept_name (
 p_deptno IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 FOR i IN 1..t_dept_max LOOP
 IF p_deptno = t_dept(i).deptno THEN
 RETURN t_dept(i).dname;
 END IF;
 END LOOP;
 RETURN 'Unknown';
 END;

 FUNCTION open_emp_by_dept(
 p_deptno IN emp.deptno%TYPE
) RETURN EMP_REFCUR

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 409

 IS
 emp_by_dept EMP_REFCUR;
 BEGIN
 OPEN emp_by_dept FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
 RETURN emp_by_dept;
 END;

 PROCEDURE fetch_emp (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_refcur INTO r_emp;
 EXIT WHEN p_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' || r_emp.ename);
 END LOOP;
 END;

 PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
 IS
 BEGIN
 CLOSE p_refcur;
 END;
BEGIN
 OPEN dept_cur;
 LOOP
 FETCH dept_cur INTO t_dept(t_dept_max);
 EXIT WHEN dept_cur%NOTFOUND;
 t_dept_max := t_dept_max + 1;
 END LOOP;
 CLOSE dept_cur;
 t_dept_max := t_dept_max - 1;
END emp_rpt;

This package contains an initialization section that loads the private table variable, t_dept , using the private static cursor, dept_cur.t_dept serves
as a department name lookup table in function, get_dept_name .

Function, open_emp_by_dept returns a REF CURSOR variable for a result set of employee numbers and names for a given department. This REF
CURSOR variable can then be passed to procedure, fetch_emp , to retrieve and list the individual rows of the result set. Finally, procedure,
close_refcur , can be used to close the REF CURSOR variable associated with this result set.

The following anonymous block runs the package function and procedures. In the anonymous block's declaration section, note the declaration of cursor
variable, v_emp_cur , using the package’s public REF CURSOR type, EMP_REFCUR. v_emp_cur contains the pointer to the result set that is
passed between the package function and procedures.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 410

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 emp_rpt.fetch_emp(v_emp_cur);
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 emp_rpt.close_refcur(v_emp_cur);
END;

The following is the result of this anonymous block.

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

The following anonymous block illustrates another means of achieving the same result. Instead of using the package procedures, fetch_emp and
close_refcur , the logic of these programs is coded directly into the anonymous block. In the anonymous block’s declaration section, note the addition

of record variable, r_emp , declared using the package’s public record type, EMPREC_TYP .

DECLARE
 v_deptno dept.deptno%TYPE DEFAULT 30;
 v_emp_cur emp_rpt.EMP_REFCUR;
 r_emp emp_rpt.EMPREC_TYP;
BEGIN
 v_emp_cur := emp_rpt.open_emp_by_dept(v_deptno);
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #' || v_deptno ||
 ': ' || emp_rpt.get_dept_name(v_deptno));
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH v_emp_cur INTO r_emp;
 EXIT WHEN v_emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(r_emp.empno || ' ' ||
 r_emp.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(v_emp_cur%ROWCOUNT || ' rows were retrieved');
 CLOSE v_emp_cur;
END;

The following is the result of this anonymous block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 411

EMPLOYEES IN DEPT #30: SALES
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7698 BLAKE
7844 TURNER
7900 JAMES

6 rows were retrieved

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 412

13.1.5 Dropping a Package

The syntax for deleting an entire package or just the package body is as follows:

DROP PACKAGE [BODY] package_name;

If the keyword, BODY , is omitted, both the package specification and the package body are deleted - i.e., the entire package is dropped. If the keyword,
BODY , is specified, then only the package body is dropped. The package specification remains intact. package_name is the identifier of the package to

be dropped.

Following statement will destroy only the package body of emp_admin :

DROP PACKAGE BODY emp_admin;

The following statement will drop the entire emp_admin package:

DROP PACKAGE emp_admin;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 413

13.2 Built-In Packages

This chapter describes the built-in packages that are provided with Advanced Server. For certain packages, non-superusers must be explicitly granted the
EXECUTE privilege on the package before using any of the package’s functions or procedures. For most of the built-in packages, EXECUTE privilege has

been granted to PUBLIC by default.

For information about using the GRANT command to provide access to a package, see GRANT .

All built-in packages are owned by the special sys user which must be specified when granting or revoking privileges on built-in packages:

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO john;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 414

13.2.1 DBMS_ALERT

The DBMS_ALERT package provides the capability to register for, send, and receive alerts. The following table lists the supported procedures:

Function/Procedure Return Type Description

REGISTER(name) n/a Register to be able to receive alerts named, name

REMOVE(name) n/a Remove registration for the alert named, name

REMOVEALL n/a Remove registration for all alerts.

SIGNAL(name, message) n/a Signals the alert named, name , with message

WAITANY(name OUT, message OUT, status OUT,
timeout)

n/a Wait for any registered alert to occur.

WAITONE(name, message OUT, status OUT, timeout) n/a Wait for the specified alert, name , to occur.

Advanced Server's implementation of DBMS_ALERT is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

Advanced Server allows a maximum of 500 concurrent alerts. You can use the dbms_alert.max_alerts GUC variable (located in the
postgresql.conf file) to specify the maximum number of concurrent alerts allowed on a system.

To set a value for the dbms_alert.max_alerts variable, open the postgresql.conf file (located by default in
/opt/PostgresPlus/13AS/data) with your choice of editor, and edit the dbms_alert.max_alerts parameter as shown:

dbms_alert.max_alerts = alert_count

alert_count

alert_count specifies the maximum number of concurrent alerts. By default, the value of dbms_alert.max_alerts is 100 . To disable this
feature, set dbms_alert.max_alerts to 0 .

For the dbms_alert.max_alerts GUC to function correctly, the custom_variable_classes parameter must contain dbms_alerts :

custom_variable_classes = 'dbms_alert, …'

After editing the postgresql.conf file parameters, you must restart the server for the changes to take effect.

REGISTER

The REGISTER procedure enables the current session to be notified of the specified alert.

REGISTER(<name> VARCHAR2)

ParametersParameters

name

Name of the alert to be registered.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 415

ExamplesExamples

The following anonymous block registers for an alert named, alert_test , then waits for the signal.

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

REMOVE

The REMOVE procedure unregisters the session for the named alert.

REMOVE(<name> VARCHAR2)

ParametersParameters

name

Name of the alert to be unregistered.

REMOVEALL

The REMOVEALL procedure unregisters the session for all alerts.

REMOVEALL

SIGNAL

The SIGNAL procedure signals the occurrence of the named alert.

SIGNAL(<name> VARCHAR2, <message> VARCHAR2)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 416

ParametersParameters

name

Name of the alert.

message

Information to pass with this alert.

ExamplesExamples

The following anonymous block signals an alert for alert_test .

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;
Issued alert for alert_test

WAITANY

The WAITANY procedure waits for any of the registered alerts to occur.

WAITANY(<name> OUT VARCHAR2, <message> OUT VARCHAR2,
 <status> OUT INTEGER, <timeout> NUMBER)

ParametersParameters

name

Variable receiving the name of the alert.

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 – timeout occurred.

timeout

Time to wait for an alert in seconds.

ExamplesExamples

The following anonymous block uses the WAITANY procedure to receive an alert named, alert_test or any_alert :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 417

DECLARE
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER('alert_test');
 DBMS_ALERT.REGISTER('any_alert');
 DBMS_OUTPUT.PUT_LINE('Registered for alert alert_test and any_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVEALL;
END;

Registered for alert alert_test and any_alert
Waiting for signal...

An anonymous block in a second session issues a signal for any_alert :

DECLARE
 v_name VARCHAR2(30) := 'any_alert';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for any_alert

Control returns to the first anonymous block and the remainder of the code is executed:

Registered for alert alert_test and any_alert
Waiting for signal...
Alert name : any_alert
Alert msg : This is the message from any_alert
Alert status : 0
Alert timeout: 120 seconds

WAITONE

The WAITONE procedure waits for the specified registered alert to occur.

WAITONE(<name> VARCHAR2, <message> OUT VARCHAR2,
 <status> OUT INTEGER, <timeout> NUMBER)

ParametersParameters

name

Name of the alert.

message

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 418

message

Variable receiving the message sent by the SIGNAL procedure.

status

Status code returned by the operation. Possible values are: 0 – alert occurred; 1 – timeout occurred.

timeout

Time to wait for an alert in seconds.

ExamplesExamples

The following anonymous block is similar to the one used in the WAITANY example except the WAITONE procedure is used to receive the alert named,
alert_test .

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 120;
BEGIN
 DBMS_ALERT.REGISTER(v_name);
 DBMS_OUTPUT.PUT_LINE('Registered for alert ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 DBMS_ALERT.WAITONE(v_name,v_msg,v_status,v_timeout);
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('Alert timeout: ' || v_timeout || ' seconds');
 DBMS_ALERT.REMOVE(v_name);
END;

Registered for alert alert_test
Waiting for signal...

Signal sent for alert_test sent by an anonymous block in a second session:

DECLARE
 v_name VARCHAR2(30) := 'alert_test';
BEGIN
 DBMS_ALERT.SIGNAL(v_name,'This is the message from ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Issued alert for ' || v_name);
END;

Issued alert for alert_test

First session is alerted, control returns to the anonymous block, and the remainder of the code is executed:

Registered for alert alert_test
Waiting for signal...
Alert name : alert_test
Alert msg : This is the message from alert_test
Alert status : 0
Alert timeout: 120 seconds

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 419

Comprehensive Example

The following example uses two triggers to send alerts when the dept table or the emp table is changed. An anonymous block listens for these alerts
and displays messages when an alert is received.

The following are the triggers on the dept and emp tables:

CREATE OR REPLACE TRIGGER dept_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added department(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated department(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted department(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('dept_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

CREATE OR REPLACE TRIGGER emp_alert_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(25);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) ';
 END IF;
 DBMS_ALERT.SIGNAL('emp_alert',USER || v_action || 'on ' ||
 SYSDATE);
END;

The following anonymous block is executed in a session while updates to the dept and emp tables occur in other sessions:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 420

DECLARE
 v_dept_alert VARCHAR2(30) := 'dept_alert';
 v_emp_alert VARCHAR2(30) := 'emp_alert';
 v_name VARCHAR2(30);
 v_msg VARCHAR2(80);
 v_status INTEGER;
 v_timeout NUMBER(3) := 60;
BEGIN
 DBMS_ALERT.REGISTER(v_dept_alert);
 DBMS_ALERT.REGISTER(v_emp_alert);
 DBMS_OUTPUT.PUT_LINE('Registered for alerts dept_alert and emp_alert');
 DBMS_OUTPUT.PUT_LINE('Waiting for signal...');
 LOOP
 DBMS_ALERT.WAITANY(v_name,v_msg,v_status,v_timeout);
 EXIT WHEN v_status != 0;
 DBMS_OUTPUT.PUT_LINE('Alert name : ' || v_name);
 DBMS_OUTPUT.PUT_LINE('Alert msg : ' || v_msg);
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_OUTPUT.PUT_LINE('------------------------------------' ||
 '-------------------------');
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Alert status : ' || v_status);
 DBMS_ALERT.REMOVEALL;
END;

Registered for alerts dept_alert and emp_alert
Waiting for signal...

The following changes are made by user, mary:

INSERT INTO dept VALUES (50,'FINANCE','CHICAGO');
INSERT INTO emp (empno,ename,deptno) VALUES (9001,'JONES',50);
INSERT INTO emp (empno,ename,deptno) VALUES (9002,'ALICE',50);

The following change is made by user, john:

INSERT INTO dept VALUES (60,'HR','LOS ANGELES');

The following is the output displayed by the anonymous block receiving the signals from the triggers:

Registered for alerts dept_alert and emp_alert
Waiting for signal...
Alert name : dept_alert
Alert msg : mary added department(s) on 25-OCT-07 16:41:01
Alert status : 0

Alert name : emp_alert
Alert msg : mary added employee(s) on 25-OCT-07 16:41:02
Alert status : 0

Alert name : dept_alert
Alert msg : john added department(s) on 25-OCT-07 16:41:22
Alert status : 0

Alert status : 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 421

13.2.2 DBMS_AQ

EDB Postgres Advanced Server Advanced Queueing provides message queueing and message processing for the Advanced Server database. User-defined
messages are stored in a queue; a collection of queues is stored in a queue table. Procedures in the DBMS_AQADM package create and manage message
queues and queue tables. Use the DBMS_AQ package to add messages to a queue or remove messages from a queue, or register or unregister a PL/SQL
callback procedure.

Advanced Server also provides extended (non-compatible) functionality for the DBMS_AQ package with SQL commands, see the Database Compatibility
for Oracle Developers SQL Guide for detailed information about the following SQL commands:

ALTER QUEUE
ALTER QUEUE TABLE
CREATE QUEUE
CREATE QUEUE TABLE
DROP QUEUE
DROP QUEUE TABLE

The DBMS_AQ package provides procedures that allow you to enqueue a message, dequeue a message, and manage callback procedures. The supported
procedures are:

Function/Procedure Return Type Description

ENQUEUE n/a Post a message to a queue.

DEQUEUE n/a Retrieve a message from a queue if or when a message is available.

REGISTER n/a Register a callback procedure.

UNREGISTER n/a Unregister a callback procedure.

Advanced Server's implementation of DBMS_AQ is a partial implementation when compared to Oracle's version. Only those procedures listed in the table
above are supported.

Advanced Server supports use of the constants listed below:

Constant Description For Parameters

DBMS_AQ.BROWSE (0) Read the message without locking. dequeue_options_t.dequeue_mode

DBMS_AQ.LOCKED (1) This constant is defined, but will return an error if
used.

dequeue_options_t.dequeue_mode

DBMS_AQ.REMOVE (2) Delete the message after reading; the default. dequeue_options_t.dequeue_mode

DBMS_AQ.REMOVE_NODATA
(3)

This constant is defined, but will return an error if
used.

dequeue_options_t.dequeue_mode

DBMS_AQ.FIRST_MESSAGE
(0)

Return the first available message that matches the
search terms.

dequeue_options_t.navigation

DBMS_AQ.NEXT_MESSAGE
(1)

Return the next available message that matches the
search terms.

dequeue_options_t.navigation

DBMS_AQ.NEXT_TRANSACT
ION (2)

This constant is defined, but will return an error if
used.

dequeue_options_t.navigation

DBMS_AQ.FOREVER (-1) Wait forever if a message that matches the search term
is not found, the default.

dequeue_options_t.wait

DBMS_AQ.NO_WAIT (0) Do not wait if a message that matches the search term
is not found.

dequeue_options_t.wait

DBMS_AQ.ON_COMMIT
(0)

The dequeue is part of the current transaction.
enqueue_options_t.visibility,
dequeue_options_t.visibility

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 422

DBMS_AQ.IMMEDIATE
(1)

This constant is defined, but will return an error if
used.

enqueue_options_t.visibility,
dequeue_options_t.visibility

DBMS_AQ.PERSISTENT
(0)

The message should be stored in a table. enqueue_options_t.delivery_mode

DBMS_AQ.BUFFERED (1) This constant is defined, but will return an error if
used.

enqueue_options_t.delivery_mode

DBMS_AQ.READY (0) Specifies that the message is ready to process. message_properties_t.state

DBMS_AQ.WAITING (1) Specifies that the message is waiting to be processed. message_properties_t.state

DBMS_AQ.PROCESSED
(2)

Specifies that the message has been processed. message_properties_t.state

DBMS_AQ.EXPIRED (3) Specifies that the message is in the exception queue. message_properties_t.state

DBMS_AQ.NO_DELAY (0) This constant is defined, but will return an error if used message_properties_t.delay

DBMS_AQ.NEVER (NULL) This constant is defined, but will return an error if used message_properties_t.expiration

DBMS_AQ.NAMESPACE_AQ
(0)

Accept notifications from DBMS_AQ queues. sys.aq$_reg_info.namespace

DBMS_AQ.NAMESPACE_ANO
NYMOUS (1)

This constant is defined, but will return an error if used sys.aq$_reg_info.namespace

Constant Description For Parameters

The DBMS_AQ configuration parameters listed in the following table can be defined in the postgresql.conf file. After the configuration parameters
are defined, you can invoke the DBMS_AQ package to use and manage messages held in queues and queue tables.

Parameter Description

dbms_aq.max_workers The maximum number of workers to run.

dbms_aq.max_idle_time The idle time a worker must wait before exiting.

dbms_aq.min_work_time The minimum time a worker can run before exiting.

dbms_aq.launch_delay The minimum time between creating workers.

dbms_aq.batch_size The maximum number of messages to process in a single transaction. The default batch size is 10.

dbms_aq.max_databases The size of DBMS_AQ ’s hash table of databases. The default value is 1024.

dbms_aq.max_pending_retries The size of DBMS_AQ ’s hash table of pending retries. The default value is 1024.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 423

13.2.2.1 ENQUEUE

The ENQUEUE procedure adds an entry to a queue. The signature is:

ENQUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue_options> IN DBMS_AQ.ENQUEUE_OPTIONS_T,
 <message_properties> IN DBMS_AQ.MESSAGE_PROPERTIES_T,
 <payload> IN <type_name>,
 <msgid> OUT RAW)

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue. If you omit the schema name, the server will use the schema specified in the SEARCH_PATH .
Please note that unlike Oracle, unquoted identifiers are converted to lower case before storing. To include special characters or use a case-sensitive name,
enclose the name in double quotes.

For detailed information about creating a queue, see DBMS_AQADM.CREATE_QUEUE .

enqueue_options

enqueue_options is a value of the type, enqueue_options_t :

DBMS_AQ.ENQUEUE_OPTIONS_T IS RECORD(
 visibility BINARY_INTEGER DEFAULT ON_COMMIT,
 relative_msgid RAW(16) DEFAULT NULL,
 sequence_deviation BINARY INTEGER DEFAULT NULL,
 transformation VARCHAR2(61) DEFAULT NULL,
 delivery_mode PLS_INTEGER NOT NULL DEFAULT PERSISTENT);

Currently, the only supported parameter values for enqueue_options_t are:

visibility ON_COMMIT .

delivery_mode PERSISTENT

sequence_deviation NULL

transformation NULL

relative_msgid NULL

message_properties

message_properties is a value of the type, message_properties_t :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 424

message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog.”C”,
 attempts INTEGER,
 recipient_list “AQ$_RECIPIENT_LIST_T”,
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog.”C”,
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog.”C”,
 delivery_mode INTEGER
DBMS_AQ.PERSISTENT);

The supported values for message_properties_t are:

priority If the queue table definition includes a sort_list that references priority , this parameter affects the order that messages
are dequeued. A lower value indicates a higher dequeue priority.

delay Specify the number of seconds that will pass before a message is available for dequeueing or NO_DELAY .

expiration Use the expiration parameter to specify the number of seconds until a message expires.

correlation Use correlation to specify a message that will be associated with the entry; the default is NULL .

attempts This is a system-maintained value that specifies the number of attempts to dequeue the message.

recipient_l
ist

This parameter is not supported.

exception_q
ueue

Use the exception_queue parameter to specify the name of an exception queue to which a message will be moved if it expires
or is dequeued by a transaction that rolls back too many times.

enqueue_tim
e

enqueue_time is the time the record was added to the queue; this value is provided by the system.

state

This parameter is maintained by DBMS_AQ; state can be:

DBMS_AQ.WAITING – the delay has not been reached.

DBMS_AQ.READY – the queue entry is ready for processing.

DBMS_AQ.PROCESSED – the queue entry has been processed.

DBMS_AQ.EXPIRED – the queue entry has been moved to the exception queue.

original_ms
gid

This parameter is accepted for compatibility and ignored.

transaction
_group

This parameter is accepted for compatibility and ignored.

delivery_mo
de

This parameter is not supported; specify a value of DBMS_AQ.PERSISTENT .

payload

Use the payload parameter to provide the data that will be associated with the queue entry. The payload type must match the type specified when
creating the corresponding queue table (see DBMS_AQADM.CREATE_QUEUE_TABLE).

msgid

Use the msgid parameter to retrieve a unique (system-generated) message identifier.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 425

ExampleExample

The following anonymous block calls DBMS_AQ.ENQUEUE , adding a message to a queue named work_order :

DECLARE

 enqueue_options DBMS_AQ.ENQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN

 payload := work_order('Smith', 'system upgrade');

DBMS_AQ.ENQUEUE(
 queue_name => 'work_order',
 enqueue_options => enqueue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => message_handle
);
 END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 426

13.2.2.2 DEQUEUE

The DEQUEUE procedure dequeues a message. The signature is:

DEQUEUE(
 <queue_name> IN VARCHAR2,
 <dequeue_options> IN DBMS_AQ.DEQUEUE_OPTIONS_T,
 <message_properties> OUT DBMS_AQ.MESSAGE_PROPERTIES_T,
 <payload> OUT <type_name>,
 <msgid> OUT RAW)

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue. If you omit the schema name, the server will use the schema specified in the SEARCH_PATH .
Please note that unlike Oracle, unquoted identifiers are converted to lower case before storing. To include special characters or use a case-sensitive name,
enclose the name in double quotes.

For detailed information about creating a queue, see DBMS_AQADM.CREATE_QUEUE .

dequeue_options is a value of the type, dequeue_options_t :

DEQUEUE_OPTIONS_T IS RECORD(
 consumer_name CHARACTER VARYING(30),
 dequeue_mode INTEGER,
 navigation INTEGER,
 visibility INTEGER,
 wait INTEGER,
 msgid BYTEA,
 correlation CHARACTER VARYING(128),
 deq_condition CHARACTER VARYING(4000),
 transformation CHARACTER VARYING(61),
 delivery_mode INTEGER);

Currently, the supported parameter values for dequeue_options_t are:

consumer_name Must be NULL .

dequeue_mode

The locking behavior of the dequeue operation. Must be either:

DBMS_AQ.BROWSE – Read the message without obtaining a lock.

DBMS_AQ.LOCKED – Read the message after acquiring a lock.

DBMS_AQ.REMOVE – Read the message before deleting the message.

DBMS_AQ.REMOVE_NODATA – Read the message, but do not delete the message.

navigation

Identifies the message that will be retrieved. Must be either:

FIRST_MESSAGE – The first message within the queue that matches the search term.

NEXT_MESSAGE – The next message that is available that matches the first term.

visibility Must be ON_COMMIT – if you roll back the current transaction the dequeued item will remain in the queue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 427

wait

Must be a number larger than 0, or:

DBMS_AQ.FOREVER – Wait indefinitely.

DBMS_AQ.NO_WAIT – Do not wait.

msgid The message ID of the message that will be dequeued.

correlation Accepted for compatibility, and ignored.

deq_condition A VARCHAR2 expression that evaluates to a BOOLEAN value indicating if the message should be dequeued.

transformation Accepted for compatibility, and ignored.

delivery_mode Must be PERSISTENT ; buffered messages are not supported at this time.

message_properties is a value of the type, message_properties_t :

message_properties_t IS RECORD(
 priority INTEGER,
 delay INTEGER,
 expiration INTEGER,
 correlation CHARACTER VARYING(128) COLLATE pg_catalog.”C”,
 attempts INTEGER,
 recipient_list “AQ$_RECIPIENT_LIST_T”,
 exception_queue CHARACTER VARYING(61) COLLATE pg_catalog.”C”,
 enqueue_time TIMESTAMP WITHOUT TIME ZONE,
 state INTEGER,
 original_msgid BYTEA,
 transaction_group CHARACTER VARYING(30) COLLATE pg_catalog.”C”,
 delivery_mode INTEGER
DBMS_AQ.PERSISTENT);

The supported values for message_properties_t are:

priority If the queue table definition includes a sort_list that references priority , this parameter affects the order that messages
are dequeued. A lower value indicates a higher dequeue priority.

delay Specify the number of seconds that will pass before a message is available for dequeueing or NO_DELAY .

expiration Use the expiration parameter to specify the number of seconds until a message expires.

correlation Use correlation to specify a message that will be associated with the entry; the default is NULL .

attempts This is a system-maintained value that specifies the number of attempts to dequeue the message.

recipient_l
ist

This parameter is not supported.

exception_q
ueue

Use the exception_queue parameter to specify the name of an exception queue to which a message will be moved if it expires
or is dequeued by a transaction that rolls back too many times.

enqueue_tim
e

enqueue_time is the time the record was added to the queue; this value is provided by the system.

state

This parameter is maintained by DBMS_AQ; state can be:

DBMS_AQ.WAITING – the delay has not been reached.

DBMS_AQ.READY – the queue entry is ready for processing.

DBMS_AQ.PROCESSED – the queue entry has been processed.

DBMS_AQ.EXPIRED – the queue entry has been moved to the exception queue.

original_ms
gid

This parameter is accepted for compatibility and ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 428

transaction
_group

This parameter is accepted for compatibility and ignored.

delivery_mo
de

This parameter is not supported; specify a value of DBMS_AQ.PERSISTENT .

payload

Use the payload parameter to retrieve the payload of a message with a dequeue operation. The payload type must match the type specified when
creating the queue table.

msgid

Use the msgid parameter to retrieve a unique message identifier.

ExampleExample

The following anonymous block calls DBMS_AQ.DEQUEUE , retrieving a message from the queue and a payload:

DECLARE

 dequeue_options DBMS_AQ.DEQUEUE_OPTIONS_T;
 message_properties DBMS_AQ.MESSAGE_PROPERTIES_T;
 message_handle raw(16);
 payload work_order;

BEGIN
 dequeue_options.dequeue_mode := DBMS_AQ.BROWSE;

 DBMS_AQ.DEQUEUE(
 queue_name => 'work_queue',
 dequeue_options => dequeue_options,
 message_properties => message_properties,
 payload => payload,
 msgid => message_handle
);

 DBMS_OUTPUT.PUT_LINE(
 'The next work order is [' || payload.subject || '].'
);
END;

The payload is displayed by DBMS_OUTPUT.PUT_LINE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 429

13.2.2.3 REGISTER

Use the REGISTER procedure to register an email address, procedure or URL that will be notified when an item is enqueued or dequeued. The signature
is:

REGISTER(
 <reg_list> IN SYS.AQ$_REG_INFO_LIST,
 <count> IN NUMBER)

ParametersParameters

reg_list is a list of type AQ$_REG_INFO_LIST ; that provides information about each subscription that you would like to register. Each entry within
the list is of the type AQ$_REG_INFO , and may contain:

Attribute Type Description

name VARCHAR2
(128)

The (optionally schema-qualified) name of the subscription.

namespa
ce

NUMERIC The only supported value is DBMS_AQ.NAMESPACE_AQ (0)

callbac
k

VARCHAR2
(4000)

Describes the action that will be performed upon notification. Currently, only calls to PL/SQL procedures are supported.
The call should take the form:

plsql://schema.procedure

Where:

schema specifies the schema in which the procedure resides.

procedure specifies the name of the procedure that will be notified.

contex
t

RAW (16) Any user-defined value required by the procedure.

count

count is the number of entries in reg_list .

ExampleExample

The following anonymous block calls DBMS_AQ.REGISTER , registering procedures that will be notified when an item is added to or removed from a
queue. A set of attributes (of sys.aq$_reg_info type) is provided for each subscription identified in the DECLARE section:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 430

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://assign_worker?PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://add_to_history?PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://reserve_parts?PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1,
subscription2, subscription3);
 dbms_aq.register(subscriptionlist, 3);
 commit;
 END;
 /

The subscriptionlist is of type sys.aq$_reg_info_list , and contains the previously described sys.aq$_reg_info objects. The list
name and an object count are passed to dbms_aq.register .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 431

13.2.2.4 UNREGISTER

Use the UNREGISTER procedure to turn off notifications related to enqueueing and dequeueing. The signature is:

UNREGISTER(
 <reg_list> IN SYS.AQ$_REG_INFO_LIST,
 <count> IN NUMBER)

ParameterParameter

reg_list

reg_list is a list of type AQ$_REG_INFO_LIST ; that provides information about each subscription that you would like to register. Each entry within
the list is of the type AQ$_REG_INFO , and may contain:

Attribute Type Description

name VARCHAR2
(128)

The (optionally schema-qualified) name of the subscription.

namespa
ce

NUMERIC The only supported value is DBMS_AQ.NAMESPACE_AQ (0)

callbac
k

VARCHAR2
(4000)

Describes the action that will be performed upon notification. Currently, only calls to PL/SQL procedures are supported.
The call should take the form:

plsql://schema.procedure

Where:

schema specifies the schema in which the procedure resides.

procedure specifies the name of the procedure that will be notified.

contex
t

RAW (16) Any user-defined value required by the procedure.

count

count is the number of entries in reg_list .

ExampleExample

The following anonymous block calls DBMS_AQ.UNREGISTER , disabling the notifications specified in the example for DBMS_AQ.REGISTER :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 432

DECLARE
 subscription1 sys.aq$_reg_info;
 subscription2 sys.aq$_reg_info;
 subscription3 sys.aq$_reg_info;
 subscriptionlist sys.aq$_reg_info_list;
BEGIN
 subscription1 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://assign_worker?PR=0',HEXTORAW('FFFF'));
 subscription2 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://add_to_history?PR=1',HEXTORAW('FFFF'));
 subscription3 := sys.aq$_reg_info('q', DBMS_AQ.NAMESPACE_AQ,
'plsql://reserve_parts?PR=2',HEXTORAW('FFFF'));

 subscriptionlist := sys.aq$_reg_info_list(subscription1,
subscription2, subscription3);
 dbms_aq.unregister(subscriptionlist, 3);
 commit;
 END;
 /

The subscriptionlist is of type sys.aq$_reg_info_list , and contains the previously described sys.aq$_reg_info objects. The list
name and an object count are passed to dbms_aq.unregister .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 433

13.2.3 DBMS_AQADM

EDB Postgres Advanced Server Advanced Queueing provides message queueing and message processing for the Advanced Server database. User-defined
messages are stored in a queue; a collection of queues is stored in a queue table. Procedures in the DBMS_AQADM package create and manage message
queues and queue tables. Use the DBMS_AQ package to add messages to a queue or remove messages from a queue, or register or unregister a PL/SQL
callback procedure.

Advanced Server also provides extended (non-compatible) functionality for the DBMS_AQ package with SQL commands, see the Database Compatibility
for Oracle Developers SQL Guide for detailed information about the following SQL commands:

ALTER QUEUE
ALTER QUEUE TABLE
CREATE QUEUE
CREATE QUEUE TABLE
DROP QUEUE
DROP QUEUE TABLE

The DBMS_AQADM package provides procedures that allow you to create and manage queues and queue tables.

Function/Procedure Return Type Description

ALTER_QUEUE n/a Modify an existing queue.

ALTER_QUEUE_TABLE n/a Modify an existing queue table.

CREATE_QUEUE n/a Create a queue.

CREATE_QUEUE_TABLE n/a Create a queue table.

DROP_QUEUE n/a Drop an existing queue.

DROP_QUEUE_TABLE n/a Drop an existing queue table.

PURGE_QUEUE_TABLE n/a Remove one or more messages from a queue table.

START_QUEUE n/a Make a queue available for enqueueing and dequeueing procedures.

STOP_QUEUE n/a Make a queue unavailable for enqueueing and dequeueing
procedures

Advanced Server's implementation of DBMS_AQADM is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

Advanced Server supports use of the arguments listed below:

Constant Description For Parameters

DBMS_AQADM.TRANSACTIONAL(1) This constant is defined, but will return an error if
used.

message_grouping

DBMS_AQADM.NONE(0) Use to specify message grouping for a queue table. message_grouping

DBMS_AQADM.NORMAL_QUEUE(0) Use with create_queue to specify
queue_type .

queue_type

DBMS_AQADM.EXCEPTION_QUEUE (1) Use with create_queue to specify
queue_type .

queue_type

DBMS_AQADM.INFINITE(-1) Use with create_queue to specify
retention_time .

retention_time

DBMS_AQADM.PERSISTENT (0) The message should be stored in a table.
enqueue_options_t.delivery_mo
de

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 434

DBMS_AQADM.BUFFERED (1) This constant is defined, but will return an error if
used.

enqueue_options_t.delivery_mo
de

DBMS_AQADM.PERSISTENT_OR_BUFFERED
(2)

This constant is defined, but will return an error if
used.

enqueue_options_t.delivery_mo
de

Constant Description For Parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 435

13.2.3.1 ALTER_QUEUE

Use the ALTER_QUEUE procedure to modify an existing queue. The signature is:

ALTER_QUEUE(
 <max_retries> IN NUMBER DEFAULT NULL,
 <retry_delay> IN NUMBER DEFAULT 0
 <retention_time> IN NUMBER DEFAULT 0,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)
 <comment> IN VARCHAR2 DEFAULT NULL,

ParametersParameters

queue_name

The name of the new queue.

max_retries

max_retries specifies the maximum number of attempts to remove a message with a dequeue statement. The value of max_retries is
incremented with each ROLLBACK statement. When the number of failed attempts reaches the value specified by max_retries , the message is
moved to the exception queue. Specify 0 to indicate that no retries are allowed.

retry_delay

retry_delay specifies the number of seconds until a message is scheduled for re-processing after a ROLLBACK . Specify 0 to indicate that the
message should be retried immediately (the default).

retention_time

retention_time specifies the length of time (in seconds) that a message will be stored after being dequeued. You can also specify 0 (the default) to
indicate the message should not be retained after dequeueing, or INFINITE to retain the message forever.

auto_commit

This parameter is accepted for compatibility and ignored.

comment

comment specifies a comment associated with the queue.

ExampleExample

The following command alters a queue named work_order , setting the retry_delay parameter to 5 seconds:

EXEC DBMS_AQADM.ALTER_QUEUE(queue_name => 'work_order', retry_delay => 5);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 436

13.2.3.2 ALTER_QUEUE_TABLE

Use the ALTER_QUEUE_TABLE procedure to modify an existing queue table. The signature is:

ALTER_QUEUE_TABLE (
 <queue_table> IN VARCHAR2,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <primary_instance> IN BINARY_INTEGER DEFAULT 0,
 <secondary_instance> IN BINARY_INTEGER DEFAULT 0,

ParametersParameters

queue_table

The (optionally schema-qualified) name of the queue table.

comment

Use the comment parameter to provide a comment about the queue table.

primary_instance

primary_instance is accepted for compatibility and stored, but is ignored.

secondary_instance

secondary_instance is accepted for compatibility, but is ignored.

ExampleExample

The following command modifies a queue table named work_order_table :

EXEC DBMS_AQADM.ALTER_QUEUE_TABLE
 (queue_table => 'work_order_table', comment => 'This queue table
contains work orders for the shipping department.');

The queue table is named work_order_table ; the command adds a comment to the definition of the queue table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 437

13.2.3.3 CREATE_QUEUE

Use the CREATE_QUEUE procedure to create a queue in an existing queue table. The signature is:

CREATE_QUEUE(
 <queue_name> IN VARCHAR2
 <queue_table> IN VARCHAR2,
 <queue_type> IN BINARY_INTEGER DEFAULT NORMAL_QUEUE,
 <max_retries> IN NUMBER DEFAULT 5,
 <retry_delay> IN NUMBER DEFAULT 0
 <retention_time> IN NUMBER DEFAULT 0,
 <dependency_tracking> IN BOOLEAN DEFAULT FALSE,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)

ParametersParameters

queue_name

The name of the new queue.

queue_table

The name of the table in which the new queue will reside.

queue_type

The type of the new queue. The valid values for queue_type are:

DBMS_AQADM.NORMAL_QUEUE – This value specifies a normal queue (the default).

DBMS_AQADM.EXCEPTION_QUEUE – This value specifies that the new queue is an exception queue. An exception queue will support only dequeue
operations.

max_retries

max_retries specifies the maximum number of attempts to remove a message with a dequeue statement. The value of max_retries is
incremented with each ROLLBACK statement. When the number of failed attempts reaches the value specified by max_retries , the message is
moved to the exception queue. The default value for a system table is 0 ; the default value for a user created table is 5 .

retry_delay

retry_delay specifies the number of seconds until a message is scheduled for re-processing after a ROLLBACK . Specify 0 to indicate that the
message should be retried immediately (the default).

retention_time

retention_time specifies the length of time (in seconds) that a message will be stored after being dequeued. You can also specify 0 (the default) to
indicate the message should not be retained after dequeueing, or INFINITE to retain the message forever.

dependency_tracking

This parameter is accepted for compatibility and ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 438

comment

comment specifies a comment associated with the queue.

auto_commit

This parameter is accepted for compatibility and ignored.

ExampleExample

The following anonymous block creates a queue named work_order in the work_order_table table:

BEGIN
DBMS_AQADM.CREATE_QUEUE (queue_name => 'work_order', queue_table =>
'work_order_table', comment => 'This queue contains pending work orders.');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 439

13.2.3.4 CREATE_QUEUE_TABLE

Use the CREATE_QUEUE_TABLE procedure to create a queue table. The signature is:

CREATE_QUEUE_TABLE (
 <queue_table> IN VARCHAR2,
 <queue_payload_type> IN VARCHAR2,
 <storage_clause> IN VARCHAR2 DEFAULT NULL,
 <sort_list> IN VARCHAR2 DEFAULT NULL,
 <multiple_consumers> IN BOOLEAN DEFAULT FALSE,
 <message_grouping> IN BINARY_INTEGER DEFAULT NONE,
 <comment> IN VARCHAR2 DEFAULT NULL,
 <auto_commit> IN BOOLEAN DEFAULT TRUE,
 <primary_instance> IN BINARY_INTEGER DEFAULT 0,
 <secondary_instance> IN BINARY_INTEGER DEFAULT 0,
 <compatible> IN VARCHAR2 DEFAULT NULL,
 <secure> IN BOOLEAN DEFAULT FALSE)

ParametersParameters

queue_table

The (optionally schema-qualified) name of the queue table.

queue_payload_type

The user-defined type of the data that will be stored in the queue table. Please note that to specify a RAW data type, you must create a user-defined type
that identifies a RAW type.

storage_clause

Use the storage_clause parameter to specify attributes for the queue table. Please note that only the TABLESPACE option is enforced; all others
are accepted for compatibility and ignored. Use the TABLESPACE clause to specify the name of a tablespace in which the table will be created.

storage_clause may be one or more of the following:

TABLESPACE tablespace_name, PCTFREE integer, PCTUSED integer,
INITRANS integer, MAXTRANS integer or STORAGE storage_option.

storage_option may be one or more of the following:

MINEXTENTS integer, MAXEXTENTS integer, PCTINCREASE integer, INITIAL
size_clause, NEXT, FREELISTS integer, OPTIMAL size_clause, BUFFER_
POOL {KEEP|RECYCLE|DEFAULT}.

sort_list

sort_list controls the dequeueing order of the queue; specify the names of the column(s) that will be used to sort the queue (in ascending order). The
currently accepted values are the following combinations of enq_time and priority :

enq_time, priority

priority, enq_time

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 440

priority

enq_time

multiple_consumers

multiple_consumers queue tables is not supported.

message_grouping

If specified, message_grouping must be NONE .

comment

Use the comment parameter to provide a comment about the queue table.

auto_commit

auto_commit is accepted for compatibility, but is ignored.

primary_instance

primary_instance is accepted for compatibility and stored, but is ignored.

secondary_instance

secondary_instance is accepted for compatibility, but is ignored.

compatible

compatible is accepted for compatibility, but is ignored.

secure

secure is accepted for compatibility, but is ignored.

ExampleExample

The following anonymous block first creates a type (work_order) with attributes that hold a name (a VARCHAR2), and a project description (a TEXT).
The block then uses that type to create a queue table:

BEGIN

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

EXEC DBMS_AQADM.CREATE_QUEUE_TABLE
 (queue_table => 'work_order_table',
 queue_payload_type => 'work_order',
 comment => 'Work order message queue table');

END;

The queue table is named work_order_table , and contains a payload of a type work_order . A comment notes that this is the Work order
message queue table .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 441

13.2.3.5 DROP_QUEUE

Use the DROP_QUEUE procedure to delete a queue. The signature is:

DROP_QUEUE(
 <queue_name> IN VARCHAR2,
 <auto_commit> IN BOOLEAN DEFAULT TRUE)

ParametersParameters

queue_name

The name of the queue that you wish to drop.

auto_commit

auto_commit is accepted for compatibility, but is ignored.

ExampleExample

The following anonymous block drops the queue named work_order :

BEGIN
DBMS_AQADM.DROP_QUEUE(queue_name => 'work_order');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 442

13.2.3.6 DROP_QUEUE_TABLE

Use the DROP_QUEUE_TABLE procedure to delete a queue table. The signature is:

DROP_QUEUE_TABLE(
 <queue_table> IN VARCHAR2,
 <force> IN BOOLEAN default FALSE,
 <auto_commit> IN BOOLEAN default TRUE)

ParametersParameters

queue_table

The (optionally schema-qualified) name of the queue table.

force

The force keyword determines the behavior of the DROP_QUEUE_TABLE command when dropping a table that contain entries:

If the target table contains entries and force is FALSE , the command will fail, and the server will issue an error.

If the target table contains entries and force is TRUE , the command will drop the table and any dependent objects.

auto_commit

auto_commit is accepted for compatibility, but is ignored.

ExampleExample

The following anonymous block drops a table named work_order_table :

BEGIN
 DBMS_AQADM.DROP_QUEUE_TABLE ('work_order_table', force => TRUE);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 443

13.2.3.7 PURGE_QUEUE_TABLE

Use the PURGE_QUEUE_TABLE procedure to delete messages from a queue table. The signature is:

PURGE_QUEUE_TABLE(
 <queue_table> IN VARCHAR2,
 <purge_condition> IN VARCHAR2,
 <purge_options> IN aq$_purge_options_t)

ParametersParameters

queue_table

queue_table specifies the name of the queue table from which you are deleting a message.

purge_condition

Use purge_condition to specify a condition (a SQL WHERE clause) that the server will evaluate when deciding which messages to purge.

purge_options

purge_options is an object of the type aq$_purge_options_t . An aq$_purge_options_t object contains:

Attribute Type Description

block Boolean Specify TRUE if an exclusive lock should be held on all queues within the table; the default is FALSE .

delivery_mod
e

INTEGER
delivery_mode specifies the type of message that will be purged. The only accepted value is
DBMS_AQ.PERSISTENT .

ExampleExample

The following anonymous block removes any messages from the work_order_table with a value in the completed column of YES :

DECLARE
 purge_options dbms_aqadm.aq$_purge_options_t;
BEGIN
 dbms_aqadm.purge_queue_table('work_order_table', 'completed = YES',
purge_options);
 END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 444

13.2.3.8 START_QUEUE

Use the START_QUEUE procedure to make a queue available for enqueuing and dequeueing. The signature is:

START_QUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue> IN BOOLEAN DEFAULT TRUE,
 <dequeue> IN BOOLEAN DEFAULT TRUE)

ParametersParameters

queue_name

queue_name specifies the name of the queue that you are starting.

enqueue

Specify TRUE to enable enqueueing (the default), or FALSE to leave the current setting unchanged.

dequeue

Specify TRUE to enable dequeueing (the default), or FALSE to leave the current setting unchanged.

ExampleExample

The following anonymous block makes a queue named work_order available for enqueueing:

BEGIN
DBMS_AQADM.START_QUEUE
(queue_name => 'work_order);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 445

13.2.3.9 STOP_QUEUE

Use the STOP_QUEUE procedure to disable enqueuing or dequeueing on a specified queue. The signature is:

STOP_QUEUE(
 <queue_name> IN VARCHAR2,
 <enqueue> IN BOOLEAN DEFAULT TRUE,
 <dequeue> IN BOOLEAN DEFAULT TRUE,
 <wait> IN BOOLEAN DEFAULT TRUE)

ParametersParameters

queue_name

queue_name specifies the name of the queue that you are stopping.

enqueue

Specify TRUE to disable enqueueing (the default), or FALSE to leave the current setting unchanged.

dequeue

Specify TRUE to disable dequeueing (the default), or FALSE to leave the current setting unchanged.

wait

Specify TRUE to instruct the server to wait for any uncompleted transactions to complete before applying the specified changes; while waiting to stop the
queue, no transactions are allowed to enqueue or dequeue from the specified queue. Specify FALSE to stop the queue immediately.

ExampleExample

The following anonymous block disables enqueueing and dequeueing from the queue named work_order :

BEGIN
DBMS_AQADM.STOP_QUEUE(queue_name =>'work_order', enqueue=>TRUE,
dequeue=>TRUE, wait=>TRUE);
END;

Enqueueing and dequeueing will stop after any outstanding transactions complete.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 446

13.2.4 DBMS_CRYPTO

The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt or decrypt RAW, BLOB or CLOB data. You can also use
DBMS_CRYPTO functions to generate cryptographically strong random values.

The following table lists the DBMS_CRYPTO Functions and Procedures.

Function/Procedure Return
Type

Description

DECRYPT(src, typ, key, iv) RAW Decrypts RAW data.

DECRYPT(dst INOUT, src, typ,
key, iv)

N/A Decrypts BLOB data.

DECRYPT(dst INOUT, src, typ,
key, iv)

N/A Decrypts CLOB data.

ENCRYPT(src, typ, key, iv) RAW Encrypts RAW data.

ENCRYPT(dst INOUT, src, typ,
key, iv)

N/A Encrypts BLOB data.

ENCRYPT(dst INOUT, src, typ,
key, iv)

N/A Encrypts CLOB data.

HASH(src, typ) RAW Applies a hash algorithm to RAW data.

HASH(src) RAW Applies a hash algorithm to CLOB data.

MAC(src, typ, key) RAW Returns the hashed MAC value of the given RAW data using the specified hash
algorithm and key.

MAC(src, typ, key) RAW Returns the hashed MAC value of the given CLOB data using the specified hash
algorithm and key.

RANDOMBYTES(number_bytes) RAW Returns a specified number of cryptographically strong random bytes.

RANDOMINTEGER() INTEGE
R

Returns a random INTEGER .

RANDOMNUMBER() NUMBER Returns a random NUMBER.

DBMS_CRYPTO functions and procedures support the following error messages:

ORA-28239 - DBMS_CRYPTO.KeyNull

ORA-28829 - DBMS_CRYPTO.CipherSuiteNull

ORA-28827 - DBMS_CRYPTO.CipherSuiteInvalid

Unlike Oracle, Advanced Server will not return error ORA-28233 if you re-encrypt previously encrypted information.

Please note that RAW and BLOB are synonyms for the PostgreSQL BYTEA data type, and CLOB is a synonym for TEXT .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 447

13.2.4.1 DECRYPT

The DECRYPT function or procedure decrypts data using a user-specified cipher algorithm, key and optional initialization vector. The signature of the
DECRYPT function is:

DECRYPT
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW, <iv> IN RAW
 DEFAULT NULL) RETURN RAW

The signature of the DECRYPT procedure is:

DECRYPT
 (<dst> INOUT BLOB, <src> IN BLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

or

DECRYPT
 (<dst> INOUT CLOB, <src> IN CLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

When invoked as a procedure, DECRYPT returns BLOB or CLOB data to a user-specified BLOB .

ParametersParameters

dst

dst specifies the name of a BLOB to which the output of the DECRYPT procedure will be written. The DECRYPT procedure will overwrite any existing
data currently in dst .

src

src specifies the source data that will be decrypted. If you are invoking DECRYPT as a function, specify RAW data; if invoking DECRYPT as a
procedure, specify BLOB or CLOB data.

typ

typ specifies the block cipher type and any modifiers. This should match the type specified when the src was encrypted. Advanced Server supports the
following block cipher algorithms, modifiers and cipher suites:

Block Cipher AlgorithmsBlock Cipher Algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

ENCRYPT_AES192 CONSTANT INTEGER := 192;

ENCRYPT_AES256 CONSTANT INTEGER := 256;

Block Cipher ModifiersBlock Cipher Modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 448

CHAIN_ECB CONSTANT INTEGER := 768;

Block Cipher Padding ModifiersBlock Cipher Padding Modifiers

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block Cipher SuitesBlock Cipher Suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC +
PAD_PKCS5;

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC + PAD_PKCS5;

Block Cipher AlgorithmsBlock Cipher Algorithms

key

key specifies the user-defined decryption key. This should match the key specified when the src was encrypted.

iv

iv (optional) specifies an initialization vector. If an initialization vector was specified when the src was encrypted, you must specify an initialization
vector when decrypting the src . The default is NULL .

ExamplesExamples

The following example uses the DBMS_CRYPTO.DECRYPT function to decrypt an encrypted password retrieved from the passwords table:

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);

CREATE FUNCTION get_password(username VARCHAR2) RETURN RAW AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 password RAW(2048);
BEGIN

 SELECT ciphertext INTO password FROM passwords WHERE principal = username;

 RETURN dbms_crypto.decrypt(password, typ, key, iv);
END;

Note that when calling DECRYPT , you must pass the same cipher type, key value and initialization vector that was used when ENCRYPTING the target.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 449

13.2.4.2 ENCRYPT

The ENCRYPT function or procedure uses a user-specified algorithm, key, and optional initialization vector to encrypt RAW , BLOB or CLOB data. The
signature of the ENCRYPT function is:

ENCRYPT
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL) RETURN RAW

The signature of the ENCRYPT procedure is:

ENCRYPT
 (<dst> INOUT BLOB, <src> IN BLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

or

ENCRYPT
 (<dst> INOUT BLOB, <src> IN CLOB, <typ> IN INTEGER, <key> IN RAW,
 <iv> IN RAW DEFAULT NULL)

When invoked as a procedure, ENCRYPT returns BLOB or CLOB data to a user-specified BLOB .

ParametersParameters

dst

dst specifies the name of a BLOB to which the output of the ENCRYPT procedure will be written. The ENCRYPT procedure will overwrite any existing
data currently in dst .

src

src specifies the source data that will be encrypted. If you are invoking ENCRYPT as a function, specify RAW data; if invoking ENCRYPT as a
procedure, specify BLOB or CLOB data.

typ

typ specifies the block cipher type that will be used by ENCRYPT , and any modifiers. Advanced Server supports the block cipher algorithms, modifiers
and cipher suites listed below:

Block Cipher AlgorithmsBlock Cipher Algorithms

ENCRYPT_DES CONSTANT INTEGER := 1;

ENCRYPT_3DES CONSTANT INTEGER := 3;

ENCRYPT_AES CONSTANT INTEGER := 4;

ENCRYPT_AES128 CONSTANT INTEGER := 6;

ENCRYPT_AES192 CONSTANT INTEGER := 192;

ENCRYPT_AES256 CONSTANT INTEGER := 256;

Block Cipher ModifiersBlock Cipher Modifiers

CHAIN_CBC CONSTANT INTEGER := 256;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 450

CHAIN_ECB CONSTANT INTEGER := 768;

Block Cipher Padding ModifiersBlock Cipher Padding Modifiers

PAD_PKCS5 CONSTANT INTEGER := 4096;

PAD_NONE CONSTANT INTEGER := 8192;

Block Cipher SuitesBlock Cipher Suites

DES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_DES + CHAIN_CBC + PAD_PKCS5;

DES3_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_3DES + CHAIN_CBC +
PAD_PKCS5;

AES_CBC_PKCS5 CONSTANT INTEGER := ENCRYPT_AES + CHAIN_CBC + PAD_PKCS5;

Block Cipher AlgorithmsBlock Cipher Algorithms

key

key specifies the encryption key.

iv

iv (optional) specifies an initialization vector. By default, iv is NULL .

ExamplesExamples

The following example uses the DBMS_CRYPTO.DES_CBC_PKCS5 Block Cipher Suite (a pre-defined set of algorithms and modifiers) to encrypt a value
retrieved from the passwords table:

CREATE TABLE passwords
(
 principal VARCHAR2(90) PRIMARY KEY, -- username
 ciphertext RAW(9) -- encrypted password
);
CREATE PROCEDURE set_password(username VARCHAR2, cleartext RAW) AS
 typ INTEGER := DBMS_CRYPTO.DES_CBC_PKCS5;
 key RAW(128) := 'my secret key';
 iv RAW(100) := 'my initialization vector';
 encrypted RAW(2048);
BEGIN
 encrypted := dbms_crypto.encrypt(cleartext, typ, key, iv);
 UPDATE passwords SET ciphertext = encrypted WHERE principal = username;
END;

ENCRYPT uses a key value of my secret key and an initialization vector of my initialization vector when encrypting the password ;
specify the same key and initialization vector when decrypting the password .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 451

13.2.4.3 HASH

The HASH function uses a user-specified algorithm to return the hash value of a RAW or CLOB value. The HASH function is available in three forms:

HASH
 (<src> IN RAW, <typ> IN INTEGER) RETURN RAW

HASH
 (<src> IN CLOB, <typ> IN INTEGER) RETURN RAW

ParametersParameters

src

src specifies the value for which the hash value will be generated. You can specify a RAW , a BLOB , or a CLOB value.

typ

typ specifies the HASH function type. Advanced Server supports the HASH function types listed below:

HASH FunctionsHASH Functions

HASH_MD4 CONSTANT INTEGER := 1;

HASH_MD5 CONSTANT INTEGER := 2;

HASH_SH1 CONSTANT INTEGER := 3;

ExamplesExamples

The following example uses DBMS_CRYPTO.HASH to find the md5 hash value of the string, cleartext source :

DECLARE
 typ INTEGER := DBMS_CRYPTO.HASH_MD5;
 hash_value RAW(100);
BEGIN

 hash_value := DBMS_CRYPTO.HASH('cleartext source', typ);

END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 452

13.2.4.4 MAC

The MAC function uses a user-specified MAC function to return the hashed MAC value of a RAW or CLOB value. The MAC function is available in three
forms:

MAC
 (<src> IN RAW, <typ> IN INTEGER, <key> IN RAW) RETURN RAW

MAC
 (<src> IN CLOB, <typ> IN INTEGER, <key> IN RAW) RETURN RAW

ParametersParameters

src

src specifies the value for which the MAC value will be generated. Specify a RAW , BLOB , or CLOB value.

typ

typ specifies the MAC function used. Advanced Server supports the MAC functions listed below.

MAC FunctionsMAC Functions

HMAC_MD5 CONSTANT INTEGER := 1;

HMAC_SH1 CONSTANT INTEGER := 2;

key

key specifies the key that will be used to calculate the hashed MAC value.

ExamplesExamples

The following example finds the hashed MAC value of the string cleartext source :

DECLARE
 typ INTEGER := DBMS_CRYPTO.HMAC_MD5;
 key RAW(100) := 'my secret key';
 mac_value RAW(100);
BEGIN

 mac_value := DBMS_CRYPTO.MAC('cleartext source', typ, key);

END;

DBMS_CRYPTO.MAC uses a key value of my secret key when calculating the MAC value of cleartext source .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 453

13.2.4.5 RANDOMBYTES

The RANDOMBYTES function returns a RAW value of the specified length, containing cryptographically random bytes. The signature is:

RANDOMBYTES
 (<number_bytes> IN INTEGER) RETURNS RAW

ParameterParameter

number_bytes

number_bytes specifies the number of random bytes to be returned

ExamplesExamples

The following example uses RANDOMBYTES to return a value that is 1024 bytes long:

DECLARE
 result RAW(1024);
BEGIN
 result := DBMS_CRYPTO.RANDOMBYTES(1024);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 454

13.2.4.6 RANDOMINTEGER

The RANDOMINTEGER() function returns a random INTEGER between 0 and 268,435,455 . The signature is:

RANDOMINTEGER() RETURNS INTEGER

ExamplesExamples

The following example uses the RANDOMINTEGER function to return a cryptographically strong random INTEGER value:

DECLARE
 result INTEGER;
BEGIN
 result := DBMS_CRYPTO.RANDOMINTEGER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 455

13.2.4.7 RANDOMNUMBER

The RANDOMNUMBER() function returns a random NUMBER between 0 and 268,435,455 . The signature is:

RANDOMNUMBER() RETURNS NUMBER

ExamplesExamples

The following example uses the RANDOMNUMBER function to return a cryptographically strong random number:

DECLARE
 result NUMBER;
BEGIN
 result := DBMS_CRYPTO.RANDOMNUMBER();
 DBMS_OUTPUT.PUT_LINE(result);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 456

13.2.5 DBMS_JOB

The DBMS_JOB package provides for the creation, scheduling, and managing of jobs. A job runs a stored procedure which has been previously stored in
the database. The SUBMIT procedure is used to create and store a job definition. A job identifier is assigned to a job along with its associated stored
procedure and the attributes describing when and how often the job is to be run.

This package relies on the pgAgent scheduler. By default, the Advanced Server installer installs pgAgent , but you must start the pgAgent service
manually prior to using DBMS_JOB . If you attempt to use this package to schedule a job after un-installing pgAgent, DBMS_JOB will throw an error.
DBMS_JOB verifies that pgAgent is installed, but does not verify that the service is running.

Advanced Server's implementation of DBMS_JOB is a partial implementation when compared to Oracle's version. The following table lists the supported
DBMS_JOB procedures:

Function/Procedure Return
Type

Description

BROKEN(job, broken [, next_date]) n/a Specify that a given job is either broken or not broken.

CHANGE(job, what, next_date,
interval, instance, force)

n/a Change the job’s parameters.

INTERVAL(job, interval) n/a Set the execution frequency by means of a date function that is recalculated each time
the job is run. This value becomes the next date/time for execution.

NEXT_DATE(job, next_date) n/a Set the next date/time the job is to be run.

REMOVE(job) n/a Delete the job definition from the database.

RUN(job) n/a Forces execution of a job even if it is marked broken.

SUBMIT(job OUT, what [, next_date
[, interval [, no_parse]]])

n/a Creates a job and stores its definition in the database.

WHAT(job, what) n/a Change the stored procedure run by a job.

Before using DBMS_JOB , a database superuser must create the pgAgent and DBMS_JOB extension. Use the psql client to connect to a database
and invoke the command:

CREATE EXTENSION pgagent;
CREATE EXTENSION dbms_job;

When and how often a job is run is dependent upon two interacting parameters – next_date and interval . The next_date parameter is a
date/time value that specifies the next date/time when the job is to be executed. The interval parameter is a string that contains a date function that
evaluates to a date/time value.

Just prior to any execution of the job, the expression in the interval parameter is evaluated. The resulting value replaces the next_date value
stored with the job. The job is then executed. In this manner, the expression in interval is repeatedly re-evaluated prior to each job execution,
supplying the next_date date/time for the next execution.

NoteNote

The database user must be the same that created a job and schedule to start the pgAgent server and execute the job.

The following examples use the following stored procedure, job_proc , which simply inserts a timestamp into table, jobrun , containing a single
VARCHAR2 column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 457

CREATE TABLE jobrun (
 runtime VARCHAR2(40)
);

CREATE OR REPLACE PROCEDURE job_proc
IS
BEGIN
 INSERT INTO jobrun VALUES ('job_proc run at ' || TO_CHAR(SYSDATE,
 'yyyy-mm-dd hh24:mi:ss'));
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 458

13.2.5.1 BROKEN

The BROKEN procedure sets the state of a job to either broken or not broken. A broken job cannot be executed except by using the RUN procedure.

BROKEN(<job> BINARY_INTEGER, <broken> BOOLEAN [, <next_date> DATE])

ParametersParameters

job

Identifier of the job to be set as broken or not broken.

broken

If set to TRUE the job’s state is set to broken. If set to FALSE the job’s state is set to not broken. Broken jobs cannot be run except by using the RUN
procedure.

next_date

Date/time when the job is to be run. The default is SYSDATE .

ExamplesExamples

Set the state of a job with job identifier 104 to broken:

BEGIN
 DBMS_JOB.BROKEN(104,true);
END;

Change the state back to not broken:

BEGIN
 DBMS_JOB.BROKEN(104,false);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 459

13.2.5.2 CHANGE

The CHANGE procedure modifies certain job attributes including the stored procedure to be run, the next date/time the job is to be run, and how often it is
to be run.

CHANGE(<job> BINARY_INTEGER <what> VARCHAR2, <next_date> DATE,
 <interval> VARCHAR2, <instance> BINARY_INTEGER, <force> BOOLEAN)

ParametersParameters

job

Identifier of the job to modify.

what

Stored procedure name. Set this parameter to null if the existing value is to remain unchanged.

next_date

Date/time when the job is to be run next. Set this parameter to null if the existing value is to remain unchanged.

interval

Date function that when evaluated, provides the next date/time the job is to run. Set this parameter to null if the existing value is to remain unchanged.

instance

This argument is ignored, but is included for compatibility.

force

This argument is ignored, but is included for compatibility.

ExamplesExamples

Change the job to run next on December 13, 2007. Leave other parameters unchanged.

BEGIN
 DBMS_JOB.CHANGE(104,NULL,TO_DATE('13-DEC-07','DD-MON-YY'),NULL, NULL,
 NULL);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 460

13.2.5.3 INTERVAL

The INTERVAL procedure sets the frequency of how often a job is to be run.

INTERVAL(<job> BINARY_INTEGER, <interval> VARCHAR2)

ParametersParameters

job

Identifier of the job to modify.

interval

Date function that when evaluated, provides the next date/time the job is to be run. If interval is NULL and the job is complete, the job is removed
from the queue.

ExamplesExamples

Change the job to run once a week:

BEGIN
 DBMS_JOB.INTERVAL(104,'SYSDATE + 7');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 461

13.2.5.4 NEXT_DATE

The NEXT_DATE procedure sets the date/time of when the job is to be run next.

NEXT_DATE(<job> BINARY_INTEGER, <next_date> DATE)

ParametersParameters

job

Identifier of the job whose next run date is to be set.

next_date

Date/time when the job is to be run next.

ExamplesExamples

Change the job to run next on December 14, 2007:

BEGIN
 DBMS_JOB.NEXT_DATE(104, TO_DATE('14-DEC-07','DD-MON-YY'));
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 462

13.2.5.5 REMOVE

The REMOVE procedure deletes the specified job from the database. The job must be resubmitted using the SUBMIT procedure in order to have it
executed again. Note that the stored procedure that was associated with the job is not deleted.

REMOVE(<job> BINARY_INTEGER)

ParameterParameter

job

Identifier of the job that is to be removed from the database.

ExamplesExamples

Remove a job from the database:

BEGIN
 DBMS_JOB.REMOVE(104);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 463

13.2.5.6 RUN

The RUN procedure forces the job to be run, even if its state is broken.

RUN(<job> BINARY_INTEGER)

ParameterParameter

job

Identifier of the job to be run.

ExamplesExamples

Force a job to be run.

BEGIN
 DBMS_JOB.RUN(104);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 464

13.2.5.7 SUBMIT

The SUBMIT procedure creates a job definition and stores it in the database. A job consists of a job identifier, the stored procedure to be executed, when
the job is to be first run, and a date function that calculates the next date/time the job is to be run.

SUBMIT(<job> OUT BINARY_INTEGER, <what> VARCHAR2
 [, <next_date> DATE [, <interval> VARCHAR2 [, <no_parse> BOOLEAN]]])

ParametersParameters

job

Identifier assigned to the job.

what

Name of the stored procedure to be executed by the job.

next_date

Date/time when the job is to be run next. The default is SYSDATE .

interval

Date function that when evaluated, provides the next date/time the job is to run. If interval is set to null, then the job is run only once. Null is the
default.

no_parse

If set to TRUE , do not syntax-check the stored procedure upon job creation – check only when the job first executes. If set to FALSE , check the
procedure upon job creation. The default is FALSE .

NoteNote: The no_parse option is not supported in this implementation of SUBMIT() . It is included for compatibility only.

ExamplesExamples

The following example creates a job using stored procedure, job_proc . The job will execute immediately and run once a day thereafter as set by the
interval parameter, SYSDATE + 1 .

DECLARE
 jobid INTEGER;
BEGIN
 DBMS_JOB.SUBMIT(jobid,'job_proc;',SYSDATE,
 'SYSDATE + 1');
 DBMS_OUTPUT.PUT_LINE('jobid: ' || jobid);
END;

jobid: 104

The job immediately executes procedure, job_proc , populating table, jobrun , with a row:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 465

SELECT * FROM jobrun;

 runtime

 job_proc run at 2007-12-11 11:43:25
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 466

13.2.5.8 WHAT

The WHAT procedure changes the stored procedure that the job will execute.

WHAT(<job> BINARY_INTEGER, <what> VARCHAR2)

ParametersParameters

job

Identifier of the job for which the stored procedure is to be changed.

what

Name of the stored procedure to be executed.

ExamplesExamples

Change the job to run the list_emp procedure:

BEGIN
 DBMS_JOB.WHAT(104,'list_emp;');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 467

13.2.6 DBMS_LOB

The DBMS_LOB package provides the capability to operate on large objects. The following table lists the supported functions and procedures:

Function/Procedure Return
Type

Description

APPEND(dest_lob IN OUT, src_lob) n/a Appends one large object to another.

COMPARE(lob_1, lob_2 [, amount [, offset_1 [, offset_2]]]) INTEG
ER

Compares two large objects.

CONVERTOBLOB(dest_lob IN OUT, src_clob, amount, dest_offset IN
OUT, src_offset IN OUT, blob_csid, lang_context IN OUT, warning
OUT)

n/a Converts character data to binary.

CONVERTTOCLOB(dest_lob IN OUT, src_blob, amount, dest_offset IN
OUT, src_offset IN OUT, blob_csid, lang_context IN OUT, warning
OUT)

n/a Converts binary data to character.

COPY(dest_lob IN OUT, src_lob, amount [, dest_offset [,
src_offset]])

n/a Copies one large object to another.

ERASE(lob_loc IN OUT, amount IN OUT [, offset]) n/a Erase a large object.

GET_STORAGE_LIMIT(lob_loc) INTEG
ER

Get the storage limit for large objects.

GETLENGTH(lob_loc) INTEG
ER

Get the length of the large object.

INSTR(lob_loc, pattern [, offset [, nth]])
INTEG
ER

Get the position of the nth occurrence of a
pattern in the large object starting at
offset

READ(lob_loc, amount IN OUT, offset, buffer OUT) n/a Read a large object.

SUBSTR(lob_loc [, amount [, offset]])
RAW,
VARCH
AR2

Get part of a large object.

TRIM(lob_loc IN OUT, newlen) n/a Trim a large object to the specified length.

WRITE(lob_loc IN OUT, amount, offset, buffer) n/a Write data to a large object.

WRITEAPPEND(lob_loc IN OUT, amount, buffer) n/a Write data from the buffer to the end of a
large object.

Advanced Server's implementation of DBMS_LOB is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

The following table lists the public variables available in the package.

Public VariablesPublic Variables Data TypeData Type ValueValue

compress off INTEGER 0

compress_on INTEGER 1

deduplicate_off INTEGER 0

deduplicate_on INTEGER 4

default_csid INTEGER 0

default_lang_ctx INTEGER 0

encrypt_off INTEGER 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 468

encrypt_on INTEGER 1

file_readonly INTEGER 0

lobmaxsize INTEGER 1073741823

lob_readonly INTEGER 0

lob_readwrite INTEGER 1

no_warning INTEGER 0

opt_compress INTEGER 1

opt_deduplicate INTEGER 4

opt_encrypt INTEGER 2

warn_inconvertible_char INTEGER 1

Public VariablesPublic Variables Data TypeData Type ValueValue

In the following sections, lengths and offsets are measured in bytes if the large objects are BLOBs . Lengths and offsets are measured in characters if the
large objects are CLOBs .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 469

13.2.6.1 APPEND

The APPEND procedure provides the capability to append one large object to another. Both large objects must be of the same type.

APPEND(<dest_lob> IN OUT { BLOB | CLOB }, <src_lob> { BLOB | CLOB })

ParametersParameters

dest_lob

Large object locator for the destination object. Must be the same data type as src_lob .

src_lob

Large object locator for the source object. Must be the same data type as dest_lob .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 470

13.2.6.2 COMPARE

The COMPARE procedure performs an exact byte-by-byte comparison of two large objects for a given length at given offsets. The large objects being
compared must be the same data type.

<status> INTEGER COMPARE(<lob_1> { BLOB | CLOB },
 <lob_2> { BLOB | CLOB }
 [, <amount> INTEGER [, <offset_1> INTEGER [, <offset_2> INTEGER]]])

ParametersParameters

lob_1

Large object locator of the first large object to be compared. Must be the same data type as lob_2 .

lob_2

Large object locator of the second large object to be compared. Must be the same data type as lob_1 .

amount

If the data type of the large objects is BLOB , then the comparison is made for amount bytes. If the data type of the large objects is CLOB , then the
comparison is made for amount characters. The default is the maximum size of a large object.

offset_1

Position within the first large object to begin the comparison. The first byte/character is offset 1. The default is 1.

offset_2

Position within the second large object to begin the comparison. The first byte/character is offset 1. The default is 1.

status

Zero if both large objects are exactly the same for the specified length for the specified offsets. Non-zero, if the objects are not the same. NULL if
amount , offset_1 , or offset_2 are less than zero.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 471

13.2.6.3 CONVERTTOBLOB

The CONVERTTOBLOB procedure provides the capability to convert character data to binary.

CONVERTTOBLOB(<dest_lob> IN OUT BLOB, <src_clob> CLOB,
 <amount> INTEGER, <dest_offset> IN OUT INTEGER,
 <src_offset> IN OUT INTEGER, <blob_csid> NUMBER,
 <lang_context> IN OUT INTEGER, <warning> OUT INTEGER)

ParametersParameters

dest_lob

BLOB large object locator to which the character data is to be converted.

src_clob

CLOB large object locator of the character data to be converted.

amount

Number of characters of src_clob to be converted.

dest_offset IN

Position in bytes in the destination BLOB where writing of the source CLOB should begin. The first byte is offset 1.

dest_offset OUT

Position in bytes in the destination BLOB after the write operation completes. The first byte is offset 1.

src_offset IN

Position in characters in the source CLOB where conversion to the destination BLOB should begin. The first character is offset 1.

src_offset OUT

Position in characters in the source CLOB after the conversion operation completes. The first character is offset 1.

blob_csid

Character set ID of the converted, destination BLOB .

lang_context IN

Language context for the conversion. The default value of 0 is typically used for this setting.

lang_context OUT

Language context after the conversion completes.

warning

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 472

0 if the conversion was successful, 1 if an inconvertible character was encountered.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 473

13.2.6.4 CONVERTTOCLOB

The CONVERTTOCLOB procedure provides the capability to convert binary data to character.

CONVERTTOCLOB(<dest_lob> IN OUT CLOB, <src_blob> BLOB,
 <amount> INTEGER, <dest_offset> IN OUT INTEGER,
 <src_offset> IN OUT INTEGER, <blob_csid> NUMBER,
 <lang_context> IN OUT INTEGER, <warning> OUT INTEGER)

ParametersParameters

dest_lob

CLOB large object locator to which the binary data is to be converted.

src_blob

BLOB large object locator of the binary data to be converted.

amount

Number of bytes of src_blob to be converted.

dest_offset IN

Position in characters in the destination CLOB where writing of the source BLOB should begin. The first character is offset 1.

dest_offset OUT

Position in characters in the destination CLOB after the write operation completes. The first character is offset 1.

src_offset IN

Position in bytes in the source BLOB where conversion to the destination CLOB should begin. The first byte is offset 1.

src_offset OUT

Position in bytes in the source BLOB after the conversion operation completes. The first byte is offset 1.

blob_csid

Character set ID of the converted, destination CLOB .

lang_context IN

Language context for the conversion. The default value of 0 is typically used for this setting.

lang_context OUT

Language context after the conversion completes.

warning

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 474

0 if the conversion was successful, 1 if an inconvertible character was encountered.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 475

13.2.6.5 COPY

The COPY procedure provides the capability to copy one large object to another. The source and destination large objects must be the same data type.

COPY(<dest_lob> IN OUT { BLOB | CLOB }, <src_lob>
{ BLOB | CLOB },
 <amount> INTEGER
 [, <dest_offset> INTEGER [, <src_offset> INTEGER]])

ParametersParameters

dest_lob

Large object locator of the large object to which src_lob is to be copied. Must be the same data type as src_lob .

src_lob

Large object locator of the large object to be copied to dest_lob . Must be the same data type as dest_lob .

amount

Number of bytes/characters of src_lob to be copied.

dest_offset

Position in the destination large object where writing of the source large object should begin. The first position is offset 1. The default is 1.

src_offset

Position in the source large object where copying to the destination large object should begin. The first position is offset 1. The default is 1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 476

13.2.6.6 ERASE

The ERASE procedure provides the capability to erase a portion of a large object. To erase a large object means to replace the specified portion with zero-
byte fillers for BLOBs or with spaces for CLOBs . The actual size of the large object is not altered.

ERASE(<lob_loc> IN OUT { BLOB | CLOB }, <amount> IN OUT INTEGER
 [, <offset> INTEGER])

ParametersParameters

lob_loc

Large object locator of the large object to be erased.

amount IN

Number of bytes/characters to be erased.

amount OUT

Number of bytes/characters actually erased. This value can be smaller than the input value if the end of the large object is reached before amount
bytes/characters have been erased.

offset

Position in the large object where erasing is to begin. The first byte/character is position 1. The default is 1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 477

13.2.6.7 GET_STORAGE_LIMIT

The GET_STORAGE_LIMIT function returns the limit on the largest allowable large object.

<size> INTEGER GET_STORAGE_LIMIT(<lob_loc> BLOB)

<size> INTEGER GET_STORAGE_LIMIT(<lob_loc> CLOB)

ParametersParameters

size

Maximum allowable size of a large object in this database.

lob_loc

This parameter is ignored, but is included for compatibility.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 478

13.2.6.8 GETLENGTH

The GETLENGTH function returns the length of a large object.

<amount> INTEGER GETLENGTH(<lob_loc> BLOB)

<amount> INTEGER GETLENGTH(<lob_loc> CLOB)

ParametersParameters

lob_loc

Large object locator of the large object whose length is to be obtained.

amount

Length of the large object in bytes for BLOBs or characters for CLOBs .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 479

13.2.6.9 INSTR

The INSTR function returns the location of the nth occurrence of a given pattern within a large object.

<position> INTEGER INSTR(<lob_loc> { BLOB | CLOB },
 <pattern> { RAW | VARCHAR2 } [, <offset> INTEGER [, <nth> INTEGER]])

ParametersParameters

lob_loc

Large object locator of the large object in which to search for pattern.

pattern

Pattern of bytes or characters to match against the large object, lob. pattern must be RAW if lob_loc is a BLOB . pattern must be VARCHAR2 if
lob_loc is a CLOB .

offset

Position within lob_loc to start search for pattern . The first byte/character is position 1. The default is 1.

nth

Search for pattern , nth number of times starting at the position given by offset . The default is 1.

position

Position within the large object where pattern appears the nth time specified by nth starting from the position given by offset .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 480

13.2.6.10 READ

The READ procedure provides the capability to read a portion of a large object into a buffer.

READ(<lob_loc> { BLOB | CLOB }, <amount> IN OUT BINARY_INTEGER,
 <offset> INTEGER, <buffer> OUT { RAW | VARCHAR2 })

ParametersParameters

lob_loc

Large object locator of the large object to be read.

amount IN

Number of bytes/characters to read.

amount OUT

Number of bytes/characters actually read. If there is no more data to be read, then amount returns 0 and a DATA_NOT_FOUND exception is thrown.

offset

Position to begin reading. The first byte/character is position 1.

buffer

Variable to receive the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be
VARCHAR2 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 481

13.2.6.11 SUBSTR

The SUBSTR function provides the capability to return a portion of a large object.

<data> { RAW | VARCHAR2 } SUBSTR(<lob_loc> { BLOB | CLOB }
 [, <amount> INTEGER [, <offset> INTEGER]])

ParametersParameters

lob_loc

Large object locator of the large object to be read.

amount

Number of bytes/characters to be returned. Default is 32,767.

offset

Position within the large object to begin returning data. The first byte/character is position 1. The default is 1.

data

Returned portion of the large object to be read. If lob_loc is a BLOB , the return data type is RAW . If lob_loc is a CLOB , the return data type is
VARCHAR2 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 482

13.2.6.12 TRIM

The TRIM procedure provides the capability to truncate a large object to the specified length.

TRIM(<lob_loc> IN OUT { BLOB | CLOB }, <newlen> INTEGER)

ParametersParameters

lob_loc

Large object locator of the large object to be trimmed.

newlen

Number of bytes/characters to which the large object is to be trimmed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 483

13.2.6.13 WRITE

The WRITE procedure provides the capability to write data into a large object. Any existing data in the large object at the specified offset for the given
length is overwritten by data given in the buffer.

WRITE(<lob_loc> IN OUT { BLOB | CLOB },
 <amount> BINARY_INTEGER,
 <offset> INTEGER, <buffer> { RAW | VARCHAR2 })

ParametersParameters

lob_loc

Large object locator of the large object to be written.

amount

The number of bytes/characters in buffer to be written to the large object.

offset

The offset in bytes/characters from the beginning of the large object (origin is 1) for the write operation to begin.

buffer

Contains data to be written to the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be
VARCHAR2 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 484

13.2.6.14 WRITEAPPEND

The WRITEAPPEND procedure provides the capability to add data to the end of a large object.

WRITEAPPEND(<lob_loc> IN OUT { BLOB | CLOB },
 <amount> BINARY_INTEGER, <buffer> { RAW | VARCHAR2 })

ParametersParameters

lob_loc

Large object locator of the large object to which data is to be appended.

amount

Number of bytes/characters from buffer to be appended the large object.

buffer

Data to be appended to the large object. If lob_loc is a BLOB , then buffer must be RAW . If lob_loc is a CLOB , then buffer must be
VARCHAR2 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 485

13.2.7 DBMS_LOCK

Advanced Server provides support for the DBMS_LOCK.SLEEP procedure.

Function/Procedure Return Type Description

SLEEP(seconds) n/a Suspends a session for the specified number of seconds .

Advanced Server's implementation of DBMS_LOCK is a partial implementation when compared to Oracle's version. Only DBMS_LOCK.SLEEP is
supported.

SLEEP

The SLEEP procedure suspends the current session for the specified number of seconds.

SLEEP(<seconds> NUMBER)

ParametersParameters

seconds

seconds specifies the number of seconds for which you wish to suspend the session. seconds can be a fractional value; for example, enter 1.75 to
specify one and three-fourths of a second.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 486

13.2.8 DBMS_MVIEW

Use procedures in the DBMS_MVIEW package to manage and refresh materialized views and their dependencies. Advanced Server provides support for the
following DBMS_MVIEW procedures:

Procedure Return
Type

Description

GET_MV_DEPENDENCIES(list VARCHAR2, deplist VARCHAR2); n/a
The GET_MV_DEPENDENCIES
procedure returns a list of dependencies
for a specified view.

REFRESH(list VARCHAR2, method VARCHAR2, rollback_seg VARCHAR2 ,
push_deferred_rpc BOOLEAN, refresh_after_errors BOOLEAN ,
purge_option NUMBER, parallelism NUMBER, heap_size NUMBER ,
atomic_refresh BOOLEAN , nested BOOLEAN);

n/a
This variation of the REFRESH
procedure refreshes all views named in a
comma-separated list of view names.

REFRESH(tab dbms_utility.uncl_array, method VARCHAR2, rollback_seg
VARCHAR2, push_deferred_rpc BOOLEAN, refresh_after_errors BOOLEAN,
purge_option NUMBER, parallelism NUMBER, heap_size NUMBER,
atomic_refresh BOOLEAN, nested BOOLEAN);

n/a

This variation of the REFRESH
procedure refreshes all views named in a
table of
dbms_utility.uncl_array

values.

REFRESH_ALL_MVIEWS(number_of_failures BINARY_INTEGER, method
VARCHAR2, rollback_seg VARCHAR2, refresh_after_errors BOOLEAN,
atomic_refresh BOOLEAN);

n/a
The REFRESH_ALL_MVIEWS
procedure refreshes all materialized
views.

REFRESH_DEPENDENT(number_of_failures BINARY_INTEGER, list
VARCHAR2, method VARCHAR2, rollback_seg VARCHAR2,
refresh_after_errors BOOLEAN, atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a

This variation of the
REFRESH_DEPENDENT procedure

refreshes all views that are dependent on
the views listed in a comma-separated
list.

REFRESH_DEPENDENT(number_of_failures BINARY_INTEGER, tab
dbms_utility.uncl_array, method VARCHAR2, rollback_seg VARCHAR2,
refresh_after_errors BOOLEAN, atomic_refresh BOOLEAN, nested
BOOLEAN);

n/a

This variation of the
REFRESH_DEPENDENT procedure

refreshes all views that are dependent on
the views listed in a table of
dbms_utility.uncl_array

values.

Advanced Server's implementation of DBMS_MVIEW is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 487

13.2.8.1 GET_MV_DEPENDENCIES

When given the name of a materialized view, GET_MV_DEPENDENCIES returns a list of items that depend on the specified view. The signature is:

GET_MV_DEPENDENCIES(
 <list> IN VARCHAR2,
 <deplist> OUT VARCHAR2);

ParametersParameters

list

list specifies the name of a materialized view, or a comma-separated list of materialized view names.

deplist

deplist is a comma-separated list of schema-qualified dependencies. deplist is a VARCHAR2 value.

ExamplesExamples

The following example:

DECLARE
 deplist VARCHAR2(1000);
BEGIN
 DBMS_MVIEW.GET_MV_DEPENDENCIES('public.emp_view', deplist);
 DBMS_OUTPUT.PUT_LINE('deplist: ' || deplist);
END;

Displays a list of the dependencies on a materialized view named public.emp_view .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 488

13.2.8.2 REFRESH

Use the REFRESH procedure to refresh all views specified in either a comma-separated list of view names, or a table of DBMS_UTILITY.UNCL_ARRAY
values. The procedure has two signatures; use the first form when specifying a comma-separated list of view names:

REFRESH(
 <list> IN VARCHAR2,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <push_deferred_rpc> IN BOOLEAN DEFAULT TRUE,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <purge_option> IN NUMBER DEFAULT 1,
 <parallelism> IN NUMBER DEFAULT 0,
 <heap_size> IN NUMBER DEFAULT 0,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Use the second form to specify view names in a table of DBMS_UTILITY.UNCL_ARRAY values:

REFRESH(
 <tab> IN OUT DBMS_UTILITY.UNCL_ARRAY,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <push_deferred_rpc> IN BOOLEAN DEFAULT TRUE,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <purge_option> IN NUMBER DEFAULT 1,
 <parallelism> IN NUMBER DEFAULT 0,
 <heap_size> IN NUMBER DEFAULT 0,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

ParametersParameters

list

list is a VARCHAR2 value that specifies the name of a materialized view, or a comma-separated list of materialized view names. The names may be
schema-qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify the name (or names) of a materialized view.

method

method is a VARCHAR2 value that specifies the refresh method that will be applied to the specified view (or views). The only supported method is C ;
this performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

push_deferred_rpc

push_deferred_rpc is accepted for compatibility and ignored. The default is TRUE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 489

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

purge_option

purge_option is accepted for compatibility and ignored. The default is 1 .

parallelism

parallelism is accepted for compatibility and ignored. The default is 0 .

heap_size IN NUMBER DEFAULT 0 ,

heap_size is accepted for compatibility and ignored. The default is 0 .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

nested

nested is accepted for compatibility and ignored. The default is FALSE .

ExamplesExamples

The following example uses DBMS_MVIEW.REFRESH to perform a COMPLETE refresh on the public.emp_view materialized view:

EXEC DBMS_MVIEW.REFRESH(list => 'public.emp_view', method => 'C');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 490

13.2.8.3 REFRESH_ALL_MVIEWS

Use the REFRESH_ALL_MVIEWS procedure to refresh any materialized views that have not been refreshed since the table or view on which the view
depends has been modified. The signature is:

REFRESH_ALL_MVIEWS(
 <number_of_failures> OUT BINARY_INTEGER,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE);

ParametersParameters

number_of_failures

number_of_failures is a BINARY_INTEGER that specifies the number of failures that occurred during the refresh operation.

method

method is a VARCHAR2 value that specifies the refresh method that will be applied to the specified view (or views). The only supported method is C;
this performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

ExamplesExamples

The following example performs a COMPLETE refresh on all materialized views:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_ALL_MVIEWS(errors, method => 'C');
END;

Upon completion, errors contains the number of failures.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 491

13.2.8.4 REFRESH_DEPENDENT

Use the REFRESH_DEPENDENT procedure to refresh all material views that are dependent on the views specified in the call to the procedure. You can
specify a comma-separated list or provide the view names in a table of DBMS_UTILITY.UNCL_ARRAY values.

Use the first form of the procedure to refresh all material views that are dependent on the views specified in a comma-separated list:

REFRESH_DEPENDENT(
 <number_of_failures> OUT BINARY_INTEGER,
 <list> IN VARCHAR2,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

Use the second form of the procedure to refresh all material views that are dependent on the views specified in a table of DBMS_UTILITY.UNCL_ARRAY
values:

REFRESH_DEPENDENT(
 <number_of_failures> OUT BINARY_INTEGER,
 <tab> IN DBMS_UTILITY.UNCL_ARRAY,
 <method> IN VARCHAR2 DEFAULT NULL,
 <rollback_seg> IN VARCHAR2 DEFAULT NULL,
 <refresh_after_errors> IN BOOLEAN DEFAULT FALSE,
 <atomic_refresh> IN BOOLEAN DEFAULT TRUE,
 <nested> IN BOOLEAN DEFAULT FALSE);

ParametersParameters

number_of_failures

number_of_failures is a BINARY_INTEGER that contains the number of failures that occurred during the refresh operation.

list

list is a VARCHAR2 value that specifies the name of a materialized view, or a comma-separated list of materialized view names. The names may be
schema-qualified.

tab

tab is a table of DBMS_UTILITY.UNCL_ARRAY values that specify the name (or names) of a materialized view.

method

method is a VARCHAR2 value that specifies the refresh method that will be applied to the specified view (or views). The only supported method is C ;
this performs a complete refresh of the view.

rollback_seg

rollback_seg is accepted for compatibility and ignored. The default is NULL .

refresh_after_errors

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 492

refresh_after_errors is accepted for compatibility and ignored. The default is FALSE .

atomic_refresh

atomic_refresh is accepted for compatibility and ignored. The default is TRUE .

nested

nested is accepted for compatibility and ignored. The default is FALSE .

ExamplesExamples

The following example performs a COMPLETE refresh on all materialized views dependent on a materialized view named emp_view that resides in the
public schema:

DECLARE
 errors INTEGER;
BEGIN
 DBMS_MVIEW.REFRESH_DEPENDENT(errors, list => 'public.emp_view', method =>
'C');
END;

Upon completion, errors contains the number of failures.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 493

13.2.9 DBMS_OUTPUT

The DBMS_OUTPUT package provides the capability to send messages (lines of text) to a message buffer, or get messages from the message buffer. A
message buffer is local to a single session. Use the DBMS_PIPE package to send messages between sessions.

The procedures and functions available in the DBMS_OUTPUT package are listed in the following table.

Function/Procedure Return
Type

Description

DISABLE n/a Disable the capability to send and receive messages.

ENABLE(buffer_size) n/a Enable the capability to send and receive messages.

GET_LINE(line OUT, status OUT) n/a Get a line from the message buffer.

GET_LINES(lines OUT, numlines
IN OUT)

n/a Get multiple lines from the message buffer.

NEW_LINE n/a Puts an end-of-line character sequence.

PUT(item) n/a Puts a partial line without an end-of-line character sequence.

PUT_LINE(item) n/a Puts a complete line with an end-of-line character sequence.

SERVEROUTPUT(stdout) n/a Direct messages from PUT, PUT_LINE, or NEW_LINE to either standard output or
the message buffer.

The following table lists the public variables available in the DBMS_OUTPUT package.

Public VariablesPublic Variables Data TypeData Type ValueValue DescriptionDescription

chararr TABLE For message lines.

CHARARR

The CHARARR is for storing multiple message lines.

TYPE chararr IS TABLE OF VARCHAR2(32767) INDEX BY BINARY_INTEGER;

DISABLE

The DISABLE procedure clears out the message buffer. Any messages in the buffer at the time the DISABLE procedure is executed will no longer be
accessible. Any messages subsequently sent with the PUT, PUT_LINE, or NEW_LINE procedures are discarded. No error is returned to the sender
when the PUT, PUT_LINE, or NEW_LINE procedures are executed and messages have been disabled.

Use the ENABLE procedure or SERVEROUTPUT(TRUE) procedure to re-enable the sending and receiving of messages.

DISABLE

ExamplesExamples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 494

This anonymous block disables the sending and receiving messages in the current session.

BEGIN
 DBMS_OUTPUT.DISABLE;
END;

ENABLE

The ENABLE procedure enables the capability to send messages to the message buffer or retrieve messages from the message buffer. Running
SERVEROUTPUT(TRUE) also implicitly performs the ENABLE procedure.

The destination of a message sent with PUT, PUT_LINE, or NEW_LINE depends upon the state of SERVEROUTPUT .

If the last state of SERVEROUTPUT is TRUE , the message goes to standard output of the command line.
If the last state of SERVEROUTPUT is FALSE , the message goes to the message buffer.

ENABLE [(<buffer_size> INTEGER)]

ParameterParameter

buffer_size

Maximum length of the message buffer in bytes. If a buffer_size of less than 2000 is specified, the buffer size is set to 2000.

ExamplesExamples

The following anonymous block enables messages. Setting SERVEROUTPUT(TRUE) forces them to standard output.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The same effect could have been achieved by simply using SERVEROUTPUT(TRUE) .

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Messages enabled');
END;

Messages enabled

The following anonymous block enables messages, but setting SERVEROUTPUT(FALSE) directs messages to the message buffer.

BEGIN
 DBMS_OUTPUT.ENABLE;
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('Message sent to buffer');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 495

GET_LINE

The GET_LINE procedure provides the capability to retrieve a line of text from the message buffer. Only text that has been terminated by an end-of-line
character sequence is retrieved – that is complete lines generated using PUT_LINE , or by a series of PUT calls followed by a NEW_LINE call.

GET_LINE(<line> OUT VARCHAR2, <status> OUT INTEGER)

ParametersParameters

line

Variable receiving the line of text from the message buffer.

status

0 if a line was returned from the message buffer, 1 if there was no line to return.

ExamplesExamples

The following anonymous block writes the emp table out to the message buffer as a comma-delimited string for each row.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

The following anonymous block reads the message buffer and inserts the messages written by the prior example into a table named messages . The rows
in messages are then displayed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 496

CREATE TABLE messages (
 status INTEGER,
 msg VARCHAR2(100)
);

DECLARE
 v_line VARCHAR2(100);
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 WHILE v_status = 0 LOOP
 INSERT INTO messages VALUES(v_status, v_line);
 DBMS_OUTPUT.GET_LINE(v_line,v_status);
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

GET_LINES

The GET_LINES procedure provides the capability to retrieve one or more lines of text from the message buffer into a collection. Only text that has been
terminated by an end-of-line character sequence is retrieved – that is complete lines generated using PUT_LINE , or by a series of PUT calls followed by
a NEW_LINE call.

GET_LINES(<lines> OUT CHARARR, <numlines> IN OUT INTEGER)

ParametersParameters

lines

Table receiving the lines of text from the message buffer. See CHARARR for a description of lines.

numlines IN

Number of lines to be retrieved from the message buffer.

numlines OUT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 497

Actual number of lines retrieved from the message buffer. If the output value of numlines is less than the input value, then there are no more lines left in
the message buffer.

ExamplesExamples

The following example uses the GET_LINES procedure to store all rows from the emp table that were placed on the message buffer, into an array.

EXEC DBMS_OUTPUT.SERVEROUTPUT(FALSE);

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 DBMS_OUTPUT.ENABLE;
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

DECLARE
 v_lines DBMS_OUTPUT.CHARARR;
 v_numlines INTEGER := 14;
 v_status INTEGER := 0;
BEGIN
 DBMS_OUTPUT.GET_LINES(v_lines,v_numlines);
 FOR i IN 1..v_numlines LOOP
 INSERT INTO messages VALUES(v_numlines, v_lines(i));
 END LOOP;
END;

SELECT msg FROM messages;

 msg

 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 498

NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the message buffer.

NEW_LINE

ParameterParameter

The NEW_LINE procedure expects no parameters.

PUT

The PUT procedure writes a string to the message buffer. No end-of-line character sequence is written at the end of the string. Use the NEW_LINE
procedure to add an end-of-line character sequence.

PUT(<item> VARCHAR2)

ParameterParameter

item

Text written to the message buffer.

ExamplesExamples

The following example uses the PUT procedure to display a comma-delimited list of employees from the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 499

DECLARE
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 DBMS_OUTPUT.PUT(i.empno);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.ename);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.job);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.mgr);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.hiredate);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.sal);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.comm);
 DBMS_OUTPUT.PUT(',');
 DBMS_OUTPUT.PUT(i.deptno);
 DBMS_OUTPUT.NEW_LINE;
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT_LINE

The PUT_LINE procedure writes a single line to the message buffer including an end-of-line character sequence.

PUT_LINE(<item> VARCHAR2)

ParameterParameter

item

Text to be written to the message buffer.

ExamplesExamples

The following example uses the PUT_LINE procedure to display a comma-delimited list of employees from the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 500

DECLARE
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 END LOOP;
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

SERVEROUTPUT

The SERVEROUTPUT procedure provides the capability to direct messages to standard output of the command line or to the message buffer. Setting
SERVEROUTPUT(TRUE) also performs an implicit execution of ENABLE .

The default setting of SERVEROUTPUT is implementation dependent. For example, in Oracle SQL*Plus, SERVEROUTPUT(FALSE) is the default. In
PSQL, SERVEROUTPUT(TRUE) is the default. Also note that in Oracle SQL*Plus, this setting is controlled using the SQL*Plus SET command, not by a
stored procedure as implemented in Advanced Server.

SERVEROUTPUT(<stdout> BOOLEAN)

To get an Oracle-style display output, you can set the dbms_output.serveroutput to FALSE in the postgresql.conf file; this disables the
message output. The default is TRUE , which enables the message output.

ParameterParameter

stdout

Set to TRUE if subsequent PUT, PUT_LINE , or NEW_LINE commands are to send text directly to standard output of the command line. Set to
FALSE if text is to be sent to the message buffer.

ExamplesExamples

The following anonymous block sends the first message to the command line and the second message to the message buffer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 501

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the command line');
 DBMS_OUTPUT.SERVEROUTPUT(FALSE);
 DBMS_OUTPUT.PUT_LINE('This message goes to the message buffer');
END;

This message goes to the command line

If within the same session, the following anonymous block is executed, the message stored in the message buffer from the prior example is flushed and
displayed on the command line as well as the new message.

BEGIN
 DBMS_OUTPUT.SERVEROUTPUT(TRUE);
 DBMS_OUTPUT.PUT_LINE('Flush messages from the buffer');
END;

This message goes to the message buffer
Flush messages from the buffer

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 502

13.2.10 DBMS_PIPE

The DBMS_PIPE package provides the capability to send messages through a pipe within or between sessions connected to the same database cluster.

The procedures and functions available in the DBMS_PIPE package are listed in the following table:

Function/Procedure Return
Type

Description

CREATE_PIPE(pipename [, maxpipesize]
[, private])

INTEG
ER

Explicitly create a private pipe if private is “true” (the default) or a public
pipe if private is “false”.

NEXT_ITEM_TYPE INTEG
ER

Determine the data type of the next item in a received message.

PACK_MESSAGE(item) n/a Place item in the session’s local message buffer.

PURGE(pipename) n/a Remove unreceived messages from the specified pipe.

RECEIVE_MESSAGE(pipename [, timeout]) INTEG
ER

Get a message from a specified pipe.

REMOVE_PIPE(pipename) INTEG
ER

Delete an explicitly created pipe.

RESET_BUFFER n/a Reset the local message buffer.

SEND_MESSAGE(pipename [, timeout] [,
maxpipesize])

INTEG
ER

Send a message on a pipe.

UNIQUE_SESSION_NAME VARCH
AR2

Obtain a unique session name.

UNPACK_MESSAGE(item OUT) n/a
Retrieve the next data item from a message into a type-compatible variable,
item .

Pipes are categorized as implicit or explicit. An implicit pipe is created if a reference is made to a pipe name that was not previously created by the
CREATE_PIPE function. For example, if the SEND_MESSAGE function is executed using a non-existent pipe name, a new implicit pipe is created with

that name. An explicit pipe is created using the CREATE_PIPE function whereby the first parameter specifies the pipe name for the new pipe.

Pipes are also categorized as private or public. A private pipe can only be accessed by the user who created the pipe. Even a superuser cannot access a
private pipe that was created by another user. A public pipe can be accessed by any user who has access to the DBMS_PIPE package.

A public pipe can only be created by using the CREATE_PIPE function with the third parameter set to FALSE . The CREATE_PIPE function can be
used to create a private pipe by setting the third parameter to TRUE or by omitting the third parameter. All implicit pipes are private.

The individual data items or “lines” of a message are first built-in a local message buffer, unique to the current session. The PACK_MESSAGE procedure
builds the message in the session’s local message buffer. The SEND_MESSAGE function is then used to send the message through the pipe.

Receipt of a message involves the reverse operation. The RECEIVE_MESSAGE function is used to get a message from the specified pipe. The message is
written to the session’s local message buffer. The UNPACK_MESSAGE procedure is then used to transfer the message data items from the message buffer
to program variables. If a pipe contains multiple messages, RECEIVE_MESSAGE gets the messages in FIFO (first-in-first-out) order.

Each session maintains separate message buffers for messages created with the PACK_MESSAGE procedure and messages retrieved by the
RECEIVE_MESSAGE function. Thus messages can be both built and received in the same session. However, if consecutive RECEIVE_MESSAGE calls

are made, only the message from the last RECEIVE_MESSAGE call will be preserved in the local message buffer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 503

13.2.10.1 CREATE_PIPE

The CREATE_PIPE function creates an explicit public pipe or an explicit private pipe with a specified name.

<status> INTEGER CREATE_PIPE(<pipename> VARCHAR2
 [, <maxpipesize> INTEGER] [, <private> BOOLEAN])

ParametersParameters

pipename

Name of the pipe.

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

private

Create a public pipe if set to FALSE . Create a private pipe if set to TRUE. This is the default.

status

Status code returned by the operation. 0 indicates successful creation.

ExamplesExamples

The following example creates a private pipe named messages:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('messages');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

The following example creates a public pipe named mailbox:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('mailbox',8192,FALSE);
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status: ' || v_status);
END;
CREATE_PIPE status: 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 504

13.2.10.2 NEXT_ITEM_TYPE

The NEXT_ITEM_TYPE function returns an integer code identifying the data type of the next data item in a message that has been retrieved into the
session’s local message buffer. As each item is moved off of the local message buffer with the UNPACK_MESSAGE procedure, the NEXT_ITEM_TYPE
function will return the data type code for the next available item. A code of 0 is returned when there are no more items left in the message.

<typecode> INTEGER NEXT_ITEM_TYPE

ParametersParameters

typecode

Code identifying the data type of the next data item as shown in the following table.

Type Code Data Type

0 No more data
items

9 NUMBER

11 VARCHAR2

13 DATE

23 RAW

NoteNote: The type codes list in the table are not compatible with Oracle databases. Oracle assigns a different numbering sequence to the data types.

ExamplesExamples

The following example shows a pipe packed with a NUMBER item, a VARCHAR2 item, a DATE item, and a RAW item. A second anonymous block then
uses the NEXT_ITEM_TYPE function to display the type code of each item.

DECLARE
 v_number NUMBER := 123;
 v_varchar VARCHAR2(20) := 'Character data';
 v_date DATE := SYSDATE;
 v_raw RAW(4) := '21222324';
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE(v_number);
 DBMS_PIPE.PACK_MESSAGE(v_varchar);
 DBMS_PIPE.PACK_MESSAGE(v_date);
 DBMS_PIPE.PACK_MESSAGE(v_raw);
 v_status := DBMS_PIPE.SEND_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SEND_MESSAGE status: 0

DECLARE
 v_number NUMBER;
 v_varchar VARCHAR2(20);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 505

 v_date DATE;
 v_timestamp TIMESTAMP;
 v_raw RAW(4);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('datatypes');
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_number);
 DBMS_OUTPUT.PUT_LINE('NUMBER Item : ' || v_number);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_varchar);
 DBMS_OUTPUT.PUT_LINE('VARCHAR2 Item : ' || v_varchar);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_date);
 DBMS_OUTPUT.PUT_LINE('DATE Item : ' || v_date);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_raw);
 DBMS_OUTPUT.PUT_LINE('RAW Item : ' || v_raw);
 DBMS_OUTPUT.PUT_LINE('----------------------------------');

 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 DBMS_OUTPUT.PUT_LINE('NEXT_ITEM_TYPE: ' || v_status);
 DBMS_OUTPUT.PUT_LINE('---------------------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

RECEIVE_MESSAGE status: 0

NEXT_ITEM_TYPE: 9
NUMBER Item : 123

NEXT_ITEM_TYPE: 11
VARCHAR2 Item : Character data

NEXT_ITEM_TYPE: 13
DATE Item : 02-OCT-07 11:11:43

NEXT_ITEM_TYPE: 23
RAW Item : 21222324

NEXT_ITEM_TYPE: 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 506

13.2.10.3 PACK_MESSAGE

The PACK_MESSAGE procedure places an item of data in the session’s local message buffer. PACK_MESSAGE must be executed at least once before
issuing a SEND_MESSAGE call.

PACK_MESSAGE(<item> { DATE | NUMBER | VARCHAR2 | RAW })

Use the UNPACK_MESSAGE procedure to obtain data items once the message is retrieved using a RECEIVE_MESSAGE call.

ParametersParameters

item

An expression evaluating to any of the acceptable parameter data types. The value is added to the session’s local message buffer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 507

13.2.10.4 PURGE

The PURGE procedure removes the unreceived messages from a specified implicit pipe.

PURGE(<pipename> VARCHAR2)

Use the REMOVE_PIPE function to delete an explicit pipe.

ParametersParameters

pipename

Name of the pipe.

ExamplesExamples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

Purge the pipe:

EXEC DBMS_PIPE.PURGE('pipe');

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1 indicating it timed out because no message was available.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 508

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 509

13.2.10.5 RECEIVE_MESSAGE

The RECEIVE_MESSAGE function obtains a message from a specified pipe.

<status> INTEGER RECEIVE_MESSAGE(<pipename> VARCHAR2
 [, <timeout> INTEGER])

ParametersParameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

status

Status code returned by the operation.

The possible status codes are:

Status Code Description

0 Success

1 Time out

2 Message too large for the buffer

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 510

13.2.10.6 REMOVE_PIPE

The REMOVE_PIPE function deletes an explicit private or explicit public pipe.

<status> INTEGER REMOVE_PIPE(<pipename> VARCHAR2)

Use the REMOVE_PIPE function to delete explicitly created pipes – i.e., pipes created with the CREATE_PIPE function.

ParametersParameters

pipename

Name of the pipe.

status

Status code returned by the operation. A status code of 0 is returned even if the named pipe is non-existent.

ExamplesExamples

Two messages are sent on a pipe:

DECLARE
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.CREATE_PIPE('pipe');
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE status : ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #1');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);

 DBMS_PIPE.PACK_MESSAGE('Message #2');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

CREATE_PIPE status : 0
SEND_MESSAGE status: 0
SEND_MESSAGE status: 0

Receive the first message and unpack it:

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Message #1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 511

Remove the pipe:

SELECT DBMS_PIPE.REMOVE_PIPE('pipe') FROM DUAL;

remove_pipe

 0
(1 row)

Try to retrieve the next message. The RECEIVE_MESSAGE call returns status code 1 indicating it timed out because the pipe had been deleted.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
END;

RECEIVE_MESSAGE status: 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 512

13.2.10.7 RESET_BUFFER

The RESET_BUFFER procedure resets a “pointer” to the session’s local message buffer back to the beginning of the buffer. This has the effect of causing
subsequent PACK_MESSAGE calls to overwrite any data items that existed in the message buffer prior to the RESET_BUFFER call.

RESET_BUFFER

ExamplesExamples

A message to John is written to the local message buffer. It is replaced by a message to Bob by calling RESET_BUFFER . The message is sent on the pipe.

DECLARE
 v_status INTEGER;
BEGIN
 DBMS_PIPE.PACK_MESSAGE('Hi, John');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 3:00, today?');
 DBMS_PIPE.PACK_MESSAGE('If not, is tomorrow at 8:30 ok with you?');
 DBMS_PIPE.RESET_BUFFER;
 DBMS_PIPE.PACK_MESSAGE('Hi, Bob');
 DBMS_PIPE.PACK_MESSAGE('Can you attend a meeting at 9:30, tomorrow?');
 v_status := DBMS_PIPE.SEND_MESSAGE('pipe');
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE status: ' || v_status);
END;

SEND_MESSAGE status: 0

The message to Bob is in the received message.

DECLARE
 v_item VARCHAR2(80);
 v_status INTEGER;
BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE('pipe',1);
 DBMS_OUTPUT.PUT_LINE('RECEIVE_MESSAGE status: ' || v_status);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 DBMS_OUTPUT.PUT_LINE('Item: ' || v_item);
END;

RECEIVE_MESSAGE status: 0
Item: Hi, Bob
Item: Can you attend a meeting at 9:30, tomorrow?

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 513

13.2.10.8 SEND_MESSAGE

The SEND_MESSAGE function sends a message from the session’s local message buffer to the specified pipe.

<status> SEND_MESSAGE(<pipename> VARCHAR2 [, <timeout> INTEGER]
 [, <maxpipesize> INTEGER])

ParametersParameters

pipename

Name of the pipe.

timeout

Wait time (seconds). Default is 86400000 (1000 days).

maxpipesize

Maximum capacity of the pipe in bytes. Default is 8192 bytes.

status

Status code returned by the operation.

The possible status codes are:

Status Code Description

0 Success

1 Time out

3 Function interrupted

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 514

13.2.10.9 UNIQUE_SESSION_NAME

The UNIQUE_SESSION_NAME function returns a name, unique to the current session.

<name> VARCHAR2 UNIQUE_SESSION_NAME

ParametersParameters

name

Unique session name.

ExamplesExamples

The following anonymous block retrieves and displays a unique session name.

DECLARE
 v_session VARCHAR2(30);
BEGIN
 v_session := DBMS_PIPE.UNIQUE_SESSION_NAME;
 DBMS_OUTPUT.PUT_LINE('Session Name: ' || v_session);
END;

Session Name: PG$PIPE$5$2752

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 515

13.2.10.10 UNPACK_MESSAGE

The UNPACK_MESSAGE procedure copies the data items of a message from the local message buffer to a specified program variable. The message must
be placed in the local message buffer with the RECEIVE_MESSAGE function before using UNPACK_MESSAGE .

UNPACK_MESSAGE(<item> OUT { DATE | NUMBER | VARCHAR2 | RAW })

ParametersParameters

item

Type-compatible variable that receives a data item from the local message buffer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 516

13.2.10.11 Comprehensive Example

The following example uses a pipe as a “mailbox”. The procedures to create the mailbox, add a multi-item message to the mailbox (up to three items), and
display the full contents of the mailbox are enclosed in a package named, mailbox .

CREATE OR REPLACE PACKAGE mailbox
IS
 PROCEDURE create_mailbox;
 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
);
 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
);
END mailbox;

CREATE OR REPLACE PACKAGE BODY mailbox
IS
 PROCEDURE create_mailbox
 IS
 v_mailbox VARCHAR2(30);
 v_status INTEGER;
 BEGIN
 v_mailbox := DBMS_PIPE.UNIQUE_SESSION_NAME;
 v_status := DBMS_PIPE.CREATE_PIPE(v_mailbox,1000,FALSE);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Created mailbox: ' || v_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('CREATE_PIPE failed - status: ' ||
 v_status);
 END IF;
 END create_mailbox;

 PROCEDURE add_message (
 p_mailbox VARCHAR2,
 p_item_1 VARCHAR2,
 p_item_2 VARCHAR2 DEFAULT 'END',
 p_item_3 VARCHAR2 DEFAULT 'END'
)
 IS
 v_item_cnt INTEGER := 0;
 v_status INTEGER;
 BEGIN
 DBMS_PIPE.PACK_MESSAGE(p_item_1);
 v_item_cnt := 1;
 IF p_item_2 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_2);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 IF p_item_3 != 'END' THEN
 DBMS_PIPE.PACK_MESSAGE(p_item_3);
 v_item_cnt := v_item_cnt + 1;
 END IF;
 v_status := DBMS_PIPE.SEND_MESSAGE(p_mailbox);
 IF v_status = 0 THEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 517

 DBMS_OUTPUT.PUT_LINE('Added message with ' || v_item_cnt ||
 ' item(s) to mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('SEND_MESSAGE in add_message failed - ' ||
 'status: ' || v_status);
 END IF;
 END add_message;

 PROCEDURE empty_mailbox (
 p_mailbox VARCHAR2,
 p_waittime INTEGER DEFAULT 10
)
 IS
 v_msgno INTEGER DEFAULT 0;
 v_itemno INTEGER DEFAULT 0;
 v_item VARCHAR2(100);
 v_status INTEGER;
 BEGIN
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,p_waittime);
 WHILE v_status = 0 LOOP
 v_msgno := v_msgno + 1;
 DBMS_OUTPUT.PUT_LINE('****** Start message #' || v_msgno ||
 ' ******');
 BEGIN
 LOOP
 v_status := DBMS_PIPE.NEXT_ITEM_TYPE;
 EXIT WHEN v_status = 0;
 DBMS_PIPE.UNPACK_MESSAGE(v_item);
 v_itemno := v_itemno + 1;
 DBMS_OUTPUT.PUT_LINE('Item #' || v_itemno || ': ' ||
 v_item);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('******* End message #' || v_msgno ||
 ' *******');
 DBMS_OUTPUT.PUT_LINE('*');
 v_itemno := 0;
 v_status := DBMS_PIPE.RECEIVE_MESSAGE(p_mailbox,1);
 END;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of messages received: ' || v_msgno);
 v_status := DBMS_PIPE.REMOVE_PIPE(p_mailbox);
 IF v_status = 0 THEN
 DBMS_OUTPUT.PUT_LINE('Deleted mailbox ' || p_mailbox);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Could not delete mailbox - status: '
 || v_status);
 END IF;
 END empty_mailbox;
END mailbox;

The following demonstrates the execution of the procedures in mailbox . The first procedure creates a public pipe using a name generated by the
UNIQUE_SESSION_NAME function.

EXEC mailbox.create_mailbox;

Created mailbox: PG$PIPE$13$3940

Using the mailbox name, any user in the same database with access to the mailbox package and DBMS_PIPE package can add messages:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 518

EXEC mailbox.add_message('PG$PIPE$13$3940','Hi, John','Can you attend a
meeting at 3:00, today?','-- Mary');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

EXEC mailbox.add_message('PG$PIPE$13$3940','Don''t forget to submit your
report','Thanks,','-- Joe');

Added message with 3 item(s) to mailbox PG$PIPE$13$3940

Finally, the contents of the mailbox can be emptied:

EXEC mailbox.empty_mailbox('PG$PIPE$13$3940');

****** Start message #1 ******
Item #1: Hi, John
Item #2: Can you attend a meeting at 3:00, today?
Item #3: -- Mary
******* End message #1 *******
*
****** Start message #2 ******
Item #1: Don't forget to submit your report
Item #2: Thanks,
Item #3: Joe
******* End message #2 *******
*
Number of messages received: 2
Deleted mailbox PG$PIPE$13$3940

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 519

13.2.11 DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a
performance profiling session; use the functions and procedures listed below to control the profiling tool.

Function/Procedure Return Type Description

FLUSH_DATA Status Code or
Exception

Flushes performance data collected in the current session without
terminating the session (profiling continues).

GET_VERSION(major OUT, minor OUT) n/a Returns the version number of this package.

INTERNAL_VERSION_CHECK Status Code Confirms that the current version of the profiler will work with the
current database.

PAUSE_PROFILER Status Code or
Exception

Pause data collection.

RESUME_PROFILER Status Code or
Exception

Resume data collection.

START_PROFILER(run_comment,
run_comment1 [, run_number OUT])

Status Code or
Exception

Start data collection.

STOP_PROFILER Status Code or
Exception

Stop data collection and flush performance data to the
PLSQL_PROFILER_RAWDATA table.

The functions within the DBMS_PROFILER package return a status code to indicate success or failure; the DBMS_PROFILER procedures raise an
exception only if they encounter a failure. The status codes and messages returned by the functions, and the exceptions raised by the procedures are listed
in the table below.

Status Code Message Exception Description

-1 error version version_mismatch The profiler version and the database are
incompatible.

0 success n/a The operation completed successfully.

1 error_param profiler_error The operation received an incorrect parameter.

2 error_io profiler_error The data flush operation has failed.

FLUSH_DATA

The FLUSH_DATA function/procedure flushes the data collected in the current session without terminating the profiler session. The data is flushed to the
tables described in the Advanced Server Performance Features Guide. The function and procedure signatures are:

<status> INTEGER FLUSH_DATA

FLUSH_DATA

ParametersParameters

status

Status code returned by the operation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 520

GET_VERSION

The GET_VERSION procedure returns the version of DBMS_PROFILER . The procedure signature is:

GET_VERSION(<major> OUT INTEGER, <minor> OUT INTEGER)

ParametersParameters

major

The major version number of DBMS_PROFILER .

minor

The minor version number of DBMS_PROFILER .

INTERNAL_VERSION_CHECK

The INTERNAL_VERSION_CHECK function confirms that the current version of DBMS_PROFILER will work with the current database. The function
signature is:

<status> INTEGER INTERNAL_VERSION_CHECK

ParametersParameters

status

Status code returned by the operation.

PAUSE_PROFILER

The PAUSE_PROFILER function/procedure pauses a profiling session. The function and procedure signatures are:

<status> INTEGER PAUSE_PROFILER

PAUSE_PROFILER

ParametersParameters

status

Status code returned by the operation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 521

RESUME_PROFILER

The RESUME_PROFILER function/procedure pauses a profiling session. The function and procedure signatures are:

<status> INTEGER RESUME_PROFILER

RESUME_PROFILER

ParametersParameters

status

Status code returned by the operation.

START_PROFILER

The START_PROFILER function/procedure starts a data collection session. The function and procedure signatures are:

<status> INTEGER START_PROFILER(<run_comment> TEXT := SYSDATE,
 <run_comment1> TEXT := '' [, <run_number> OUT INTEGER])

START_PROFILER(<run_comment> TEXT := SYSDATE,
 <run_comment1> TEXT := '' [, <run_number> OUT INTEGER])

ParametersParameters

run_comment

A user-defined comment for the profiler session. The default value is SYSDATE .

run_comment1

An additional user-defined comment for the profiler session. The default value is ''.

run_number

The session number of the profiler session.

status

Status code returned by the operation.

STOP_PROFILER

The STOP_PROFILER function/procedure stops a profiling session and flushes the performance information to the DBMS_PROFILER tables and view.
The function and procedure signatures are:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 522

<status> INTEGER STOP_PROFILER

STOP_PROFILER

ParametersParameters

status

Status code returned by the operation.

Using DBMS_PROFILER

The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are executed during a profiling
session; you can review the performance information in the tables and views provided by the profiler.

DBMS_PROFILER works by recording a set of performance-related counters and timers for each line of PL/pgSQL or SPL statement that executes within
a profiling session. The counters and timers are stored in a table named SYS.PLSQL_PROFILER_DATA . When you complete a profiling session,
DBMS_PROFILER will write a row to the performance statistics table for each line of PL/pgSQL or SPL code that executed within the session. For

example, if you execute the following function:

1 - CREATE OR REPLACE FUNCTION getBalance(acctNumber INTEGER)
2 - RETURNS NUMERIC AS $$
3 - DECLARE
4 - result NUMERIC;
5 - BEGIN
6 - SELECT INTO result balance FROM acct WHERE id = acctNumber;
7 -
8 - IF (result IS NULL) THEN
9 - RAISE INFO 'Balance is null';
10- END IF;
11-
12- RETURN result;
13- END;
14- $$ LANGUAGE 'plpgsql';

DBMS_PROFILER adds one PLSQL_PROFILER_DATA entry for each line of code within the getBalance() function (including blank lines and
comments). The entry corresponding to the SELECT statement executed exactly one time; and required a very small amount of time to execute. On the
other hand, the entry corresponding to the RAISE INFO statement executed once or not at all (depending on the value for the balance column).

Some of the lines in this function contain no executable code so the performance statistics for those lines will always contain zero values.

To start a profiling session, invoke the DBMS_PROFILER.START_PROFILER function (or procedure). Once you've invoked START_PROFILER ,
Advanced Server will profile every PL/pgSQL or SPL function, procedure, trigger, or anonymous block that your session executes until you either stop or
pause the profiler (by calling STOP_PROFILER or PAUSE_PROFILER).

It is important to note that when you start (or resume) the profiler, the profiler will only gather performance statistics for functions/procedures/triggers
that start after the call to START_PROFILER (or RESUME_PROFILER).

While the profiler is active, Advanced Server records a large set of timers and counters in memory; when you invoke the STOP_PROFILER (or
FLUSH_DATA) function/procedure, DBMS_PROFILER writes those timers and counters to a set of three tables:

SYS.PLSQL_PROFILER_RAWDATA

Contains the performance counters and timers for each statement executed within the session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 523

SYS.PLSQL_PROFILER_RUNS

Contains a summary of each run (aggregating the information found in PLSQL_PROFILER_RAWDATA).

SYS.PLSQL_PROFILER_UNITS

Contains a summary of each code unit (function, procedure, trigger, or anonymous block) executed within a session.

In addition, DBMS_PROFILER defines a view, SYS.PLSQL_PROFILER_DATA , which contains a subset of the PLSQL_PROFILER_RAWDATA table.

Please note that a non-superuser may gather profiling information, but may not view that profiling information unless a superuser grants specific
privileges on the profiling tables (stored in the SYS schema). This permits a non-privileged user to gather performance statistics without exposing
information that the administrator may want to keep secret.

Querying the DBMS_PROFILER Tables and View

The following step-by-step example uses DBMS_PROFILER to retrieve performance information for procedures, functions, and triggers included in the
sample data distributed with Advanced Server.

1. Open the EDB-PSQL command line, and establish a connection to the Advanced Server database. Use an EXEC statement to start the profiling
session:

acctg=# EXEC dbms_profiler.start_profiler('profile list_emp');

EDB-SPL Procedure successfully completed

NoteNote

(The call to start_profiler() includes a comment that DBMS_PROFILER associates with the profiler session).

2. Then call the list_emp function:

acctg=# SELECT list_emp();
INFO: EMPNO ENAME
INFO: ----- -------
INFO: 7369 SMITH
INFO: 7499 ALLEN
INFO: 7521 WARD
INFO: 7566 JONES
INFO: 7654 MARTIN
INFO: 7698 BLAKE
INFO: 7782 CLARK
INFO: 7788 SCOTT
INFO: 7839 KING
INFO: 7844 TURNER
INFO: 7876 ADAMS
INFO: 7900 JAMES
INFO: 7902 FORD
INFO: 7934 MILLER
 list_emp

(1 row)

3. Stop the profiling session with a call to dbms_profiler.stop_profiler:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 524

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

4. Start a new session with the dbms_profiler.start_profiler function (followed by a new comment):

acctg=# EXEC dbms_profiler.start_profiler('profile get_dept_name and
emp_sal_trig');

EDB-SPL Procedure successfully completed

5. Invoke the get_dept_name function:

acctg=# SELECT get_dept_name(10);
 get_dept_name

 ACCOUNTING
(1 row)

6. Execute an UPDATE statement that causes a trigger to execute:

acctg=# UPDATE memp SET sal = 500 WHERE empno = 7902;
INFO: Updating employee 7902
INFO: ..Old salary: 3000.00
INFO: ..New salary: 500.00
INFO: ..Raise: -2500.00
INFO: User enterprisedb updated employee(s) on 04-FEB-14
UPDATE 1

7. Terminate the profiling session and flush the performance information to the profiling tables:

acctg=# EXEC dbms_profiler.stop_profiler;

EDB-SPL Procedure successfully completed

8. Now, query the plsql_profiler_runs table to view a list of the profiling sessions, arranged by runid:

acctg=# SELECT * FROM plsql_profiler_runs;
 runid | related_run | run_owner | run_date
 | run_comment | run_total_time | run_system_info
 | run_comment1 | spare1
-------+-------------+--------------+---------------------------+-------------
---------------------------+----------------+-----------------+--------------
+--------
 1 | | enterprisedb | 04-FEB-14 09:32:48.874315 | profile
 list_emp | 4154 |
 | |
 2 | | enterprisedb | 04-FEB-14 09:41:30.546503 | profile
 get_dept_name and emp_sal_trig | 2088 |
 | |
(2 rows)

9. Query the plsql_profiler_units table to view the amount of time consumed by each unit (each function, procedure, or trigger):

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 525

acctg=# SELECT * FROM plsql_profiler_units;
 runid | unit_number | unit_type | unit_owner |
 unit_name | unit_timestamp | total_time | spare1 | spare2
-------+-------------+-----------+--------------+----------------------------
-----+----------------+------------+--------+--------
 1 | 16999 | FUNCTION | enterprisedb |
 list_emp() | | 4 | |
 2 | 17002 | FUNCTION | enterprisedb |
 user_audit_trig() | | 1 | |
 2 | 17000 | FUNCTION | enterprisedb | get_dept_name(p_deptno
 numeric) | | 1 | |
 2 | 17004 | FUNCTION | enterprisedb |
 emp_sal_trig() | | 1 | |
(4 rows)

10. Query the plsql_profiler_rawdata table to view a list of the wait event counters and wait event times:

acctg=# SELECT runid, sourcecode, func_oid, line_number, exec_count,
tuples_returned, time_total FROM plsql_profiler_rawdata;

 runid | sourcecode |
 func_oid | line_number | exec_count | tuples_returned | time_total
-------+---+---
-------+-------------+------------+-----------------+------------
 1 | DECLARE
 | 16999 | 1 | 0 | 0 | 0
 1 | v_empno NUMERIC(4);
 | 16999 | 2 | 0 | 0 | 0
 1 | v_ename VARCHAR(10);
 | 16999 | 3 | 0 | 0 | 0
 1 | emp_cur CURSOR FOR
 | 16999 | 4 | 0 | 0 | 0
 1 | SELECT empno, ename FROM memp ORDER BY empno;
 | 16999 | 5 | 0 | 0 | 0
 1 | BEGIN
 | 16999 | 6 | 0 | 0 | 0
 1 | OPEN emp_cur;
 | 16999 | 7 | 0 | 0 | 0
 1 | RAISE INFO 'EMPNO ENAME';
 | 16999 | 8 | 1 | 0 | 0.001621
 1 | RAISE INFO '----- -------';
 | 16999 | 9 | 1 | 0 | 0.000301
 1 | LOOP
 | 16999 | 10 | 1 | 0 | 4.6e-05
 1 | FETCH emp_cur INTO v_empno, v_ename;
 | 16999 | 11 | 1 | 0 | 0.001114
 1 | EXIT WHEN NOT FOUND;
 | 16999 | 12 | 15 | 0 | 0.000206
 1 | RAISE INFO '% %', v_empno, v_ename;
 | 16999 | 13 | 15 | 0 | 8.3e-05
 1 | END LOOP;
 | 16999 | 14 | 14 | 0 | 0.000773
 1 | CLOSE emp_cur;
 | 16999 | 15 | 0 | 0 | 0
 1 | RETURN;
 | 16999 | 16 | 1 | 0 | 1e-05
 1 | END;
 | 16999 | 17 | 1 | 0 | 0
 1 |
 | 16999 | 18 | 0 | 0 | 0
 2 | DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 526

 | 17002 | 1 | 0 | 0 | 0
 2 | v_action VARCHAR(24);
 | 17002 | 2 | 0 | 0 | 0
 2 | v_text TEXT;
 | 17002 | 3 | 0 | 0 | 0
 2 | BEGIN
 | 17002 | 4 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN
 | 17002 | 5 | 0 | 0 | 0
 2 | v_action := ' added employee(s) on ';
 | 17002 | 6 | 1 | 0 | 0.000143
 2 | ELSIF TG_OP = 'UPDATE' THEN
 | 17002 | 7 | 0 | 0 | 0
 2 | v_action := ' updated employee(s) on ';
 | 17002 | 8 | 0 | 0 | 0
 2 | ELSIF TG_OP = 'DELETE' THEN
 | 17002 | 9 | 1 | 0 | 3.2e-05
 2 | v_action := ' deleted employee(s) on ';
 | 17002 | 10 | 0 | 0 | 0
 2 | END IF;
 | 17002 | 11 | 0 | 0 | 0
 2 | v_text := 'User ' || USER || v_action || CURRENT_DATE;
 | 17002 | 12 | 0 | 0 | 0
 2 | RAISE INFO ' %', v_text;
 | 17002 | 13 | 1 | 0 | 0.000383
 2 | RETURN NULL;
 | 17002 | 14 | 1 | 0 | 6.3e-05
 2 | END;
 | 17002 | 15 | 1 | 0 | 3.6e-05
 2 |
 | 17002 | 16 | 0 | 0 | 0
 2 | DECLARE
 | 17000 | 1 | 0 | 0 | 0
 2 | v_dname VARCHAR(14);
 | 17000 | 2 | 0 | 0 | 0
 2 | BEGIN
 | 17000 | 3 | 0 | 0 | 0
 2 | SELECT INTO v_dname dname FROM dept WHERE deptno = p_deptno;
 | 17000 | 4 | 0 | 0 | 0
 2 | RETURN v_dname;
 | 17000 | 5 | 1 | 0 | 0.000647
 2 | IF NOT FOUND THEN
 | 17000 | 6 | 1 | 0 | 2.6e-05
 2 | RAISE INFO 'Invalid department number %', p_deptno;
 | 17000 | 7 | 0 | 0 | 0
 2 | RETURN '';
 | 17000 | 8 | 0 | 0 | 0
 2 | END IF;
 | 17000 | 9 | 0 | 0 | 0
 2 | END;
 | 17000 | 10 | 0 | 0 | 0
 2 |
 | 17000 | 11 | 0 | 0 | 0
 2 | DECLARE
 | 17004 | 1 | 0 | 0 | 0
 2 | sal_diff NUMERIC(7,2);
 | 17004 | 2 | 0 | 0 | 0
 2 | BEGIN
 | 17004 | 3 | 0 | 0 | 0
 2 | IF TG_OP = 'INSERT' THEN
 | 17004 | 4 | 0 | 0 | 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 527

 2 | RAISE INFO 'Inserting employee %', NEW.empno;
 | 17004 | 5 | 1 | 0 | 8.4e-05
 2 | RAISE INFO '..New salary: %', NEW.sal;
 | 17004 | 6 | 0 | 0 | 0
 2 | RETURN NEW;
 | 17004 | 7 | 0 | 0 | 0
 2 | END IF;
 | 17004 | 8 | 0 | 0 | 0
 2 | IF TG_OP = 'UPDATE' THEN
 | 17004 | 9 | 0 | 0 | 0
 2 | sal_diff := NEW.sal - OLD.sal;
 | 17004 | 10 | 1 | 0 | 0.000355
 2 | RAISE INFO 'Updating employee %', OLD.empno;
 | 17004 | 11 | 1 | 0 | 0.000177
 2 | RAISE INFO '..Old salary: %', OLD.sal;
 | 17004 | 12 | 1 | 0 | 5.5e-05
 2 | RAISE INFO '..New salary: %', NEW.sal;
 | 17004 | 13 | 1 | 0 | 3.1e-05
 2 | RAISE INFO '..Raise : %', sal_diff;
 | 17004 | 14 | 1 | 0 | 2.8e-05
 2 | RETURN NEW;
 | 17004 | 15 | 1 | 0 | 2.7e-05
 2 | END IF;
 | 17004 | 16 | 1 | 0 | 1e-06
 2 | IF TG_OP = 'DELETE' THEN
 | 17004 | 17 | 0 | 0 | 0
 2 | RAISE INFO 'Deleting employee %', OLD.empno;
 | 17004 | 18 | 0 | 0 | 0
 2 | RAISE INFO '..Old salary: %', OLD.sal;
 | 17004 | 19 | 0 | 0 | 0
 2 | RETURN OLD;
 | 17004 | 20 | 0 | 0 | 0
 2 | END IF;
 | 17004 | 21 | 0 | 0 | 0
 2 | END;
 | 17004 | 22 | 0 | 0 | 0
 2 |
 | 17004 | 23 | 0 | 0 | 0
 (68 rows)

11. Query the plsql_profiler_data view to review a subset of the information found in plsql_profiler_rawdata table:

acctg=# SELECT * FROM plsql_profiler_data;
runid | unit_number | line# | total_occur | total_time | min_time | max_time
| spare1 | spare2 | spare3 | spare4
-------+-------------+-------+-------------+------------+----------+---------
-+--------+--------+--------+--------
 1 | 16999 | 1 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 2 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 3 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 4 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 5 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 6 | 0 | 0 | 0 |
 0 | | | |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 528

 1 | 16999 | 7 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 8 | 1 | 0.001621 | 0.001621 |
 0.001621 | | | |
 1 | 16999 | 9 | 1 | 0.000301 | 0.000301 |
 0.000301 | | | |
 1 | 16999 | 10 | 1 | 4.6e-05 | 4.6e-05 | 4.6e-
 05 | | | |
 1 | 16999 | 11 | 1 | 0.001114 | 0.001114 |
 0.001114 | | | |
 1 | 16999 | 12 | 15 | 0.000206 | 5e-06 | 7.8e-
 05 | | | |
 1 | 16999 | 13 | 15 | 8.3e-05 | 2e-06 | 4.7e-
 05 | | | |
 1 | 16999 | 14 | 14 | 0.000773 | 4.7e-05 |
 0.000116 | | | |
 1 | 16999 | 15 | 0 | 0 | 0 |
 0 | | | |
 1 | 16999 | 16 | 1 | 1e-05 | 1e-05 | 1e-
 05 | | | |
 1 | 16999 | 17 | 1 | 0 | 0 |
 0 | | | |
 1 | 16999 | 18 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 3 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 5 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 6 | 1 | 0.000143 | 0.000143 |
 0.000143 | | | |
 2 | 17002 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 8 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 9 | 1 | 3.2e-05 | 3.2e-05 | 3.2e-
 05 | | | |
 2 | 17002 | 10 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 11 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 12 | 0 | 0 | 0 |
 0 | | | |
 2 | 17002 | 13 | 1 | 0.000383 | 0.000383 |
 0.000383 | | | |
 2 | 17002 | 14 | 1 | 6.3e-05 | 6.3e-05 | 6.3e-
 05 | | | |
 2 | 17002 | 15 | 1 | 3.6e-05 | 3.6e-05 | 3.6e-
 05 | | | |
 2 | 17002 | 16 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 3 | 0 | 0 | 0 |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 529

 0 | | | |
 2 | 17000 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 5 | 1 | 0.000647 | 0.000647 |
 0.000647 | | | |
 2 | 17000 | 6 | 1 | 2.6e-05 | 2.6e-05 | 2.6e-
 05 | | | |
 2 | 17000 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 8 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 9 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 10 | 0 | 0 | 0 |
 0 | | | |
 2 | 17000 | 11 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 1 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 2 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 3 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 4 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 5 | 1 | 8.4e-05 | 8.4e-05 | 8.4e-
 05 | | | |
 2 | 17004 | 6 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 7 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 8 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 9 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 10 | 1 | 0.000355 | 0.000355 |
 0.000355 | | | |
 2 | 17004 | 11 | 1 | 0.000177 | 0.000177 |
 0.000177 | | | |
 2 | 17004 | 12 | 1 | 5.5e-05 | 5.5e-05 | 5.5e-
 05 | | | |
 2 | 17004 | 13 | 1 | 3.1e-05 | 3.1e-05 | 3.1e-
 05 | | | |
 2 | 17004 | 14 | 1 | 2.8e-05 | 2.8e-05 | 2.8e-
 05 | | | |
 2 | 17004 | 15 | 1 | 2.7e-05 | 2.7e-05 | 2.7e-
 05 | | | |
 2 | 17004 | 16 | 1 | 1e-06 | 1e-06 | 1e-
 06 | | | |
 2 | 17004 | 17 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 18 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 19 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 20 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 21 | 0 | 0 | 0 |
 0 | | | |
 2 | 17004 | 22 | 0 | 0 | 0 |
 0 | | | |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 530

 2 | 17004 | 23 | 0 | 0 | 0 |
 0 | | | |
(68 rows)

DBMS_PROFILER - Reference

The Advanced Server installer creates the following tables and views that you can query to review PL/SQL performance profile information:

Table Name Description

PLSQL_PROFILER_RUNS Table containing information about all profiler runs, organized by runid .

PLSQL_PROFILER_UNITS Table containing information about all profiler runs, organized by unit.

PLSQL_PROFILER_DATA View containing performance statistics.

PLSQL_PROFILER_RAWDATA Table containing the performance statistics and the extended performance statistics for DRITA counters and
timers.

PLSQL_PROFILER_RUNS

The PLSQL_PROFILER_RUNS table contains the following columns:

Column Data Type Description

runid INTEGER (NOT NULL) Unique identifier (plsql_profiler_runnumber)

related_run INTEGER The runid of a related run.

run_owner TEXT The role that recorded the profiling session.

run_date TIMESTAMP WITHOUT TIME ZONE The profiling session start time.

run_comment TEXT User comments relevant to this run

run_total_time BIGINT Run time (in microseconds)

run_system_info TEXT Currently Unused

run_comment1 TEXT Additional user comments

spare1 TEXT Currently Unused

PLSQL_PROFILER_UNITS

The PLSQL_PROFILER_UNITS table contains the following columns:

Column Data Type Description

runid INTEGER Unique identifier (plsql_profiler_runnumber)

unit_number OID Corresponds to the OID of the row in the pg_proc table that identifies the unit.

unit_type TEXT PL/SQL function, procedure, trigger or anonymous block

unit_owner TEXT The identity of the role that owns the unit.

unit_name TEXT The complete signature of the unit.

unit_timestamp TIMESTAMP WITHOUT TIME ZONE Creation date of the unit (currently NULL).

total_time BIGINT Time spent within the unit (in milliseconds)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 531

spare1 BIGINT Currently Unused

spare2 BIGINT Currently Unused

Column Data Type Description

PLSQL_PROFILER_DATA

The PLSQL_PROFILER_DATA view contains the following columns:

Column Data Type Description

runid INTEGER Unique identifier (plsql_profiler_runnumber)

unit_number OID Object ID of the unit that contains the current line.

line# INTEGER Current line number of the profiled workload.

total_occur BIGINT The number of times that the line was executed.

total_time DOUBLE PRECISION The amount of time spent executing the line (in seconds)

min_time DOUBLE PRECISION The minimum execution time for the line.

max_time DOUBLE PRECISION The maximum execution time for the line.

spare1 NUMBER Currently Unused

spare2 NUMBER Currently Unused

spare3 NUMBER Currently Unused

spare4 NUMBER Currently Unused

PLSQL_PROFILER_RAWDATA

The PLSQL_PROFILER_RAWDATA table contains the statistical and wait events information that is found in the PLSQL_PROFILER_DATA view, as
well as the performance statistics returned by the DRITA counters and timers.

Column Data
Type

Description

runid INTEG
ER

The run identifier (plsql_profiler_runnumber) .

sourcecode TEXT The individual line of profiled code.

func_oid OID Object ID of the unit that contains the current line.

line_number INTEG
ER

Current line number of the profiled workload.

exec_count BIGIN
T

The number of times that the line was executed.

tuples_returned BIGIN
T

Currently Unused

time_total

DOUBL
E
PRECI
SION

The amount of time spent executing the line (in seconds)

time_shortest

DOUBL
E
PRECI
SION

The minimum execution time for the line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 532

time_longest

DOUBL
E
PRECI
SION

The maximum execution time for the line.

num_scans BIGIN
T

Currently Unused

tuples_fetched BIGIN
T

Currently Unused

tuples_inserted BIGIN
T

Currently Unused

tuples_updated BIGIN
T

Currently Unused

tuples_deleted BIGIN
T

Currently Unused

blocks_fetched BIGIN
T

Currently Unused

blocks_hit BIGIN
T

Currently Unused

wal_write BIGIN
T

A server has waited for a write to the write-ahead log buffer (expect this value to be high).

wal_flush BIGIN
T

A server has waited for the write-ahead log to flush to disk.

wal_file_sync BIGIN
T

A server has waited for the write-ahead log to sync to disk (related to the wal_sync_method parameter which,
by default, is 'fsync' - better performance can be gained by changing this parameter to open_sync).

db_file_read BIGIN
T

A server has waited for the completion of a read (from disk).

db_file_write BIGIN
T

A server has waited for the completion of a write (to disk).

db_file_sync BIGIN
T

A server has waited for the operating system to flush all changes to disk.

db_file_extend BIGIN
T

A server has waited for the operating system while adding a new page to the end of a file.

sql_parse BIGIN
T

Currently Unused.

query_plan BIGIN
T

A server has generated a query plan.

other_lwlock_ac
quire

BIGIN
T

A server has waited for other light-weight lock to protect data.

shared_plan_cac
he_collision

BIGIN
T

A server has waited for the completion of the shared_plan_cache_collision event.

shared_plan_cac
he_insert

BIGIN
T

A server has waited for the completion of the shared_plan_cache_insert event.

shared_plan_cac
he_hit

BIGIN
T

A server has waited for the completion of the shared_plan_cache_hit event.

shared_plan_cac
he_miss

BIGIN
T

A server has waited for the completion of the shared_plan_cache_miss event.

shared_plan_cac
he_lock

BIGIN
T

A server has waited for the completion of the shared_plan_cache_lock event.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 533

shared_plan_cac
he_busy

BIGIN
T

A server has waited for the completion of the shared_plan_cache_busy event.

shmemindexlock BIGIN
T

A server has waited to find or allocate space in the shared memory.

oidgenlock BIGIN
T

A server has waited to allocate or assign an OID.

xidgenlock BIGIN
T

A server has waited to allocate or assign a transaction ID.

procarraylock BIGIN
T

A server has waited to get a snapshot or clearing a transaction ID at transaction end.

sinvalreadlock BIGIN
T

A server has waited to retrieve or remove messages from shared invalidation queue.

sinvalwritelock BIGIN
T

A server has waited to add a message to the shared invalidation queue.

walbufmappinglo
ck

BIGIN
T

A server has waited to replace a page in WAL buffers.

walwritelock BIGIN
T

A server has waited for WAL buffers to be written to disk.

controlfilelock BIGIN
T

A server has waited to read or update the control file or creation of a new WAL file.

checkpointlock BIGIN
T

A server has waited to perform a checkpoint.

clogcontrollock BIGIN
T

A server has waited to read or update the transaction status.

subtranscontrol
lock

BIGIN
T

A server has waited to read or update the sub-transaction information.

multixactgenloc
k

BIGIN
T

A server has waited to read or update the shared multixact state.

multixactoffset
controllock

BIGIN
T

A server has waited to read or update multixact offset mappings.

multixactmember
controllock

BIGIN
T

A server has waited to read or update multixact member mappings.

relcacheinitloc
k

BIGIN
T

A server has waited to read or write the relation cache initialization file.

checkpointercom
mlock

BIGIN
T

A server has waited to manage the fsync requests.

twophasestatelo
ck

BIGIN
T

A server has waited to read or update the state of prepared transactions.

tablespacecreat
elock

BIGIN
T

A server has waited to create or drop the tablespace.

btreevacuumlock BIGIN
T

A server has waited to read or update the vacuum related information for a B-tree index.

addinshmeminitl
ock

BIGIN
T

A server has waited to manage space allocation in shared memory.

autovacuumlock BIGIN
T

The autovacuum launcher waiting to read or update the current state of autovacuum workers.

autovacuumsched
ulelock

BIGIN
T

A server has waited to ensure that the table selected for a vacuum still needs vacuuming.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 534

syncscanlock BIGIN
T

A server has waited to get the start location of a scan on a table for synchronized scans.

relationmapping
lock

BIGIN
T

A server has waited to update the relation map file used to store catalog to file node mapping.

asyncctllock BIGIN
T

A server has waited to read or update shared notification state.

asyncqueuelock BIGIN
T

A server has waited to read or update the notification messages.

serializablexac
thashlock

BIGIN
T

A server has waited to retrieve or store information about serializable transactions.

serializablefin
ishedlistlock

BIGIN
T

A server has waited to access the list of finished serializable transactions.

serializablepre
dicatelocklistl
ock

BIGIN
T A server has waited to perform an operation on a list of locks held by serializable transactions.

oldserxidlock BIGIN
T

A server has waited to read or record the conflicting serializable transactions.

syncreplock BIGIN
T

A server has waited to read or update information about synchronous replicas.

backgroundworke
rlock

BIGIN
T

A server has waited to read or update the background worker state.

dynamicsharedme
morycontrollock

BIGIN
T

A server has waited to read or update the dynamic shared memory state.

autofilelock BIGIN
T

A server has waited to update the postgresql.auto.conf file.

replicationslot
allocationlock

BIGIN
T

A server has waited to allocate or free a replication slot.

replicationslot
controllock

BIGIN
T

A server has waited to read or update replication slot state.

committscontrol
lock

BIGIN
T

A server has waited to read or update transaction commit timestamps.

committslock BIGIN
T

A server has waited to read or update the last value set for the transaction timestamp.

replicationorig
inlock

BIGIN
T

A server has waited to set up, drop, or use replication origin.

multixacttrunca
tionlock

BIGIN
T

A server has waited to read or truncate multixact information.

oldsnapshottime
maplock

BIGIN
T

A server has waited to read or update old snapshot control information.

backendrandomlo
ck

BIGIN
T

A server has waited to generate a random number.

logicalrepworke
rlock

BIGIN
T

A server has waited for the action on logical replication worker to finish.

clogtruncationl
ock

BIGIN
T

A server has waited to truncate the write-ahead log or waiting for write-ahead log truncation to finish.

bulkloadlock BIGIN
T

A server has waited for the bulkloadlock to bulk upload the data.

edbresourcemana
gerlock

BIGIN
T

The edbresourcemanagerlock provides detail about edb resource manager lock module.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 535

wal_write_time BIGIN
T

The amount of time that the server has waited for a wal_write wait event to write to the write-ahead log buffer
(expect this value to be high).

wal_flush_time BIGIN
T

The amount of time that the server has waited for a wal_flush wait event to write-ahead log to flush to disk.

wal_file_sync_t
ime

BIGIN
T

The amount of time that the server has waited for a wal_file_sync wait event to write-ahead log to sync to
disk (related to the wal_sync_method parameter which, by default, is 'fsync' - better performance can be gained
by changing this parameter to open_sync).

db_file_read_ti
me

BIGIN
T

The amount of time that the server has waited for the db_file_read wait event for completion of a read (from
disk).

db_file_write_t
ime

BIGIN
T

The amount of time that the server has waited for the db_file_write wait event for completion of a write (to
disk).

db_file_sync_ti
me

BIGIN
T

The amount of time that the server has waited for the db_file_sync wait event to sync all changes to disk.

db_file_extend_
time

BIGIN
T

The amount of time that the server has waited for the db_file_extend wait event while adding a new page to
the end of a file.

sql_parse_time BIGIN
T

The amount of time that the server has waited for the sql_parse wait event to parse a SQL statement.

query_plan_time BIGIN
T

The amount of time that the server has waited for the query_plan wait event to compute the execution plan
for a SQL statement.

other_lwlock_ac
quire_time

BIGIN
T

The amount of time that the server has waited for the other_lwlock_acquire wait event to protect data.

shared_plan_cac
he_collision_ti
me

BIGIN
T The amount of time that the server has waited for the shared_plan_cache_collision wait event.

shared_plan_cac
he_insert_time

BIGIN
T

The amount of time that the server has waited for the shared_plan_cache_insert wait event.

shared_plan_cac
he_hit_time

BIGIN
T

The amount of time that the server has waited for the shared_plan_cache_hit wait event.

shared_plan_cac
he_miss_time

BIGIN
T

The amount of time that the server has waited for the shared_plan_cache_miss wait event.

shared_plan_cac
he_lock_time

BIGIN
T

The amount of time that the server has waited for the shared_plan_cache_lock wait event.

shared_plan_cac
he_busy_time

BIGIN
T

The amount of time that the server has waited for the shared_plan_cache_busy wait event.

shmemindexlock_
time

BIGIN
T

The amount of time that the server has waited for the shmemindexlock wait event to find or allocate space in
the shared memory.

oidgenlock_time BIGIN
T

The amount of time that the server has waited for the oidgenlock wait event to allocate or assign an OID.

xidgenlock_time BIGIN
T

The amount of time that the server has waited for xidgenlock wait event to allocate or assign a transaction ID.

procarraylock_t
ime

BIGIN
T

The amount of time that the server has waited for a procarraylock wait event to clear a transaction ID at
transaction end.

sinvalreadlock_
time

BIGIN
T

The amount of time that the server has waited for a sinvalreadlock wait event to retrieve or remove
messages from shared invalidation queue.

sinvalwritelock
_time

BIGIN
T

The amount of time that the server has waited for a sinvalwritelock wait event to add a message to the
shared invalidation queue.

walbufmappinglo
ck_time

BIGIN
T

The amount of time that the server has waited for a walbufmappinglock wait event to replace a page in WAL
buffers.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 536

walwritelock_ti
me

BIGIN
T

The amount of time that the server has waited for a walwritelock wait event to write the WAL buffers to disk.

controlfilelock
_time

BIGIN
T

The amount of time that the server has waited for a controlfilelock wait event to read or update the control
file or to create a new WAL file.

checkpointlock_
time

BIGIN
T

The amount of time that the server has waited for a checkpointlock wait event to perform a checkpoint.

clogcontrollock
_time

BIGIN
T

The amount of time that the server has waited for a clogcontrollock wait event to read or update the
transaction status.

subtranscontrol
lock_time

BIGIN
T

The amount of time that the server has waited for the subtranscontrollock wait event to read or update the
sub-transaction information.

multixactgenloc
k_time

BIGIN
T

The amount of time that the server has waited for the multixactgenlock wait event to read or update the
shared multixact state.

multixactoffset
controllock_tim
e

BIGIN
T

The amount of time that the server has waited for the multixactoffsetcontrollock wait event to read or
update multixact offset mappings.

multixactmember
controllock_tim
e

BIGIN
T

The amount of time that the server has waited for the multixactmembercontrollock wait event to read or
update multixact member mappings.

relcacheinitloc
k_time

BIGIN
T

The amount of time that the server has waited for the relcacheinitlock wait event to read or write the
relation cache initialization file.

checkpointercom
mlock_time

BIGIN
T

The amount of time that the server has waited for the checkpointercommlock wait event to manage the
fsync requests.

twophasestatelo
ck_time

BIGIN
T

The amount of time that the server has waited for the twophasestatelock wait event to read or update the
state of prepared transactions.

tablespacecreat
elock_time

BIGIN
T

The amount of time that the server has waited for the tablespacecreatelock wait event to create or drop
the tablespace.

btreevacuumlock
_time

BIGIN
T

The amount of time that the server has waited for the btreevacuumlock wait event to read or update the
vacuum related information for a B-tree index.

addinshmeminitl
ock_time

BIGIN
T

The amount of time that the server has waited for the addinshmeminitlock wait event to manage space
allocation in shared memory.

autovacuumlock_
time

BIGIN
T

The amount of time that the server has waited for the autovacuumlock wait event to read or update the
current state of autovacuum workers.

autovacuumsched
ulelock_time

BIGIN
T

The amount of time that the server has waited for the autovacuumschedulelock wait event to ensure that
the table selected for a vacuum still needs vacuuming.

syncscanlock_ti
me

BIGIN
T

The amount of time that the server has waited for the syncscanlock wait event to get the start location of a
scan on a table for synchronized scans.

relationmapping
lock_time

BIGIN
T

The amount of time that the server has waited for the relationmappinglock wait event to update the
relation map file used to store catalog to file node mapping.

asyncctllock_ti
me

BIGIN
T

The amount of time that the server has waited for the asyncctllock wait event to read or update shared
notification state.

asyncqueuelock_
time

BIGIN
T

The amount of time that the server has waited for the asyncqueuelock wait event to read or update the
notification messages.

serializablexac
thashlock_time

BIGIN
T

The amount of time that the server has waited for the serializablexacthashlock wait event to retrieve or
store information about serializable transactions.

serializablefin
ishedlistlock_t
ime

BIGIN
T

The amount of time that the server has waited for the serializablefinishedlistlock wait event to
access the list of finished serializable transactions.

serializablepre
dicatelocklistl
ock_time

BIGIN
T

The amount of time that the server has waited for the serializablepredicatelocklistlock wait event
to perform an operation on a list of locks held by serializable transactions.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 537

oldserxidlock_t
ime

BIGIN
T

The amount of time that the server has waited for the oldserxidlock wait event to read or record the
conflicting serializable transactions.

syncreplock_tim
e

BIGIN
T

The amount of time that the server has waited for the syncreplock wait event to read or update information
about synchronous replicas.

backgroundworke
rlock_time

BIGIN
T

The amount of time that the server has waited for the backgroundworkerlock wait event to read or update
the background worker state.

dynamicsharedme
morycontrollock
_time

BIGIN
T

The amount of time that the server has waited for the dynamicsharedmemorycontrollock wait event to
read or update the dynamic shared memory state.

autofilelock_ti
me

BIGIN
T

The amount of time that the server has waited for the autofilelock wait event to update the
postgresql.auto.conf file.

replicationslot
allocationlock_
time

BIGIN
T

The amount of time that the server has waited for the replicationslotallocationlock wait event to
allocate or free a replication slot.

replicationslot
controllock_tim
e

BIGIN
T

The amount of time that the server has waited for the replicationslotcontrollock wait event to read or
update replication slot state.

committscontrol
lock_time

BIGIN
T

The amount of time that the server has waited for the committscontrollock wait event to read or update
transaction commit timestamps.

committslock_ti
me

BIGIN
T

The amount of time that the server has waited for the committslock wait event to read or update the last
value set for the transaction timestamp.

replicationorig
inlock_time

BIGIN
T

The amount of time that the server has waited for the replicationoriginlock wait event to set up, drop, or
use replication origin.

multixacttrunca
tionlock_time

BIGIN
T

The amount of time that the server has waited for the multixacttruncationlock wait event to read or
truncate multixact information.

oldsnapshottime
maplock_time

BIGIN
T

The amount of time that the server has waited for the oldsnapshottimemaplock wait event to read or
update old snapshot control information.

backendrandomlo
ck_time

BIGIN
T

The amount of time that the server has waited for the backendrandomlock wait event to generate a random
number.

logicalrepworke
rlock_time

BIGIN
T

The amount of time that the server has waited for the logicalrepworkerlock wait event for an action on
logical replication worker to finish.

clogtruncationl
ock_time

BIGIN
T

The amount of time that the server has waited for the clogtruncationlock wait event to truncate the write-
ahead log or waiting for write-ahead log truncation to finish.

bulkloadlock_ti
me

BIGIN
T

The amount of time that the server has waited for the bulkloadlock wait event to bulk upload the data.

edbresourcemana
gerlock_time

BIGIN
T

The amount of time that the server has waited for the edbresourcemanagerlock wait event.

totalwaits BIGIN
T

The total number of event waits.

totalwaittime BIGIN
T

The total time spent waiting for an event.

Column Data
Type

Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 538

13.2.12 DBMS_RANDOM

The DBMS_RANDOM package provides a number of methods to generate random values. The procedures and functions available in the DBMS_RANDOM
package are listed in the following table.

Function/Procedure Return
Type

Description

INITIALIZE(val
)

n/a Initializes the DBMS_RANDOM package with the specified seed value . Deprecated, but supported for backward
compatibility.

NORMAL() NUMBE
R

Returns a random NUMBER .

RANDOM INTEG
ER

Returns a random INTEGER with a value greater than or equal to -2^31 and less than 2^31. Deprecated, but
supported for backward compatibility.

SEED(val) n/a Resets the seed with the specified value .

SEED(val) n/a Resets the seed with the specified value .

STRING(opt,
len)

VARCH
AR2

Returns a random string.

TERMINATE n/a TERMINATE has no effect. Deprecated, but supported for backward compatibility.

VALUE NUMBE
R

Returns a random number with a value greater than or equal to 0 and less than 1 , with 38 digit precision.

VALUE(low,
high)

NUMBE
R

Returns a random number with a value greater than or equal to low and less than high .

INITIALIZE

The INITIALIZE procedure initializes the DBMS_RANDOM package with a seed value. The signature is:

INITIALIZE(<val> IN INTEGER)

This procedure should be considered deprecated; it is included for backward compatibility only.

ParametersParameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

ExampleExample

The following code snippet demonstrates a call to the INITIALIZE procedure that initializes the DBMS_RANDOM package with the seed value, 6475 .

DBMS_RANDOM.INITIALIZE(6475);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 539

NORMAL

The NORMAL function returns a random number of type NUMBER . The signature is:

<result> NUMBER NORMAL()

ParametersParameters

result

result is a random value of type NUMBER .

ExampleExample

The following code snippet demonstrates a call to the NORMAL function:

x:= DBMS_RANDOM.NORMAL();

RANDOM

The RANDOM function returns a random INTEGER value that is greater than or equal to -2 ^31 and less than 2 ^31. The signature is:

<result> INTEGER RANDOM()

This function should be considered deprecated; it is included for backward compatibility only.

ParametersParameters

result

result is a random value of type INTEGER .

ExampleExample

The following code snippet demonstrates a call to the RANDOM function. The call returns a random number:

x := DBMS_RANDOM.RANDOM();

SEED

The first form of the SEED procedure resets the seed value for the DBMS_RANDOM package with an INTEGER value. The SEED procedure is available
in two forms; the signature of the first form is:

SEED(<val> IN INTEGER)

ParametersParameters

val

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 540

val

val is the seed value used by the DBMS_RANDOM package algorithm.

ExampleExample

The following code snippet demonstrates a call to the SEED procedure; the call sets the seed value at 8495 .

DBMS_RANDOM.SEED(8495);

SEED

The second form of the SEED procedure resets the seed value for the DBMS_RANDOM package with a string value. The SEED procedure is available in
two forms; the signature of the second form is:

SEED(<val> IN VARCHAR2)

ParametersParameters

val

val is the seed value used by the DBMS_RANDOM package algorithm.

ExampleExample

The following code snippet demonstrates a call to the SEED procedure; the call sets the seed value to abc123 .

DBMS_RANDOM.SEED('abc123');

STRING

The STRING function returns a random VARCHAR2 string in a user-specified format. The signature of the STRING function is:

<result> VARCHAR2 STRING(<opt> IN CHAR, <len> IN NUMBER)

ParametersParameters

opt

Formatting option for the returned string. option may be:

OptionOption Specifies Formatting OptionSpecifies Formatting Option

u or U Uppercase alpha string

l or L Lowercase alpha string

a or A Mixed case string

x or X Uppercase alpha-numeric string

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 541

p or P Any printable characters

OptionOption Specifies Formatting OptionSpecifies Formatting Option

len

The length of the returned string.

result

result is a random value of type VARCHAR2 .

ExampleExample

The following code snippet demonstrates a call to the STRING function; the call returns a random alpha-numeric character string that is 10 characters
long.

x := DBMS_RANDOM.STRING('X', 10);

TERMINATE

The TERMINATE procedure has no effect. The signature is:

TERMINATE

The TERMINATE procedure should be considered deprecated; the procedure is supported for compatibility only.

VALUE

The VALUE function returns a random NUMBER that is greater than or equal to 0, and less than 1, with 38 digit precision. The VALUE function has two
forms; the signature of the first form is:

<result> NUMBER VALUE()

ParametersParameters

result

result is a random value of type NUMBER .

ExampleExample

The following code snippet demonstrates a call to the VALUE function. The call returns a random NUMBER :

x := DBMS_RANDOM.VALUE();

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 542

VALUE

The VALUE function returns a random NUMBER with a value that is between user-specified boundaries. The VALUE function has two forms; the
signature of the second form is:

<result> NUMBER VALUE(<low> IN NUMBER, <high> IN NUMBER)

ParametersParameters

low

low specifies the lower boundary for the random value. The random value may be equal to low .

high

high specifies the upper boundary for the random value; the random value will be less than high .

result

result is a random value of type NUMBER .

ExampleExample

The following code snippet demonstrates a call to the VALUE function. The call returns a random NUMBER with a value that is greater than or equal to 1
and less than 100:

x := DBMS_RANDOM.VALUE(1, 100);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 543

13.2.13 DBMS_REDACT

The DBMS_REDACT package enables the redacting or masking of data returned by a query. The DBMS_REDACT package provides a procedure to create
policies, alter policies, enable policies, disable policies, and drop policies. The procedures available in the DBMS_REDACT package are listed in the
following table.

Function/Procedure
Function
or
Procedure

Ret
urn
Ty
pe

Descript
ion

ADD_POLICY(object_schema, object_name, policy_name, policy_description,
column_name, column_description, function_type, function_parameters, expression,
enable, regexp_pattern, regexp_replace_string, regexp_position, regexp_occurence,
regexp_match_parameter, custom_function_expression)

Procedure n/a

Adds a
data
redactio
n policy.

ALTER_POLICY(object_schema, object_name, policy_name, action, column_name,
function_type, function_parameters, expression, regexp_pattern,
regexp_replace_string, regexp_position, regexp_occurence, regexp_match_parameter,
policy_description, column_description, custom_function_expression)

Procedure n/a

Alters
the
existing
data
redactio
n policy.

DISABLE_POLICY(object_schema, object_name, policy_name) Procedure n/a

Disables
the
existing
data
redactio
n policy.

ENABLE_POLICY(object_schema, object_name, policy_name) Procedure n/a

Enables
a
previous
ly
disabled
data
redactio
n policy.

DROP_POLICY(object_schema, object_name, policy_name) Procedure n/a

Drops a
data
redactio
n policy.

UPDATE_FULL_REDACTION_VALUES(number_val, binfloat_val, bindouble_val, char_val,
varchar_val, nchar_val, nvarchar_val, datecol_val, ts_val, tswtz_val, blob_val,
clob_val, nclob_val)

Procedure n/a

Updates
the full
redactio
n
default
values
for the
specifie
d
datatype
.

The data redaction feature uses the DBMS_REDACT package to define policies or conditions to redact data in a column based on the table column type
and redaction type.

Note that you must be the owner of the table to create or change the data redaction policies. The users are exempted from all the column redaction policies,
which the table owner or super-user is by default.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 544

Using DBMS_REDACT Constants and Function Parameters

The DBMS_REDACT package uses the constants and redacts the column data by using any one of the data redaction types. The redaction type can be
decided based on the function_type parameter of dbms_redact.add_policy and dbms_redact.alter_policy procedure. The below
table highlights the values for function_type parameters of dbms_redact.add_policy and dbms_redact.alter_policy .

Constant Type Value Description

NONE INTEGER 0 No redaction, zero effect on the result of a query against table.

FULL INTEGER 1 Full redaction, redacts full values of the column data.

PARTIAL INTEGER 2 Partial redaction, redacts a portion of the column data.

RANDOM INTEGER 4 Random redaction, each query results in a different random value depending on the datatype of the column.

REGEXP INTEGER 5 Regular Expression based redaction, searches for the pattern of data to redact.

CUSTOM INTEGER 99 Custom redaction type.

The following table shows the values for the action parameter of dbms_redact.alter_policy .

Constant Type Val
ue

Description

ADD_COLUMN INTEG
ER

1 Adds a column to the redaction policy.

DROP_COLUMN INTEG
ER

2 Drops a column from the redaction policy.

MODIFY_EXPRESSION INTEG
ER

3 Modifies the expression of a redaction policy. The redaction is applied when the expression evaluates to
the BOOLEAN value to TRUE .

MODIFY_COLUMN INTEG
ER

4 Modifies a column in the redaction policy to change the redaction function type or function parameter.

SET_POLICY_DESCRI
PTION

INTEG
ER

5 Sets the redaction policy description.

SET_COLUMN_DESCRI
PTION

INTEG
ER

6 Sets a description for the redaction performed on the column.

The partial data redaction enables you to redact only a portion of the column data. To use partial redaction, you must set the
dbms_redact.add_policy procedure function_type parameter to dbms_redact.partial and use the function_parameters

parameter to specify the partial redaction behavior.

The data redaction feature provides a predefined format to configure policies that use the following datatype:

Character
Number
Datetime

The following table highlights the format descriptor for partial redaction with respect to datatype. The example described below shows how to perform a
redaction for a string datatype (in this scenario, a Social Security Number (SSN)), a Number datatype, and a DATE datatype.

Datatype Format
Descriptor

Description Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 545

Character

REDACT
_PARTIA
L_INPUT
_FORMAT

Specifies the input format. Enter V for each
character from the input string to be possibly
redacted. Enter F for each character from the
input string that can be considered as a separator
such as blank spaces or hyphens.

Consider 'VVVFVVFVVVV,VVV-VV-VVVV,X,1,5' for masking
first 5 digits of SSN strings such as 123-45-6789 , adding hyphen
to format it and thereby resulting in strings such as XXX-XX-
6789. The field value VVVFVVFVVVV for matching SSN strings
such as 123-45-6789 .

REDACT
_PARTIA
L_OUTPU
T_FORMA
T

Specifies the output format. Enter V for each
character from the input string to be possibly
redacted. Replace each F character from the input
format with a character such as a hyphen or any
other separator.

The field value VVV-VV-VVVV can be used to redact SSN strings
into XXX-XX-6789 where X comes from
REDACT_PARTIAL_MASKCHAR field.

REDACT
_PARTIA
L_MASKC
HAR

Specifies the character to be used for redaction. The value X for redacting SSN strings into XXX-XX-6789 .

REDACT
_PARTIA
L_MASKF
ROM

Specifies which V within the input format from
which to start the redaction.

The value 1 for redacting SSN strings starting at the first V of the
input format of VVVFVVFVVVV into strings such as XXX-XX-
6789 .

REDACT
_PARTIA
L_MASKT
O

Specifies which V within the input format at
which to end the redaction.

The value 5 for redacting SSN strings up to and including the fifth
V within the input format of VVVFVVFVVVV into strings such as
XXX-XX-6789 .

Number

REDACT
_PARTIA
L_MASKC
HAR

Specifies the character to be displayed in the range
between 0 and 9.

‘9, 1, 5’ for redacting the first five digits of the Social Security
Number 123456789 into 999996789 .

REDACT
_PARTIA
L_MASKF
ROM

Specifies the start digit position for redaction.

REDACT
_PARTIA
L_MASKT
O

Specifies the end digit position for redaction.

Datetime

REDACT
_PARTIA
L_DATE_
MONTH

‘m’ redacts the month. To mask a specific month,
specify ‘m#’ where # indicates the month
specified by its number between 1 and 12 .

m3 displays as March.

REDACT
_PARTIA
L_DATE_
DAY

‘d’ redacts the day of the month. To mask with a
day of the month, append 1-31 to a lowercase
d .

d3 displays as 03 .

REDACT
_PARTIA
L_DATE_
YEAR

‘y’ redacts the year. To mask with a year,
append 1-9999 to a lowercase y .

y1960 displays as 60 .

REDACT
_PARTIA
L_DATE_
HOUR

‘h’ redacts the hour. To mask with an hour,
append 0-23 to a lowercase h .

h18 displays as 18 .

REDACT
_PARTIA
L_DATE_
MINUTE

‘m’ redacts the minute. To mask with a minute,
append 0-59 to a lowercase m .

m20 displays as 20 .

Datatype Format
Descriptor

Description Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 546

REDACT
_PARTIA
L_DATE_
SECOND

‘s’ redacts the second. To mask with a second,
append 0-59 to a lowercase s .

s40 displays as 40 .

Datatype Format
Descriptor

Description Examples

The following table represents function_parameters values that can be used in partial redaction.

Function
Parameter

Data
Type

Value Description

REDACT_US_
SSN_F5

VA
RCH
AR2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,1,5'

Redacts the first 5 numbers of SSN. Example:Example: The number 123-45-6789 becomes
XXX-XX-6789 .

REDACT_US_
SSN_L4

VA
RCH
AR2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,6,9'

Redacts the last 4 numbers of SSN. Example:Example: The number 123-45-6789 becomes
123-45-XXXX .

REDACT_US_
SSN_ENTIRE

VA
RCH
AR2

'VVVFVVFVVVV,VVV-VV-
VVVV,X,1,9'

Redacts the entire SSN. Example:Example: The number 123-45-6789 becomes XXX-XX-
XXXX .

REDACT_NUM
_US_SSN_F5

VA
RCH
AR2

'9,1,5'
Redacts the first 5 numbers of SSN when the column is a number datatype. Example:Example: The
number 123456789 becomes 999996789 .

REDACT_NUM
_US_SSN_L4

VA
RCH
AR2

'9,6,9'
Redacts the last 4 numbers of SSN when the column is a number datatype. Example:Example: The
number 123456789 becomes 123459999 .

REDACT_NUM
_US_SSN_ENT
IRE

VA
RCH
AR2

'9,1,9'
Redacts the entire SSN when the column is a number datatype. Example:Example: The number
123456789 becomes 999999999 .

REDACT_ZIP
_CODE

VA
RCH
AR2

'VVVVV,VVVVV,X,1,5' Redacts a 5 digit zip code. Example:Example: 12345 becomes XXXXX .

REDACT_NUM
_ZIP_CODE

VA
RCH
AR2

'9,1,5'
Redacts a 5 digit zip code when the column is a number datatype. Example:Example:
12345 becomes 99999 .

REDACT_CCN
16_F12

VA
RCH
AR2

'VVVVFVVVVFVVVVFVVVV
,VVVV-VVVV-VVVV-
VVVV,*,1,12'

Redacts a 16 digit credit card number and displays only 4 digits. Example:Example: 1234 5678
9000 2358 becomes ****-****-****-2358 .

REDACT_DAT
E_MILLENNIU
M

VA
RCH
AR2

'm1d1y2000'
Redacts a date that is in the DD-MM-YY format. Example:Example: Redacts all date to 01-JAN-
2000 .

REDACT_DAT
E_EPOCH

VA
RCH
AR2

'm1d1y1970' Redacts all dates to 01-JAN-70 .

REDACT_AME
X_CCN_FORMA
TTED

VA
RCH
AR2

'VVVVFVVVVVVFVVVVV,V
VVV-VVVVVV-
VVVVV,*,1,10'

Redacts the Amercian Express credit card number and replaces the digit with * except
for the last 5 digits. Example:Example: The credit card number 1234 567890 34500 becomes
**** ****** 34500 .

REDACT_AME
X_CCN_NUMBE
R

VA
RCH
AR2 '0,1,10'

Redacts the Amercian Express credit card number and replaces the digit with 0 except
for the last 5 digits. Example:Example: The credit card number 1234 567890 34500 becomes
0000 000000 34500 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 547

REDACT_SIN
_FORMATTED

VA
RCH
AR2

'VVVFVVVFVVV,VVV-
VVV-VVV,*,1,6'

Redacts the Social Insurance Number by replacing the first 6 digits by * . Example:Example: 123-
456-789 becomes ***-***-789 .

REDACT_SIN
_NUMBER

VA
RCH
AR2

'9,1,6'
Redacts the Social Insurance Number by replacing the first 6 digits by 9 . Example:Example:
123456789 becomes 999999789 .

REDACT_SIN
_UNFORMATTE
D

VA
RCH
AR2

'VVVVVVVVV,VVVVVVVVV
,*,1,6'

Redacts the Social Insurance Number by replacing the first 6 digits by * . Example:Example:
123456789 becomes ******789 .

REDACT_CCN
_FORMATTED

VA
RCH
AR2

'VVVVFVVVVFVVVVFVVVV
,VVVV-VVVV-VVVV-
VVVV,*,1,12'

Redacts a credit card number by * and displays only 4 digits. Example:Example: The credit card
number 1234-5678-9000-4671 becomes ****-****-****-4671 .

REDACT_CCN
_NUMBER

VA
RCH
AR2

'9,1,12'
Redacts a credit card number by 0 except the last 4 digits. Example:Example: The credit card
number 1234567890004671 becomes 0000000000004671 .

REDACT_NA_
PHONE_FORMA
TTED

VA
RCH
AR2

‘VVVFVVVFVVVV,VVV-
VVV-VVVV,X,4,10'

Redacts the North American phone number by X leaving the area code. Example:Example: 123-
456-7890 becomes 123-XXX-XXXX .

REDACT_NA_
PHONE_NUMBE
R

VA
RCH
AR2

'0,4,10'
Redacts the North American phone number by 0 leaving the area code. Example:Example:
1234567890 becomes 1230000000 .

REDACT_NA_
PHONE_UNFOR
MATTED

VA
RCH
AR2

'VVVVVVVVVV,VVVVVVVV
VV,X,4,10'

Redacts the North American phone number by X leaving the area code. Example:Example:
1234567890 becomes 123XXXXXXX .

REDACT_UK_
NIN_FORMATT
ED

VA
RCH
AR2

'VVFVVFVVFVVFV,VV VV
VV VV V,X,3,8'

Redacts the UK National Insurance Number by X but leaving the alphabetic characters.
Example:Example: NY 22 01 34 D becomes NY XX XX XX D .

REDACT_UK_
NIN_UNFORMA
TTED

VA
RCH
AR2

'VVVVVVVVV,VVVVVVVVV
,X,3,8'

Redacts the UK National Insurance Number by X but leaving the alphabetic characters.
Example:Example: NY220134D becomes NYXXXXXXD .

Function
Parameter

Data
Type

Value Description

A regular expression-based redaction searches for patterns of data to redact. The regexp_pattern search the values in order for the
regexp_replace_string to change the value. The following table illustrates the regexp_pattern values that you can use during REGEXP

based redaction.

Function Parameter and Description Data
Type

Value

RE_PATTERN_CC_L6_T4 : Searches for the middle digits of a credit card number that includes 6 leading digits and
4 trailing digits.
The regexp_replace_string setting to use with the format is RE_REDACT_CC_MIDDLE_DIGITS that
replaces the identified pattern with the characters specified by the RE_REDACT_CC_MIDDLE_DIGITS parameter.

VA
RCH
AR2

'(\d\d\d\d\d\d)
(\d\d\d*)

(\d\d\d\d)'

RE_PATTERN_ANY_DIGIT : Searches for any digit and replaces the identified pattern with the characters specified
by the following values of the regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_WITH_SINGLE_X

(replaces any matched digit with the X character).
regexp_replace_string=> RE_REDACT_WITH_SINGLE_1

(replaces any matched digit with the 1 character).

VA
RCH
AR2

'\d'

RE_PATTERN_US_PHONE : Searches for the U.S phone number and replaces the identified pattern with the
characters specified by the regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_US_PHONE_L7

(searches the phone number and then replaces the last 7 digits).

VA
RCH
AR2

'(\
(\d\d\d\)|\d\d\
d)-(\d\d\d)-
(\d\d\d\d)'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 548

RE_PATTERN_EMAIL_ADDRESS : Searches for the email address and replaces the identified pattern with the
characters specified by the following values of the regexp_replace_string parameter.
regexp_replace_string=> RE_REDACT_EMAIL_NAME

(finds the email address and redacts the email username).
regexp_replace_string=> RE_REDACT_EMAIL_DOMAIN

(finds the email address and redacts the email domain).
regexp_replace_string=> RE_REDACT_EMAIL_ENTIRE

(finds the email address and redacts the entire email address).

VA
RCH
AR2

'([A-Za-z0-
9._%+-]+)@([A-
Za-z0-9.-]+\.

[A-Za-z]{2,4})'

RE_PATTERN_IP_ADDRESS : Searches for an IP address and replaces the identified pattern with the characters
specified by the regexp_replace_string parameter. The regexp_replace_string parameter to be used
is RE_REDACT_IP_L3 that replaces the last section of an IP address with 999 and indicates it is redacted.

VA
RCH
AR2

'(\d{1,3}\.\d{1
,3}\.\d{1,3})\.

\d{1,3}'

RE_PATTERN_AMEX_CCN : Searches for the American Express credit card number. The
regexp_replace_string parameter to be used is RE_REDACT_AMEX_CCN that redacts all of the digits

except the last 5.

VA
RCH
AR2

'.*
(\d\d\d\d\d)$'

RE_PATTERN_CCN : Searches for the credit card number other than American Express credit cards. The
regexp_replace_string parameter to be used is RE_REDACT_CCN that redacts all of the digits except the

last 4.

VA
RCH
AR2

'.*
(\d\d\d\d)$'

RE_PATTERN_US_SSN : Searches the SSN number and replaces the identified pattern with the characters specified
by the regexp_replace_string parameter.
'\1-XXX-XXXX' or 'XXX-XXX-\3' will return 123-XXX-XXXX or XXX-XXX-6789 for the value '123-
45-6789' respectively.

VA
RCH
AR2

'(\d\d\d)-
(\d\d)-

(\d\d\d\d)'

Function Parameter and Description Data
Type

Value

The below table illustrates the regexp_replace_string values that you can use during REGEXP based redaction.

Function
Parameter

Data
Type

Value Description

RE_REDACT_CC_
MIDDLE_DIGITS

VAR
CHA
R2

'\1XXXX
XX\3'

Redacts the middle digits of a credit card number according to the regexp_pattern parameter with
the RE_PATTERN_CC_L6_T4 format and replaces each redacted character with an X .

Example:Example: The credit card number 1234 5678 9000 2490 becomes 1234 56XX XXXX 2490 .

RE_REDACT_WIT
H_SINGLE_X

VAR
CHA
R2

'X'

Replaces the data with a single X character for each matching pattern as specified by setting the
regexp_pattern parameter with the RE_PATTERN_ANY_DIGIT format.

Example:Example: The credit card number 1234 5678 9000 2490 becomes XXXX XXXX XXXX XXXX .

RE_REDACT_WIT
H_SINGLE_1

VAR
CHA
R2

'1'

Replaces the data with a single 1 digit for each of the data digits as specified by setting the
regexp_pattern parameter with the RE_PATTERN_ANY_DIGIT format.

Example:Example: The credit card number 1234 5678 9000 2490 becomes 1111 1111 1111 1111 .

RE_REDACT_US_
PHONE_L7

VAR
CHA
R2

'\1-
XXX-
XXXX'

Redacts the last 7 digits of U.S phone number according to the regexp_pattern parameter with the
RE_PATTERN_US_PHONE format and replaces each redacted character with an X .

Example:Example: The phone number 123-444-5900 becomes 123-XXX-XXXX .

RE_REDACT_EMA
IL_NAME

VAR
CHA
R2

'xxxx@\
2'

Redacts the email name according to the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format and replaces the email username with the four x

characters.

Example:Example: The email address sjohn@example.com becomes xxxx@example.com .

RE_REDACT_EMA
IL_DOMAIN

VAR
CHA
R2

'\1@xxx
xx.com'

Redacts the email domain name according to the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format and replaces the domain with the five x characters.

Example:Example: The email address sjohn@example.com becomes sjohn@xxxxx.com .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 549

RE_REDACT_EMA
IL_ENTIRE

VAR
CHA
R2

'xxxx@x
xxxx.com
'

Redacts the entire email address according to the regexp_pattern parameter with the
RE_PATTERN_EMAIL_ADDRESS format and replaces the email address with the x characters.

Example:Example: The email address sjohn@example.com becomes xxxx@xxxxx.com .

RE_REDACT_IP_
L3

VAR
CHA
R2

'\1.999
'

Redacts the last 3 digits of an IP address according to the regexp_pattern parameter with the
RE_PATTERN_IP_ADDRESS format.

Example:Example: The IP address 172.0.1.258 becomes 172.0.1.999 , which is an invalid IP address.

RE_REDACT_AME
X_CCN

VAR
CHA
R2

'******
****\1'

Redacts the first 10 digits of an American Express credit card number according to the
regexp_pattern parameter with the RE_PATTERN_AMEX_CCN format.

Example:Example: 123456789062816 becomes **********62816 .

RE_REDACT_CCN
VAR
CHA
R2

'******
******\1
'

Redacts the first 12 digits of a credit card number as specified by the regexp_pattern parameter
with the RE_PATTERN_CCN format.

Example:Example: 8749012678345671 becomes ************5671 .

Function
Parameter

Data
Type

Value Description

The following tables show the regexp_position value and regexp_occurence values that you can use during REGEXP based redaction.

Function
Parameter

Data
Type

Val
ue

Description

RE_BEGINN
ING

INTE
GER

1 Specifies the position of a character where search must begin. By default, the value is 1 that indicates the search
begins at the first character of source_char .

Function
Parameter

Data
Type

Val
ue

Description

RE_ALL INTEG
ER

0 Specifies the replacement occurrence of a substring. If the value is 0 , then the replacement of each matching
substring occurs.

RE_FIRST INTEG
ER

1 Specifies the replacement occurrence of a substring. If the value is 1 , then the replacement of the first
matching substring occurs.

The following table shows the regexp_match_parameter values that you can use during REGEXP based redaction which lets you change the default
matching behavior of a function.

Function Parameter Data Type Valu
e

Description

RE_CASE_SENSITIVE VARCHAR
2

'c
'

Specifies the case-sensitive matching.

RE_CASE_INSENSITIV
E

VARCHAR
2

'i
'

Specifies the case-insensitive matching.

RE_MULTIPLE_LINES VARCHAR
2

'm
'

Treats the source string as multiple lines but if you omit this parameter, then it indicates as a
single line.

RE_NEWLINE_WILDCAR
D

VARCHAR
2

'n
'

Specifies the period (.), but if you omit this parameter, then the period does not match the newline
character.

RE_IGNORE_WHITESPA
CE

VARCHAR
2

'x
'

Ignores the whitespace characters.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 550

NoteNote

If you create a redaction policy based on a numeric type column, then make sure that the result after redaction is a number and accordingly set
the replacement string to avoid runtime errors.

NoteNote

If you create a redaction policy based on a character type column, then make sure that a length of the result after redaction is compatible with the
column type and accordingly set the replacement string to avoid runtime errors.

ADD_POLICY

The add_policy procedure creates a new data redaction policy for a table.

PROCEDURE add_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2,
 <policy_description> IN VARCHAR2 DEFAULT NULL,
 <column_name> IN VARCHAR2 DEFAULT NULL,
 <column_description> IN VARCHAR2 DEFAULT NULL,
 <function_type> IN INTEGER DEFAULT DBMS_REDACT.FULL,
 <function_parameters> IN VARCHAR2 DEFAULT NULL,
 <expression> IN VARCHAR2,
 <enable> IN BOOLEAN DEFAULT TRUE,
 <regexp_pattern> IN VARCHAR2 DEFAULT NULL,
 <regexp_replace_string> IN VARCHAR2 DEFAULT NULL,
 <regexp_position> IN INTEGER DEFAULT DBMS_REDACT.RE_BEGINNING,
 <regexp_occurrence> IN INTEGER DEFAULT DBMS_REDACT.RE_ALL,
 <regexp_match_parameter> IN VARCHAR2 DEFAULT NULL,
 <custom_function_expression> IN VARCHAR2 DEFAULT NULL
)

ParametersParameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy will be applied. If you specify NULL then the given
object is searched by the order specified by search_path setting.

object_name

Name of the table on which the data redaction policy is created.

policy_name

Name of the policy to be added. Ensure that the policy_name is unique for the table on which the policy is created.

policy_description

Specify the description of a redaction policy.

column_name

Name of the column to which the redaction policy applies. To redact more than one column, use the alter_policy procedure to add additional

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 551

Name of the column to which the redaction policy applies. To redact more than one column, use the alter_policy procedure to add additional
columns.

column_description

Description of the column to be redacted. The column_description is not supported, but if you specify the description for a column then, you will get
a warning message.

function_type

The type of redaction function to be used. The possible values are NONE, FULL, PARTIAL, RANDOM, REGEXP , and CUSTOM .

function_parameters

Specifies the function parameters for the partition redaction and is applicable only for partial redaction.

expression

Specifies the Boolean expression for the table and determines how the policy is to be applied. The redaction occurs if this policy expression is evaluated to
TRUE .

enable

When set to TRUE , the policy is enabled upon creation. The default is set as TRUE . When set to FALSE , the policy is disabled but the policy can be
enabled by calling the enable_policy procedure.

regexp_pattern

Specifies the regular expression pattern to redact data. If the regexp_pattern does not match, then the NULL value is returned.

regexp_replace_string

Specifies the replacement string value.

regexp_position

Specifies the position of a character where search must begin. By default, the function parameter is RE_BEGINNING .

regexp_occurrence

Specifies the replacement occurrence of a substring. If the constant is RE_ALL , then the replacement of each matching substring occurs. If the constant
is RE_FIRST , then the replacement of the first matching substring occurs.

regexp_match_parameter

Changes the default matching behavior of a function. The possible regexp_match_parameter constants can be ‘RE_CASE_SENSITIVE’,
‘RE_CASE_INSENSITIVE’, ‘RE_MULTIPLE_LINES’, ‘RE_NEWLINE_WILDCARD’, ‘RE_IGNORE_WHITESPACE’ .

NoteNote: For more information on constants , function_parameters , or regexp (regular expressions) see, Using DBMS_REDACT Constants
and Function Parameters .

custom_function_expression

The custom_function_expression is applicable only for the CUSTOM redaction type. The custom_function_expression is a function

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 552

The custom_function_expression is applicable only for the CUSTOM redaction type. The custom_function_expression is a function
expression that is, schema-qualified function with a parameter such as schema_name.function_name (argument1, …) that allows a user to use
their redaction logic to redact the column data.

ExampleExample

The following example illustrates how to create a policy and use full redaction for values in the payment_details_tab table customer id column.

edb=# CREATE TABLE payment_details_tab (
customer_id NUMBER NOT NULL,
card_string VARCHAR2(19) NOT NULL);
CREATE TABLE

edb=# BEGIN
 INSERT INTO payment_details_tab VALUES (4000, '1234-1234-1234-1234');
 INSERT INTO payment_details_tab VALUES (4001, '2345-2345-2345-2345');
END;

EDB-SPL Procedure successfully completed

edb=# CREATE USER redact_user;
CREATE ROLE
edb=# GRANT SELECT ON payment_details_tab TO redact_user;
GRANT

\c edb base_user

BEGIN
 DBMS_REDACT.add_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001',
 policy_description => 'redactPolicy_001 for payment_details_tab table',
 column_name => 'customer_id',
 function_type => DBMS_REDACT.full,
 expression => '1=1',
 enable => TRUE);
END;

Redacted Result:

edb=# \c edb redact_user
You are now connected to database "edb" as user "redact_user".

edb=> select customer_id from payment_details_tab order by 1;
 customer_id

 0
 0
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 553

ALTER_POLICY

The alter_policy procedure alters or modifies an existing data redaction policy for a table.

PROCEDURE alter_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2,
 <action> IN INTEGER DEFAULT DBMS_REDACT.ADD_COLUMN,
 <column_name> IN VARCHAR2 DEFAULT NULL,
 <function_type> IN INTEGER DEFAULT DBMS_REDACT.FULL,
 <function_parameters> IN VARCHAR2 DEFAULT NULL,
 <expression> IN VARCHAR2 DEFAULT NULL,
 <regexp_pattern> IN VARCHAR2 DEFAULT NULL,
 <regexp_replace_string> IN VARCHAR2 DEFAULT NULL,
 <regexp_position> IN INTEGER DEFAULT DBMS_REDACT.RE_BEGINNING,
 <regexp_occurrence> IN INTEGER DEFAULT DBMS_REDACT.RE_ALL,
 <regexp_match_parameter> IN VARCHAR2 DEFAULT NULL,
 <policy_description> IN VARCHAR2 DEFAULT NULL,
 <column_description> IN VARCHAR2 DEFAULT NULL,
 <custom_function_expression> IN VARCHAR2 DEFAULT NULL
)

ParametersParameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy will be altered. If you specify NULL then the given
object is searched by the order specified by search_path setting.

object_name

Name of the table to which to alter a data redaction policy.

policy_name

Name of the policy to be altered.

action

The action to perform. For more information about action parameters see, DBMS_REDACT Constants and Function Parameters .

column_name

Name of the column to which the redaction policy applies.

function_type

The type of redaction function to be used. The possible values are NONE, FULL, PARTIAL, RANDOM, REGEXP , and CUSTOM .

function_parameters

Specifies the function parameters for the redaction function.

expression

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 554

Specifies the Boolean expression for the table and determines how the policy is to be applied. The redaction occurs if this policy expression is evaluated to
TRUE .

regexp_pattern

Enables the use of regular expressions to redact data. If the regexp_pattern does not match the data, then the NULL value is returned.

regexp_replace_string

Specifies the replacement string value.

regexp_position

Specifies the position of a character where search must begin. By default, the function parameter is RE_BEGINNING .

regexp_occurence

Specifies the replacement occurrence of a substring. If the constant is RE_ALL , then the replacement of each matching substring occurs. If the constant
is RE_FIRST , then the replacement of the first matching substring occurs.

regexp_match_parameter

Changes the default matching behavior of a function. The possible regexp_match_parameter constants can be ‘RE_CASE_SENSITIVE’,
‘RE_CASE_INSENSITIVE’, ‘RE_MULTIPLE_LINES’, ‘RE_NEWLINE_WILDCARD’, ‘RE_IGNORE_WHITESPACE’ .

NoteNote: For more information on constants, function_parameters , or regexp (regular expressions) see, Using DBMS_REDACT Constants
and Function Parameters .

policy_description

Specify the description of a redaction policy.

column_description

Description of the column to be redacted. The column_description is not supported, but if you specify the description for a column then, you will get
a warning message.

custom_function_expression

The custom_function_expression is applicable only for the CUSTOM redaction type. The custom_function_expression is a function
expression that is, schema-qualified function with a parameter such as schema_name.function_name (argument1, …) that allows a user to use
their redaction logic to redact the column data.

ExampleExample

The following example illustrates to alter a policy using partial redaction for values in the payment_details_tab table card_string (usually a
credit card number) column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 555

\c edb base _user

BEGIN
 DBMS_REDACT.alter_policy (
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001',
 action => DBMS_REDACT.ADD_COLUMN,
 column_name => 'card_string',
 function_type => DBMS_REDACT.partial,
 function_parameters => DBMS_REDACT.REDACT_CCN16_F12);
END;

Redacted Result:

edb=# \c - redact_user
You are now connected to database "edb" as user "redact_user".
edb=> SELECT * FROM payment_details_tab;
 customer_id | card_string
-------------+---------------------
 0 | ****-****-****-1234
 0 | ****-****-****-2345
(2 rows)

DISABLE_POLICY

The disable_policy procedure disables an existing data redaction policy.

PROCEDURE disable_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

ParametersParameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy will be applied. If you specify NULL then the given
object is searched by the order specified by search_path setting.

object_name

Name of the table for which to disable a data redaction policy.

policy_name

Name of the policy to be disabled.

ExampleExample

The following example illustrates how to disable a policy.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 556

\c edb base_user

BEGIN
 DBMS_REDACT.disable_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

Redacted Result: Data is no longer redacted after disabling a policy.

ENABLE_POLICY

The enable_policy procedure enables the previously disabled data redaction policy.

PROCEDURE enable_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

ParametersParameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy will be applied. If you specify NULL then the given
object is searched by the order specified by search_path setting.

object_name

Name of the table to which to enable a data redaction policy.

policy_name

Name of the policy to be enabled.

ExampleExample

The following example illustrates how to enable a policy.

\c edb base_user

BEGIN
 DBMS_REDACT.enable_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

Redacted Result: Data is redacted after enabling a policy.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 557

DROP_POLICY

The drop_policy procedure drops a data redaction policy by removing the masking policy from a table.

PROCEDURE drop_policy (
 <object_schema> IN VARCHAR2 DEFAULT NULL,
 <object_name> IN VARCHAR2,
 <policy_name> IN VARCHAR2
)

ParametersParameters

object_schema

Specifies the name of the schema in which the object resides and on which the data redaction policy will be applied. If you specify NULL then the given
object is searched by the order specified by search_path setting.

object_name

Name of the table from which to drop a data redaction policy.

policy_name

Name of the policy to be dropped.

ExampleExample

The following example illustrates how to drop a policy.

\c edb base_user

BEGIN
 DBMS_REDACT.drop_policy(
 object_schema => 'public',
 object_name => 'payment_details_tab',
 policy_name => 'redactPolicy_001');
END;

Redacted Result: The server drops the specified policy.

UPDATE_FULL_REDACTION_VALUES

The update_full_redaction_values procedure updates the default displayed values for a data redaction policy and these default values can be
viewed using the redaction_values_for_type_full view that use the full redaction type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 558

PROCEDURE update_full_redaction_values (
 <number_val> IN NUMBER DEFAULT NULL,
 <binfloat_val> IN FLOAT4 DEFAULT NULL,
 <bindouble_val> IN FLOAT8 DEFAULT NULL,
 <char_val> IN CHAR DEFAULT NULL,
 <varchar_val> IN VARCHAR2 DEFAULT NULL,
 <nchar_val> IN NCHAR DEFAULT NULL,
 <nvarchar_val> IN NVARCHAR2 DEFAULT NULL,
 <datecol_val> IN DATE DEFAULT NULL,
 <ts_val> IN TIMESTAMP DEFAULT NULL,
 <tswtz_val> IN TIMESTAMPTZ DEFAULT NULL,
 <blob_val> IN BLOB DEFAULT NULL,
 <clob_val> IN CLOB DEFAULT NULL,
 <nclob_val> IN CLOB DEFAULT NULL
)

ParametersParameters

number_val

Updates the default value for columns of the NUMBER datatype.

binfloat_val

The FLOAT4 datatype is a random value. The binary float datatype is not supported.

bindouble_val

The FLOAT8 datatype is a random value. The binary double datatype is not supported.

char_val

Updates the default value for columns of the CHAR datatype.

varchar_val

Updates the default value for columns of the VARCHAR2 datatype.

nchar_val

The nchar_val is mapped to CHAR datatype and returns the CHAR value.

nvarchar_val

The nvarchar_val is mapped to VARCHAR2 datatype and returns the VARCHAR value.

datecol_val

Updates the default value for columns of the DATE datatype.

ts_val

Updates the default value for columns of the TIMESTAMP datatype.

tswtz_val

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 559

Updates the default value for columns of the TIMESTAMPTZ datatype.

blob_val

Updates the default value for columns of the BLOB datatype.

clob_val

Updates the default value for columns of the CLOB datatype.

nclob_val

The nclob_val is mapped to CLOB datatype and returns the CLOB value.

ExampleExample

The following example illustrates how to update the full redaction values but before updating the values, you can:

View the default values using redaction_values_for_type_full view as shown below:

edb=# \x
Expanded display is on.
edb=# SELECT number_value, char_value, varchar_value, date_value,
 timestamp_value, timestamp_with_time_zone_value, blob_value,
clob_value
FROM redaction_values_for_type_full;
-[RECORD 1]------------------+--------------------------
number_value | 0
char_value |
varchar_value |
date_value | 01-JAN-01 00:00:00
timestamp_value | 01-JAN-01 01:00:00
timestamp_with_time_zone_value | 31-DEC-00 20:00:00 -05:00
blob_value | \x5b72656461637465645d
clob_value | [redacted]
(1 row)

Now, update the default values for full redaction type. The NULL values will be ignored.

\c edb base_user

edb=# BEGIN
 DBMS_REDACT.update_full_redaction_values (
 number_val => 9999999,
 char_val => 'Z',
 varchar_val => 'V',
 datecol_val => to_date('17/10/2018', 'DD/MM/YYYY'),
 ts_val => to_timestamp('17/10/2018 11:12:13', 'DD/MM/YYYY HH24:MI:SS'),
 tswtz_val => NULL,
 blob_val => 'NEW REDACTED VALUE',
 clob_val => 'NEW REDACTED VALUE');
END;

You can now see the updated values using redaction_values_for_type_full view.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 560

EDB-SPL Procedure successfully completed
edb=# SELECT number_value, char_value, varchar_value, date_value,
 timestamp_value, timestamp_with_time_zone_value, blob_value,
clob_value
FROM redaction_values_for_type_full;
-[RECORD 1]------------------+---------------------------------------
number_value | 9999999
char_value | Z
varchar_value | V
date_value | 17-OCT-18 00:00:00
timestamp_value | 17-OCT-18 11:12:13
timestamp_with_time_zone_value | 31-DEC-00 20:00:00 -05:00
blob_value | \x4e45572052454441435445442056414c5545
clob_value | NEW REDACTED VALUE
(1 row)

Redacted Result:

edb=# \c edb redact_user
You are now connected to database "edb" as user "redact_user".

edb=> select * from payment_details_tab order by 1;
 customer_id | card_string
-------------+-------------
 9999999 | V
 9999999 | V
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 561

13.2.14 DBMS_RLS

The DBMS_RLS package enables the implementation of Virtual Private Database on certain Advanced Server database objects.

Function/Procedure
Function
or
Procedure

Ret
urn
Ty
pe

Descripti
on

ADD_POLICY(object_schema, object_name, policy_name, function_schema,
policy_function [, statement_types [, update_check [, enable [, static_policy [,
policy_type [, long_predicate [, sec_relevant_cols [, sec_relevant_cols_opt
]]]]]]]])

Procedure n/a

Add a
security
policy to
a
database
object.

DROP_POLICY(object_schema, object_name, policy_name) Procedure n/a

Remove
a
security
policy
from a
database
object.

ENABLE_POLICY(object_schema, object_name, policy_name, enable) Procedure n/a

Enable
or
disable a
security
policy.

Advanced Server's implementation of DBMS_RLS is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

Virtual Private Database is a type of fine-grained access control using security policies. Fine-grained access control in Virtual Private Database means that
access to data can be controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL function with certain input parameters and return value. The
security policy is the named association of the policy function to a particular database object, typically a table.

NoteNote

In Advanced Server, the policy function can be written in any language supported by Advanced Server such as SQL, PL/pgSQL and SPL.

NoteNote

The database objects currently supported by Advanced Server Virtual Private Database are tables. Policies cannot be applied to views or
synonyms.

The advantages of using Virtual Private Database are the following:

Provides a fine-grained level of security. Database object level privileges given by the GRANT command determine access privileges to the entire
instance of a database object, while Virtual Private Database provides access control for the individual rows of a database object instance.
A different security policy can be applied depending upon the type of SQL command (INSERT, UPDATE, DELETE , or SELECT).
The security policy can vary dynamically for each applicable SQL command affecting the database object depending upon factors such as the session
user of the application accessing the database object.
Invocation of the security policy is transparent to all applications that access the database object and thus, individual applications do not have to be
modified to apply the security policy.
Once a security policy is enabled, it is not possible for any application (including new applications) to circumvent the security policy except by the
system privilege noted by the following.
Even superusers cannot circumvent the security policy except by the system privilege noted by the following.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 562

NoteNote

The only way security policies can be circumvented is if the EXEMPT ACCESS POLICY system privilege has been granted to a user. The
EXEMPT ACCESS POLICY privilege should be granted with extreme care as a user with this privilege is exempted from all policies in the

database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable policies, and disable policies.

The process for implementing Virtual Private Database is as follows:

Create a policy function. The function must have two input parameters of type VARCHAR2 . The first input parameter is for the schema containing
the database object to which the policy is to apply and the second input parameter is for the name of that database object. The function must have a
VARCHAR2 return type. The function must return a string in the form of a WHERE clause predicate. This predicate is dynamically appended as an
AND condition to the SQL command that acts upon the database object. Thus, rows that do not satisfy the policy function predicate are filtered out

from the SQL command result set.
Use the ADD_POLICY procedure to define a new policy, which is the association of a policy function with a database object. With the
ADD_POLICY procedure, you can also specify the types of SQL commands (INSERT, UPDATE, DELETE , or SELECT) to which the policy is to

apply, whether or not to enable the policy at the time of its creation, and if the policy should apply to newly inserted rows or the modified image of
updated rows.
Use the ENABLE_POLICY procedure to disable or enable an existing policy.
Use the DROP_POLICY procedure to remove an existing policy. The DROP_POLICY procedure does not drop the policy function or the associated
database object.

Once policies are created, they can be viewed in the catalog views, compatible with Oracle databases: ALL_POLICIES, DBA_POLICIES , or
USER_POLICIES . The supported compatible views are listed in Database Compatibility for Oracle Developers Catalog Views Guide.

The SYS_CONTEXT function is often used with DBMS_RLS . The signature is:

SYS_CONTEXT(<namespace>, <attribute>)

Where:

namespace is a VARCHAR2 ; the only accepted value is USERENV . Any other value will return NULL .

attribute is a VARCHAR2 . attribute may be:

attribute Value Equivalent Value

SESSION_USER pg_catalog.session_user

CURRENT_USER pg_catalog.current_user

CURRENT_SCHEMA pg_catalog.current_schema

HOST pg_catalog.inet_host

IP_ADDRESS pg_catalog.inet_client_addr

SERVER_HOST pg_catalog.inet_server_addr

NoteNote

The examples used to illustrate the DBMS_RLS package are based on a modified copy of the sample emp table provided with Advanced Server
along with a role named salesmgr that is granted all privileges on the table. You can create the modified copy of the emp table named
vpemp and the salesmgr role as shown by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 563

CREATE TABLE public.vpemp AS SELECT empno, ename, job, sal, comm, deptno
FROM emp;
ALTER TABLE vpemp ADD authid VARCHAR2(12);
UPDATE vpemp SET authid = 'researchmgr' WHERE deptno = 20;
UPDATE vpemp SET authid = 'salesmgr' WHERE deptno = 30;
SELECT * FROM vpemp;

empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

CREATE ROLE salesmgr WITH LOGIN PASSWORD 'password';
GRANT ALL ON vpemp TO salesmgr;

ADD_POLICY

The ADD_POLICY procedure creates a new policy by associating a policy function with a database object.

You must be a superuser to execute this procedure.

ADD_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2, <function_schema> VARCHAR2,
 <policy_function> VARCHAR2
 [, <statement_types> VARCHAR2
 [, <update_check> BOOLEAN
 [, <enable> BOOLEAN
 [, <static_policy> BOOLEAN
 [, <policy_type> INTEGER
 [, <long_predicate> BOOLEAN
 [, <sec_relevant_cols> VARCHAR2
 [, <sec_relevant_cols_opt> INTEGER]]]]]]]])

ParametersParameters

object_schema

Name of the schema containing the database object to which the policy is to be applied.

object_name

Name of the database object to which the policy is to be applied. A given database object may have more than one policy applied to it.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 564

policy_name

Name assigned to the policy. The combination of database object (identified by object_schema and object_name) and policy name must be unique
within the database.

function_schema

Name of the schema containing the policy function.

NoteNote: The policy function may belong to a package in which case function_schema must contain the name of the schema in which the package is
defined.

policy_function

Name of the SPL function that defines the rules of the security policy. The same function may be specified in more than one policy.

NoteNote: The policy function may belong to a package in which case policy_function must also contain the package name in dot notation (that is,
package_name.function_name).

statement_types

Comma-separated list of SQL commands to which the policy applies. Valid SQL commands are INSERT, UPDATE, DELETE , and SELECT . The default
is INSERT,UPDATE,DELETE,SELECT .

NoteNote: Advanced Server accepts INDEX as a statement type, but it is ignored. Policies are not applied to index operations in Advanced Server.

update_check

Applies to INSERT and UPDATE SQL commands only.

When set to TRUE , the policy is applied to newly inserted rows and to the modified image of updated rows. If any of the new or modified rows do
not qualify according to the policy function predicate, then the INSERT or UPDATE command throws an exception and no rows are inserted or
modified by the INSERT or UPDATE command.

When set to FALSE , the policy is not applied to newly inserted rows or the modified image of updated rows. Thus, a newly inserted row may not
appear in the result set of a subsequent SQL command that invokes the same policy. Similarly, rows which qualified according to the policy prior to
an UPDATE command may not appear in the result set of a subsequent SQL command that invokes the same policy.

The default is FALSE .

enable

When set to TRUE , the policy is enabled and applied to the SQL commands given by the statement_types parameter. When set to FALSE the policy
is disabled and not applied to any SQL commands. The policy can be enabled using the ENABLE_POLICY procedure. The default is TRUE .

static_policy

In Oracle, when set to TRUE , the policy is static, which means the policy function is evaluated once per database object the first time it is invoked by a
policy on that database object. The resulting policy function predicate string is saved in memory and reused for all invocations of that policy on that
database object while the database server instance is running.

When set to FALSE , the policy is dynamic, which means the policy function is re-evaluated and the policy function predicate string regenerated for
all invocations of the policy.

The default is FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 565

The default is FALSE .

NoteNote

In Oracle 10g, the policy_type parameter was introduced, which is intended to replace the static_policy parameter. In Oracle,
if the policy_type parameter is not set to its default value of NULL , the policy_type parameter setting overrides the
static_policy setting.

NoteNote

The setting of static_policy is ignored by Advanced Server. Advanced Server implements only the dynamic policy, regardless of the
setting of the static_policy parameter.

policy_type

In Oracle, determines when the policy function is re-evaluated, and hence, if and when the predicate string returned by the policy function changes. The
default is NULL .

NoteNote: The setting of this parameter is ignored by Advanced Server. Advanced Server always assumes a dynamic policy.

long_predicate

In Oracle, allows predicates up to 32K bytes if set to TRUE , otherwise predicates are limited to 4000 bytes. The default is FALSE .

NoteNote: The setting of this parameter is ignored by Advanced Server. An Advanced Server policy function can return a predicate of unlimited length for all
practical purposes.

sec_relevant_cols

Comma-separated list of columns of object_name . Provides column-level Virtual Private Database for the listed columns. The policy is enforced if any
of the listed columns are referenced in a SQL command of a type listed in statement_types . The policy is not enforced if no such columns are
referenced.

The default is NULL , which has the same effect as if all of the database object’s columns were included in sec_relevant_cols .

sec_relevant_cols_opt

In Oracle, if sec_relevant_cols_opt is set to DBMS_RLS.ALL_ROWS (INTEGER constant of value 1), then the columns listed in
sec_relevant_cols return NULL on all rows where the applied policy predicate is false. (If sec_relevant_cols_opt is not set to
DBMS_RLS.ALL_ROWS , these rows would not be returned at all in the result set.) The default is NULL .

NoteNote: Advanced Server does not support the DBMS_RLS.ALL_ROWS functionality. Advanced Server throws an error if sec_relevant_cols_opt is
set to DBMS_RLS.ALL_ROWS (INTEGER value of 1).

ExamplesExamples

This example uses the following policy function:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 566

CREATE OR REPLACE FUNCTION verify_session_user (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'authid = SYS_CONTEXT(''USERENV'', ''SESSION_USER'')';
END;

This function generates the predicate authid = SYS_CONTEXT('USERENV', 'SESSION_USER') , which is added to the WHERE clause of any
SQL command of the type specified in the ADD_POLICY procedure.

This limits the effect of the SQL command to those rows where the content of the authid column is the same as the session user.

NoteNote

This example uses the SYS_CONTEXT function to return the login user name. In Oracle the SYS_CONTEXT function is used to return
attributes of an application context. The first parameter of the SYS_CONTEXT function is the name of an application context while the second
parameter is the name of an attribute set within the application context. USERENV is a special built-in namespace that describes the current
session. Advanced Server does not support application contexts, but only this specific usage of the SYS_CONTEXT function.

The following anonymous block calls the ADD_POLICY procedure to create a policy named secure_update to be applied to the vpemp table using
function verify_session_user whenever an INSERT, UPDATE , or DELETE SQL command is given referencing the vpemp table.

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'verify_session_user';
 v_statement_types VARCHAR2(30) := 'INSERT,UPDATE,DELETE';
 v_update_check BOOLEAN := TRUE;
 v_enable BOOLEAN := TRUE;
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 v_update_check,
 v_enable
);
END;

After successful creation of the policy, a terminal session is started by user salesmgr . The following query shows the content of the vpemp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 567

edb=# \c edb salesmgr
Password for user salesmgr:
You are now connected to database "edb" as user "salesmgr".
edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 300.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 500.00 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 1400.00 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 0.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | | 30 | salesmgr
(14 rows)

An unqualified UPDATE command (no WHERE clause) is issued by the salesmgr user:

edb=> UPDATE vpemp SET comm = sal * .75;
UPDATE 6

Instead of updating all rows in the table, the policy restricts the effect of the update to only those rows where the authid column contains the value
salesmgr as specified by the policy function predicate authid = SYS_CONTEXT('USERENV', 'SESSION_USER') .

The following query shows that the comm column has been changed only for those rows where authid contains salesmgr . All other rows are
unchanged.

edb=> SELECT * FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+-----------+---------+---------+--------+-------------
 7782 | CLARK | MANAGER | 2450.00 | | 10 |
 7839 | KING | PRESIDENT | 5000.00 | | 10 |
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7566 | JONES | MANAGER | 2975.00 | | 20 | researchmgr
 7788 | SCOTT | ANALYST | 3000.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7902 | FORD | ANALYST | 3000.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7698 | BLAKE | MANAGER | 2850.00 | 2137.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(14 rows)

Furthermore, since the update_check parameter was set to TRUE in the ADD_POLICY procedure, the following INSERT command throws an
exception since the value given for the authid column, researchmgr , does not match the session user, which is salesmgr , and hence, fails the
policy.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 568

edb=> INSERT INTO vpemp VALUES (9001,'SMITH','ANALYST',3200.00,NULL,20,
'researchmgr');
ERROR: policy with check option violation
DETAIL: Policy predicate was evaluated to FALSE with the updated values

If update_check was set to FALSE , the preceding INSERT command would have succeeded.

The following example illustrates the use of the sec_relevant_cols parameter to apply a policy only when certain columns are referenced in the SQL
command. The following policy function is used for this example, which selects rows where the employee salary is less than 2000 .

CREATE OR REPLACE FUNCTION sal_lt_2000 (
 p_schema VARCHAR2,
 p_object VARCHAR2
)
RETURN VARCHAR2
IS
BEGIN
 RETURN 'sal < 2000';
END

The policy is created so that it is enforced only if a SELECT command includes columns sal or comm :

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_salary';
 v_function_schema VARCHAR2(30) := 'enterprisedb';
 v_policy_function VARCHAR2(30) := 'sal_lt_2000';
 v_statement_types VARCHAR2(30) := 'SELECT';
 v_sec_relevant_cols VARCHAR2(30) := 'sal,comm';
BEGIN
 DBMS_RLS.ADD_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_function_schema,
 v_policy_function,
 v_statement_types,
 sec_relevant_cols => v_sec_relevant_cols
);
END;

If a query does not reference columns sal or comm , then the policy is not applied. The following query returns all 14 rows of table vpemp :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 569

edb=# SELECT empno, ename, job, deptno, authid FROM vpemp;
 empno | ename | job | deptno | authid
-------+--------+-----------+--------+-------------
 7782 | CLARK | MANAGER | 10 |
 7839 | KING | PRESIDENT | 10 |
 7934 | MILLER | CLERK | 10 |
 7369 | SMITH | CLERK | 20 | researchmgr
 7566 | JONES | MANAGER | 20 | researchmgr
 7788 | SCOTT | ANALYST | 20 | researchmgr
 7876 | ADAMS | CLERK | 20 | researchmgr
 7902 | FORD | ANALYST | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 30 | salesmgr
 7521 | WARD | SALESMAN | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 30 | salesmgr
 7698 | BLAKE | MANAGER | 30 | salesmgr
 7844 | TURNER | SALESMAN | 30 | salesmgr
 7900 | JAMES | CLERK | 30 | salesmgr
(14 rows)

If the query references the sal or comm columns, then the policy is applied to the query eliminating any rows where sal is greater than or equal to
2000 as shown by the following:

edb=# SELECT empno, ename, job, sal, comm, deptno, authid FROM vpemp;
 empno | ename | job | sal | comm | deptno | authid
-------+--------+----------+---------+---------+--------+-------------
 7934 | MILLER | CLERK | 1300.00 | | 10 |
 7369 | SMITH | CLERK | 800.00 | | 20 | researchmgr
 7876 | ADAMS | CLERK | 1100.00 | | 20 | researchmgr
 7499 | ALLEN | SALESMAN | 1600.00 | 1200.00 | 30 | salesmgr
 7521 | WARD | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7654 | MARTIN | SALESMAN | 1250.00 | 937.50 | 30 | salesmgr
 7844 | TURNER | SALESMAN | 1500.00 | 1125.00 | 30 | salesmgr
 7900 | JAMES | CLERK | 950.00 | 712.50 | 30 | salesmgr
(8 rows)

DROP_POLICY

The DROP_POLICY procedure deletes an existing policy. The policy function and database object associated with the policy are not deleted by the
DROP_POLICY procedure.

You must be a superuser to execute this procedure.

DROP_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2)

ParametersParameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 570

policy_name

Name of the policy to be deleted.

ExamplesExamples

The following example deletes policy secure_update on table public.vpemp :

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
BEGIN
 DBMS_RLS.DROP_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name
);
END;

ENABLE_POLICY

The ENABLE_POLICY procedure enables or disables an existing policy on the specified database object.

You must be a superuser to execute this procedure.

ENABLE_POLICY(<object_schema> VARCHAR2, <object_name> VARCHAR2,
 <policy_name> VARCHAR2, <enable> BOOLEAN)

ParametersParameters

object_schema

Name of the schema containing the database object to which the policy applies.

object_name

Name of the database object to which the policy applies.

policy_name

Name of the policy to be enabled or disabled.

enable

When set to TRUE , the policy is enabled. When set to FALSE , the policy is disabled.

ExamplesExamples

The following example disables policy secure_update on table public.vpemp :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 571

DECLARE
 v_object_schema VARCHAR2(30) := 'public';
 v_object_name VARCHAR2(30) := 'vpemp';
 v_policy_name VARCHAR2(30) := 'secure_update';
 v_enable BOOLEAN := FALSE;
BEGIN
 DBMS_RLS.ENABLE_POLICY(
 v_object_schema,
 v_object_name,
 v_policy_name,
 v_enable
);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 572

13.2.15 DBMS_SCHEDULER

The DBMS_SCHEDULER package provides a way to create and manage Oracle-styled jobs, programs and job schedules. The DBMS_SCHEDULER package
implements the following functions and procedures:

Function/Procedure Return
Type

Description

CREATE_JOB(job_name, job_type, job_action,
number_of_arguments, start_date, repeat_interval, end_date,
job_class, enabled, auto_drop, comments)

n/a
Use the first form of the CREATE_JOB procedure
to create a job, specifying program and schedule
details by means of parameters.

CREATE_JOB(job_name, program_name, schedule_name,
job_class, enabled, auto_drop, comments) n/a

Use the second form of CREATE_JOB to create a
job that uses a named program and named
schedule.

CREATE_PROGRAM(program_name, program_type, program_action,
number_of_arguments, enabled, comments)

n/a Use CREATE_PROGRAM to create a program.

CREATE_SCHEDULE(schedule_name, start_date, repeat_interval,
end_date, comments)

n/a Use the CREATE_SCHEDULE procedure to create
a schedule.

DEFINE_PROGRAM_ARGUMENT(program_name, argument_position,
argument_name, argument_type, default_value, out_argument) n/a

Use the first form of the
DEFINE_PROGRAM_ARGUMENT procedure to

define a program argument that has a default value.

DEFINE_PROGRAM_ARGUMENT(program_name, argument_position,
argument_name, argument_type, out_argument)

n/a

Use the first form of the
DEFINE_PROGRAM_ARGUMENT procedure to

define a program argument that does not have a
default value.

DISABLE(name, force, commit_semantics) n/a Use the DISABLE procedure to disable a job or
program.

DROP_JOB(job_name, force, defer, commit_semantics) n/a Use the DROP_JOB procedure to drop a job.

DROP_PROGRAM(program_name, force) n/a Use the DROP_PROGRAM procedure to drop a
program.

DROP_PROGRAM_ARGUMENT(program_name, argument_position) n/a
Use the first form of DROP_PROGRAM_ARGUMENT
to drop a program argument by specifying the
argument position.

DROP_PROGRAM_ARGUMENT(program_name, argument_name) n/a
Use the second form of
DROP_PROGRAM_ARGUMENT to drop a program

argument by specifying the argument name.

DROP_SCHEDULE(schedule_name, force) n/a Use the DROP SCHEDULE procedure to drop a
schedule.

ENABLE(name, commit_semantics) n/a Use the ENABLE command to enable a program or
job.

EVALUATE_CALENDAR_STRING(calendar_string, start_date,
return_date_after, next_run_date) n/a

Use EVALUATE_CALENDAR_STRING to review
the execution date described by a user-defined
calendar schedule.

RUN_JOB(job_name, use_current_session, manually) n/a Use the RUN_JOB procedure to execute a job
immediately.

SET_JOB_ARGUMENT_VALUE(job_name, argument_position,
argument_value) n/a

Use the first form of SET_JOB_ARGUMENT value
to set the value of a job argument described by the
argument's position.

SET_JOB_ARGUMENT_VALUE(job_name, argument_name,
argument_value) n/a

Use the second form of SET_JOB_ARGUMENT
value to set the value of a job argument described
by the argument's name.

Advanced Server's implementation of DBMS_SCHEDULER is a partial implementation when compared to Oracle's version. Only those functions and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 573

Advanced Server's implementation of DBMS_SCHEDULER is a partial implementation when compared to Oracle's version. Only those functions and
procedures listed in the table above are supported.

The DBMS_SCHEDULER package is dependent on the pgAgent service; you must have a pgAgent service installed and running on your server before using
DBMS_SCHEDULER .

Before using DBMS_SCHEDULER , a database superuser must create the catalog tables in which the DBMS_SCHEDULER programs, schedules and jobs
are stored. Use the psql client to connect to the database, and invoke the command:

CREATE EXTENSION dbms_scheduler;

By default, the dbms_scheduler extension resides in the contrib/dbms_scheduler_ext subdirectory (under the Advanced Server installation).

Note that after creating the DBMS_SCHEDULER tables, only a superuser will be able to perform a dump or reload of the database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 574

13.2.15.1 Using Calendar Syntax to Specify a Repeating Interval

The CREATE_JOB and CREATE_SCHEDULE procedures use Oracle-styled calendar syntax to define the interval with which a job or schedule is
repeated. You should provide the scheduling information in the repeat_interval parameter of each procedure.

repeat_interval is a value (or series of values) that define the interval between the executions of the scheduled job. Each value is composed of a
token, followed by an equal sign, followed by the unit (or units) on which the schedule will execute. Multiple token values must be separated by a semi-
colon (;).

For example, the following value:

FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;BYMINUTE=45

Defines a schedule that is executed each weeknight at 5:45.

The token types and syntax described in the table below are supported by Advanced Server:

Token
type

Syntax Valid Values

FREQ FREQ=predefined_
interval

Where predefined_interval is one of the following: YEARLY, MONTHLY, WEEKLY, DAILY,
HOURLY, MINUTELY . The SECONDLY keyword is not supported.

BYMON
TH

BYMONTH=month(,
month)...

Where month is the three-letter abbreviation of the month name: JAN | FEB | MAR | APR | MAY |
JUN | JUL | AUG | SEP | OCT | NOV | DEC

BYMON
TH

BYMONTH=month (,
month)...

Where month is the numeric value representing the month: 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9
| 10 | 11 | 12

BYMON
THDAY

BYMONTHDAY=day_o
f_month

Where day_of_month is a value from 1 through 31

BYDAY BYDAY=weekday Where weekday is a three-letter abbreviation or single-digit value representing the day of the week.

Monday | MON | 1 |

Tuesday | TUE | 2 |

Wednesday | WED | 3 |

Thursday | THU | 4 |

Friday | FRI | 5 |

Saturday | SAT | 6 |

Sunday | SUN | 7 |

BYDAT
E

BYDATE=date(,
date)...

Where date is YYYYMMDD .

YYYY is a four-digit year representation of the year,
MM is a two-digit representation of the month,

and DD is a two-digit day representation of the day.

BYDAT
E

BYDATE=date(,
date)...

Where date is MMDD .

MM is a two-digit representation of the month,
and DD is a two-digit day representation of the day

BYHOU
R

BYHOUR=hour Where hour is a value from 0 through 23 .

BYMIN
UTE

BYMINUTE=minute Where minute is a value from 0 through 59 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 575

13.2.15.2 CREATE_JOB

Use the CREATE_JOB procedure to create a job. The procedure comes in two forms; the first form of the procedure specifies a schedule within the job
definition, as well as a job action that will be invoked when the job executes:

CREATE_JOB(
 <job_name> IN VARCHAR2,
 <job_type> IN VARCHAR2,
 <job_action> IN VARCHAR2,
 <number_of_arguments> IN PLS_INTEGER DEFAULT 0,
 <start_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <repeat_interval> IN VARCHAR2 DEFAULT NULL,
 <end_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <job_class> IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <auto_drop> IN BOOLEAN DEFAULT TRUE,
 <comments> IN VARCHAR2 DEFAULT NULL)

The second form uses a job schedule to specify the schedule on which the job will execute, and specifies the name of a program that will execute when the
job runs:

CREATE_JOB(
 <job_name> IN VARCHAR2,
 <program_name> IN VARCHAR2,
 <schedule_name> IN VARCHAR2,
 <job_class> IN VARCHAR2 DEFAULT 'DEFAULT_JOB_CLASS',
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <auto_drop> IN BOOLEAN DEFAULT TRUE,
 <comments> IN VARCHAR2 DEFAULT NULL)

ParametersParameters

job_name

job_name specifies the optionally schema-qualified name of the job being created.

job_type

job_type specifies the type of job. The current implementation of CREATE_JOB supports a job type of PLSQL_BLOCK or STORED_PROCEDURE .

job_action

If job_type is PLSQL_BLOCK , job_action specifies the content of the PL/SQL block that will be invoked when the job executes. The block
must be terminated with a semi-colon (;).

If job_type is STORED_PROCEDURE , job_action specifies the optionally schema-qualified name of the procedure.

number_of_arguments

number_of_arguments is an INTEGER value that specifies the number of arguments expected by the job. The default is 0 .

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the first time that the job is scheduled to execute. The default value is NULL ,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 576

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the first time that the job is scheduled to execute. The default value is NULL ,
indicating that the job should be scheduled to execute when the job is enabled.

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job will repeat. If a repeat_interval is not specified, the job will execute
only once. The default value is NULL .

end_date

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after which the job will no longer execute. If a date is specified, the
end_date must be after start_date . The default value is NULL .

Please note that if an end_date is not specified and a repeat_interval is specified, the job will repeat indefinitely until it is disabled.

program_name

program_name is the name of a program that will be executed by the job.

schedule_name

schedule_name is the name of the schedule associated with the job.

job_class

job_class is accepted for compatibility and ignored.

enabled

enabled is a BOOLEAN value that specifies if the job is enabled when created. By default, a job is created in a disabled state, with enabled set to
FALSE . To enable a job, specify a value of TRUE when creating the job, or enable the job with the DBMS_SCHEDULER.ENABLE procedure.

auto_drop

The auto_drop parameter is accepted for compatibility and is ignored. By default, a job's status will be changed to DISABLED after the time specified
in end_date .

comments

Use the comments parameter to specify a comment about the job.

ExampleExample

The following example demonstrates a call to the CREATE_JOB procedure:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 577

EXEC
 DBMS_SCHEDULER.CREATE_JOB (
 job_name => 'update_log',
 job_type => 'PLSQL_BLOCK',
 job_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 start_date => '01-JUN-15 09:00:00.000000',
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 end_date => NULL,
 enabled => TRUE,
 comments => 'This job adds a row to the my_log table.');

The code fragment creates a job named update_log that executes each weeknight at 5:00. The job executes a PL/SQL block that inserts the current
timestamp into a logfile (my_log). Since no end_date is specified, the job will execute until it is disabled by the DBMS_SCHEDULER.DISABLE
procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 578

13.2.15.3 CREATE_PROGRAM

Use the CREATE_PROGRAM procedure to create a DBMS_SCHEDULER program. The signature is:

CREATE_PROGRAM(
 <program_name> IN VARCHAR2,
 <program_type> IN VARCHAR2,
 <program_action> IN VARCHAR2,
 <number_of_arguments> IN PLS_INTEGER DEFAULT 0,
 <enabled> IN BOOLEAN DEFAULT FALSE,
 <comments> IN VARCHAR2 DEFAULT NULL)

ParametersParameters

program_name

program_name specifies the name of the program that is being created.

program_type

program_type specifies the type of program. The current implementation of CREATE_PROGRAM supports a program_type of PLSQL_BLOCK or
PROCEDURE .

program_action

If program_type is PLSQL_BLOCK, program_action contains the PL/SQL block that will execute when the program is invoked. The
PL/SQL block must be terminated with a semi-colon (;).

If program_type is PROCEDURE , program_action contains the name of the stored procedure.

number_of_arguments

If program_type is PLSQL_BLOCK , this argument is ignored.

If program_type is PROCEDURE , number_of_arguments specifies the number of arguments required by the procedure. The default value
is 0 .

enabled

enabled specifies if the program is created enabled or disabled:

If enabled is TRUE , the program is created enabled.

If enabled is FALSE , the program is created disabled; use the DBMS_SCHEDULER.ENABLE program to enable a disabled program.

The default value is FALSE .

comments

Use the comments parameter to specify a comment about the program; by default, this parameter is NULL .

ExampleExample

The following call to the CREATE_PROGRAM procedure creates a program named update_log :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 579

The following call to the CREATE_PROGRAM procedure creates a program named update_log :

EXEC
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'update_log',
 program_type => 'PLSQL_BLOCK',
 program_action => 'BEGIN INSERT INTO my_log VALUES(current_timestamp);
 END;',
 enabled => TRUE,
 comments => 'This program adds a row to the my_log table.');

update_log is a PL/SQL block that adds a row containing the current date and time to the my_log table. The program will be enabled when the
CREATE_PROGRAM procedure executes.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 580

13.2.15.4 CREATE_SCHEDULE

Use the CREATE_SCHEDULE procedure to create a job schedule. The signature of the CREATE_SCHEDULE procedure is:

CREATE_SCHEDULE(
 <schedule_name> IN VARCHAR2,
 <start_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <repeat_interval> IN VARCHAR2,
 <end_date> IN TIMESTAMP WITH TIME ZONE DEFAULT NULL,
 <comments> IN VARCHAR2 DEFAULT NULL)

ParametersParameters

schedule_name

schedule_name specifies the name of the schedule.

start_date

start_date is a TIMESTAMP WITH TIME ZONE value that specifies the date and time that the schedule is eligible to execute. If a start_date
is not specified, the date that the job is enabled is used as the start_date . By default, start_date is NULL .

repeat_interval

repeat_interval is a VARCHAR2 value that specifies how often the job will repeat. If a repeat_interval is not specified, the job will execute
only once, on the date specified by start_date .

NoteNote: You must provide a value for either start_date or repeat_interval ; if both start_date and repeat_interval are NULL , the
server will return an error.

end_date

end_date is a TIMESTAMP WITH TIME ZONE value that specifies a time after which the schedule will no longer execute. If a date is specified, the
end_date must be after the start_date . The default value is NULL .

NoteNote: If a repeat_interval is specified and an end_date is not specified, the schedule will repeat indefinitely until it is disabled.

comments

Use the comments parameter to specify a comment about the schedule; by default, this parameter is NULL .

ExampleExample

The following code fragment calls CREATE_SCHEDULE to create a schedule named weeknights_at_5 :

EXEC
 DBMS_SCHEDULER.CREATE_SCHEDULE (
 schedule_name => 'weeknights_at_5',
 start_date => '01-JUN-13 09:00:00.000000',
 repeat_interval => 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 comments => 'This schedule executes each weeknight at 5:00');

The schedule executes each weeknight, at 5:00 pm, effective after June 1, 2013. Since no end_date is specified, the schedule will execute indefinitely

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 581

The schedule executes each weeknight, at 5:00 pm, effective after June 1, 2013. Since no end_date is specified, the schedule will execute indefinitely
until it is disabled with DBMS_SCHEDULER.DISABLE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 582

13.2.15.5 DEFINE_PROGRAM_ARGUMENT

Use the DEFINE_PROGRAM_ARGUMENT procedure to define a program argument. The DEFINE_PROGRAM_ARGUMENT procedure comes in two forms;
the first form defines an argument with a default value:

DEFINE_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_name> IN VARCHAR2 DEFAULT NULL,
 <argument_type> IN VARCHAR2,
 <default_value> IN VARCHAR2,
 <out_argument> IN BOOLEAN DEFAULT FALSE)

The second form defines an argument without a default value:

DEFINE_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_name> IN VARCHAR2 DEFAULT NULL,
 <argument_type> IN VARCHAR2,
 <out_argument> IN BOOLEAN DEFAULT FALSE)

ParametersParameters

program_name

program_name is the name of the program to which the arguments belong.

argument_position

argument_position specifies the position of the argument as it is passed to the program.

argument_name

argument_name specifies the optional name of the argument. By default, argument_name is NULL .

argument_type IN VARCHAR2

argument_type specifies the data type of the argument.

default_value

default_value specifies the default value assigned to the argument. default_value will be overridden by a value specified by the job when the
job executes.

out_argument IN BOOLEAN DEFAULT FALSE

out_argument is not currently used; if specified, the value must be FALSE .

ExampleExample

The following code fragment uses the DEFINE_PROGRAM_ARGUMENT procedure to define the first and second arguments in a program named
add_emp :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 583

EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 1,
 argument_name => 'dept_no',
 argument_type => 'INTEGER,
 default_value => '20');
EXEC
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT(
 program_name => 'add_emp',
 argument_position => 2,
 argument_name => 'emp_name',
 argument_type => 'VARCHAR2');

The first argument is an INTEGER value named dept_no that has a default value of 20 . The second argument is a VARCHAR2 value named
emp_name ; the second argument does not have a default value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 584

13.2.15.6 DISABLE

Use the DISABLE procedure to disable a program or a job. The signature of the DISABLE procedure is:

DISABLE(
 <name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

ParametersParameters

name

name specifies the name of the program or job that is being disabled.

force

force is accepted for compatibility, and ignored.

commit_semantics

commit_semantics instructs the server how to handle an error encountered while disabling a program or job. By default, commit_semantics is
set to STOP_ON_FIRST_ERROR , instructing the server to stop when it encounters an error. Any programs or jobs that were successfully disabled prior to
the error will be committed to disk.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility, and ignored.

ExampleExample

The following call to the DISABLE procedure disables a program named update_emp :

DBMS_SCHEDULER.DISABLE('update_emp');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 585

13.2.15.7 DROP_JOB

Use the DROP_JOB procedure to DROP a job, DROP any arguments that belong to the job, and eliminate any future job executions. The signature of the
procedure is:

DROP_JOB(
 <job_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE,
 <defer> IN BOOLEAN DEFAULT FALSE,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

ParametersParameters

job_name

job_name specifies the name of the job that is being dropped.

force

force is accepted for compatibility, and ignored.

defer

defer is accepted for compatibility, and ignored.

commit_semantics

commit_semantics instructs the server how to handle an error encountered while dropping a program or job. By default, commit_semantics is
set to STOP_ON_FIRST_ERROR , instructing the server to stop when it encounters an error.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility, and ignored.

ExampleExample

The following call to DROP_JOB drops a job named update_log :

DBMS_SCHEDULER.DROP_JOB('update_log');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 586

13.2.15.8 DROP_PROGRAM

The DROP_PROGRAM procedure to drop a program. The signature of the DROP_PROGRAM procedure is:

DROP_PROGRAM(
 <program_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE)

ParametersParameters

program_name

program_name specifies the name of the program that is being dropped.

force

force is a BOOLEAN value that instructs the server how to handle programs with dependent jobs.

Specify FALSE to instruct the server to return an error if the program is referenced by a job.

Specify TRUE to instruct the server to disable any jobs that reference the program before dropping the program.

The default value is FALSE .

ExampleExample

The following call to DROP_PROGRAM drops a job named update_emp :

DBMS_SCHEDULER.DROP_PROGRAM('update_emp');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 587

13.2.15.9 DROP_PROGRAM_ARGUMENT

Use the DROP_PROGRAM_ARGUMENT procedure to drop a program argument. The DROP_PROGRAM_ARGUMENT procedure comes in two forms; the first
form uses an argument position to specify which argument to drop:

DROP_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER)

The second form takes the argument name:

DROP_PROGRAM_ARGUMENT(
 <program_name> IN VARCHAR2,
 <argument_name> IN VARCHAR2)

ParametersParameters

program_name

program_name specifies the name of the program that is being modified.

argument_position

argument_position specifies the position of the argument that is being dropped.

argument_name

argument_name specifies the name of the argument that is being dropped.

ExamplesExamples

The following call to DROP_PROGRAM_ARGUMENT drops the first argument in the update_emp program:

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT('update_emp', 1);

The following call to DROP_PROGRAM_ARGUMENT drops an argument named emp_name :

DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT(update_emp', 'emp_name');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 588

13.2.15.10 DROP_SCHEDULE

Use the DROP_SCHEDULE procedure to drop a schedule. The signature is:

DROP_SCHEDULE(
 <schedule_name> IN VARCHAR2,
 <force> IN BOOLEAN DEFAULT FALSE)

ParametersParameters

schedule_name

schedule_name specifies the name of the schedule that is being dropped.

force

force specifies the behavior of the server if the specified schedule is referenced by any job:

Specify FALSE to instruct the server to return an error if the specified schedule is referenced by a job. This is the default behavior.
Specify TRUE to instruct the server to disable to any jobs that use the specified schedule before dropping the schedule. Any running jobs will be
allowed to complete before the schedule is dropped.

ExampleExample

The following call to DROP_SCHEDULE drops a schedule named weeknights_at_5 :

DBMS_SCHEDULER.DROP_SCHEDULE('weeknights_at_5', TRUE);

The server will disable any jobs that use the schedule before dropping the schedule.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 589

13.2.15.11 ENABLE

Use the ENABLE procedure to enable a disabled program or job.

The signature of the ENABLE procedure is:

ENABLE(
 <name> IN VARCHAR2,
 <commit_semantics> IN VARCHAR2 DEFAULT 'STOP_ON_FIRST_ERROR')

ParametersParameters

name

name specifies the name of the program or job that is being enabled.

commit_semantics

commit_semantics instructs the server how to handle an error encountered while enabling a program or job. By default, commit_semantics is
set to STOP_ON_FIRST_ERROR , instructing the server to stop when it encounters an error.

The TRANSACTIONAL and ABSORB_ERRORS keywords are accepted for compatibility, and ignored.

ExampleExample

The following call to DBMS_SCHEDULER.ENABLE enables the update_emp program:

DBMS_SCHEDULER.ENABLE('update_emp');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 590

13.2.15.12 EVALUATE_CALENDAR_STRING

Use the EVALUATE_CALENDAR_STRING procedure to evaluate the repeat_interval value specified when creating a schedule with the
CREATE_SCHEDULE procedure. The EVALUATE_CALENDAR_STRING procedure will return the date and time that a specified schedule will execute

without actually scheduling the job.

The signature of the EVALUATE_CALENDAR_STRING procedure is:

EVALUATE_CALENDAR_STRING(
 <calendar_string> IN VARCHAR2,
 <start_date> IN TIMESTAMP WITH TIME ZONE,
 <return_date_after> IN TIMESTAMP WITH TIME ZONE,
 <next_run_date> OUT TIMESTAMP WITH TIME ZONE)

ParametersParameters

calendar_string

calendar_string is the calendar string that describes a repeat_interval that is being evaluated.

start_date IN TIMESTAMP WITH TIME ZONE

start_date is the date and time after which the repeat_interval will become valid.

return_date_after

Use the return_date_after parameter to specify the date and time that EVALUATE_CALENDAR_STRING should use as a starting date when
evaluating the repeat_interval .

For example, if you specify a return_date_after value of 01-APR-13 09.00.00.000000, EVALUATE_CALENDAR_STRING will return the
date and time of the first iteration of the schedule after April 1st, 2013.

next_run_date OUT TIMESTAMP WITH TIME ZONE

next_run_date is an OUT parameter that will contain the first occurrence of the schedule after the date specified by the return_date_after
parameter.

ExampleExample

The following example evaluates a calendar string and returns the first date and time that the schedule will be executed after June 15, 2013:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 591

DECLARE
 result TIMESTAMP;
BEGIN

 DBMS_SCHEDULER.EVALUATE_CALENDAR_STRING
 (
 'FREQ=DAILY;BYDAY=MON,TUE,WED,THU,FRI;BYHOUR=17;',
 '15-JUN-2013', NULL, result
);

 DBMS_OUTPUT.PUT_LINE('next_run_date: ' || result);
END;
/

next_run_date: 17-JUN-13 05.00.00.000000 PM

June 15, 2013 is a Saturday; the schedule will not execute until Monday, June 17, 2013 at 5:00 pm.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 592

13.2.15.13 RUN_JOB

Use the RUN_JOB procedure to execute a job immediately. The signature of the RUN_JOB procedure is:

RUN_JOB(
 <job_name> IN VARCHAR2,
 <use_current_session> IN BOOLEAN DEFAULT TRUE

ParametersParameters

job_name

job_name specifies the name of the job that will execute.

use_current_session

By default, the job will execute in the current session. If specified, use_current_session must be set to TRUE ; if use_current_session is set
to FALSE , Advanced Server will return an error.

ExampleExample

The following call to RUN_JOB executes a job named update_log :

DBMS_SCHEDULER.RUN_JOB('update_log', TRUE);

Passing a value of TRUE as the second argument instructs the server to invoke the job in the current session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 593

13.2.15.14 SET_JOB_ARGUMENT_VALUE

Use the SET_JOB_ARGUMENT_VALUE procedure to specify a value for an argument. The SET_JOB_ARGUMENT_VALUE procedure comes in two
forms; the first form specifies which argument should be modified by position:

SET_JOB_ARGUMENT_VALUE(
 <job_name> IN VARCHAR2,
 <argument_position> IN PLS_INTEGER,
 <argument_value> IN VARCHAR2)

The second form uses an argument name to specify which argument to modify:

SET_JOB_ARGUMENT_VALUE(
 <job_name> IN VARCHAR2,
 <argument_name> IN VARCHAR2,
 <argument_value> IN VARCHAR2)

Argument values set by the SET_JOB_ARGUMENT_VALUE procedure override any values set by default.

ParametersParameters

job_name

job_name specifies the name of the job to which the modified argument belongs.

argument_position

Use argument_position to specify the argument position for which the value will be set.

argument_name

Use argument_name to specify the argument by name for which the value will be set.

argument_value

argument_value specifies the new value of the argument.

ExamplesExamples

The following example assigns a value of 30 to the first argument in the update_emp job:

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 1, '30');

The following example sets the emp_name argument to SMITH :

DBMS_SCHEDULER.SET_JOB_ARGUMENT_VALUE('update_emp', 'emp_name', 'SMITH');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 594

13.2.16 DBMS_SESSION

Advanced Server provides support for the following DBMS_SESSION.SET_ROLE procedure:

Function/Procedure Return Type Description

SET_ROLE(role_cmd) n/a Executes a SET ROLE statement followed by the string value specified in role_cmd .

Advanced Server's implementation of DBMS_SESSION is a partial implementation when compared to Oracle's version. Only
DBMS_SESSION.SET_ROLE is supported.

SET_ROLE

The SET_ROLE procedure sets the current session user to the role specified in role_cmd . After invoking the SET_ROLE procedure, the current
session will use the permissions assigned to the specified role. The signature of the procedure is:

SET_ROLE(<role_cmd>)

The SET_ROLE procedure appends the value specified for role_cmd to the SET ROLE statement, and then invokes the statement.

ParametersParameters

role_cmd

role_cmd specifies a role name in the form of a string value.

ExampleExample

The following call to the SET_ROLE procedure invokes the SET ROLE command to set the identity of the current session user to manager:

edb=# exec DBMS_SESSION.SET_ROLE('manager');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 595

13.2.17 DBMS_SQL

The DBMS_SQL package provides an application interface compatible with Oracle databases to the EDB dynamic SQL functionality. With DBMS_SQL you
can construct queries and other commands at run time (rather than when you write the application). EDB Advanced Server offers native support for
dynamic SQL; DBMS_SQL provides a way to use dynamic SQL in a fashion compatible with Oracle databases without modifying your application.

DBMS_SQL assumes the privileges of the current user when executing dynamic SQL statements.

Function/Procedure Function or
Procedure

Retur
n Type

Description

BIND_VARIABLE(c, name, value [, out_value_size]) Procedure n/a Bind a value to a variable.

BIND_VARIABLE_CHAR(c, name, value [, out_value_size
])

Procedure n/a Bind a CHAR value to a variable.

BIND_VARIABLE_RAW(c, name, value [, out_value_size]) Procedure n/a Bind a RAW value to a variable.

CLOSE_CURSOR(c IN OUT) Procedure n/a Close a cursor.

COLUMN_VALUE(c, position, value OUT [, column_error
OUT [, actual_length OUT]])

Procedure n/a Return a column value into a variable.

COLUMN_VALUE_CHAR(c, position, value OUT [,
column_error OUT [, actual_length OUT]])

Procedure n/a Return a CHAR column value into a
variable.

COLUMN_VALUE_RAW(c, position, value OUT [,
column_error OUT [, actual_length OUT]])

Procedure n/a Return a RAW column value into a
variable.

COLUMN_VALUE_LONG(c, position, length, offset, value
OUT, value_length OUT

Procedure n/a Return a part of the LONG column value
into a variable.

DEFINE_COLUMN(c, position, column [, column_size]) Procedure n/a Define a column in the SELECT list.

DEFINE_COLUMN_CHAR(c, position, column, column_size) Procedure n/a Define a CHAR column in the SELECT
list.

DEFINE_COLUMN_RAW(c, position, column, column_size) Procedure n/a Define a RAW column in the SELECT list.

DEFINE_COLUMN_LONG(c, position) Procedure n/a Define a LONG column in the SELECT
list.

DESCRIBE_COLUMNS Procedure n/a Defines columns to hold a cursor result set.

EXECUTE(c) Function
INTE
GER

Execute a cursor.

EXECUTE_AND_FETCH(c [, exact]) Function
INTE
GER

Execute a cursor and fetch a single row.

FETCH_ROWS(c) Function
INTE
GER

Fetch rows from the cursor.

IS_OPEN(c) Function
BOOL
EAN

Check if a cursor is open.

LAST_ROW_COUNT Function
INTE
GER

Return cumulative number of rows fetched.

LAST_ERROR_POSITION Function
INTE
GER

Return byte offset in the SQL statement text
where the error occurred.

OPEN_CURSOR Function
INTE
GER

Open a cursor.

PARSE(c, statement, language_flag) Procedure n/a Parse a statement.

Advanced Server's implementation of DBMS_SQL is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 596

The following table lists the public variable available in the DBMS_SQL package.

Public Variables Data Type Value Description

native INTEGER 1 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information.

V6 INTEGER 2 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information.

V7 INTEGER 3 Provided for compatibility with Oracle syntax. See DBMS_SQL.PARSE for more information

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 597

13.2.17.1 BIND_VARIABLE

The BIND_VARIABLE procedure provides the capability to associate a value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE(<c> INTEGER, <name> VARCHAR2,
 <value> { BLOB | CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <out_value_size> INTEGER])

ParametersParameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

ExamplesExamples

The following anonymous block uses bind variables to insert a row into the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 598

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(150) := 'INSERT INTO emp VALUES ' ||
 '(:p_empno, :p_ename, :p_job, :p_mgr, ' ||
 ':p_hiredate, :p_sal, :p_comm, :p_deptno)';
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 v_empno := 9001;
 v_ename := 'JONES';
 v_job := 'SALESMAN';
 v_mgr := 7369;
 v_hiredate := TO_DATE('13-DEC-07','DD-MON-YY');
 v_sal := 8500.00;
 v_comm := 1500.00;
 v_deptno := 40;
 DBMS_SQL.BIND_VARIABLE(curid,':p_empno',v_empno);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',v_ename);
 DBMS_SQL.BIND_VARIABLE(curid,':p_job',v_job);
 DBMS_SQL.BIND_VARIABLE(curid,':p_mgr',v_mgr);
 DBMS_SQL.BIND_VARIABLE(curid,':p_hiredate',v_hiredate);
 DBMS_SQL.BIND_VARIABLE(curid,':p_sal',v_sal);
 DBMS_SQL.BIND_VARIABLE(curid,':p_comm',v_comm);
 DBMS_SQL.BIND_VARIABLE(curid,':p_deptno',v_deptno);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 599

13.2.17.2 BIND_VARIABLE_CHAR

The BIND_VARIABLE_CHAR procedure provides the capability to associate a CHAR value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_CHAR(<c> INTEGER, <name> VARCHAR2, <value> CHAR
 [, <out_value_size> INTEGER])

ParametersParameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type CHAR to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 600

13.2.17.3 BIND_VARIABLE_RAW

The BIND_VARIABLE_RAW procedure provides the capability to associate a RAW value with an IN or IN OUT bind variable in a SQL command.

BIND_VARIABLE_RAW(<c> INTEGER, <name> VARCHAR2, <value> RAW
 [, <out_value_size> INTEGER])

ParametersParameters

c

Cursor ID of the cursor for the SQL command with bind variables.

name

Name of the bind variable in the SQL command.

value

Value of type RAW to be assigned.

out_value_size

If name is an IN OUT variable, defines the maximum length of the output value. If not specified, the length of value is assumed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 601

13.2.17.4 CLOSE_CURSOR

The CLOSE_CURSOR procedure closes an open cursor. The resources allocated to the cursor are released and it can no longer be used.

CLOSE_CURSOR(<c> IN OUT INTEGER)

ParametersParameters

c

Cursor ID of the cursor to be closed.

ExamplesExamples

The following example closes a previously opened cursor:

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 602

13.2.17.5 COLUMN_VALUE

The COLUMN_VALUE procedure defines a variable to receive a value from a cursor.

COLUMN_VALUE(<c> INTEGER, <position> INTEGER, <value> OUT { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

ParametersParameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is position 1.

value

Variable receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

ExamplesExamples

The following example shows the portion of an anonymous block that receives the values from a cursor using the COLUMN_VALUE procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 603

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 .
 .
 .
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 604

13.2.17.6 COLUMN_VALUE_CHAR

The COLUMN_VALUE_CHAR procedure defines a variable to receive a CHAR value from a cursor.

COLUMN_VALUE_CHAR(<c> INTEGER, <position> INTEGER, <value> OUT CHAR
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

ParametersParameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is position 1.

value

Variable of data type CHAR receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 605

13.2.17.7 COLUMN_VALUE_RAW

The COLUMN_VALUE_RAW procedure defines a variable to receive a RAW value from a cursor.

COLUMN_VALUE_RAW(<c> INTEGER, <position> INTEGER, <value> OUT RAW
 [, <column_error> OUT NUMBER [, <actual_length> OUT INTEGER]])

ParametersParameters

c

Cursor id of the cursor returning data to the variable being defined.

position

Position within the cursor of the returned data. The first value in the cursor is position 1.

value

Variable of data type RAW receiving the data returned in the cursor by a prior fetch call.

column_error

Error number associated with the column, if any.

actual_length

Actual length of the data prior to any truncation.

COLUMN_VALUE_LONG

The COLUMN_VALUE_LONG procedure returns a part of the value of a LONG column.

COLUMN_VALUE_LONG(<c> INTEGER, <position> INTEGER, <length> INTEGER,
<offset> INTEGER, <value> OUT VARCHAR2, <value_length> OUT INTEGER)

ParametersParameters

c

Cursor id of the cursor from which to get a value.

position

Position of the column of which to get a value.

length

Number of bytes of the long value to fetch.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 606

offset

Offset into the long field for start of fetch.

value

Value of the column.

value_length

Number of bytes returned in value.

To refer example, see DEFINE_COLUMN_LONG.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 607

13.2.17.8 DEFINE_COLUMN

The DEFINE_COLUMN procedure defines a column or expression in the SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN(<c> INTEGER, <position> INTEGER, <column> { BLOB |
 CLOB | DATE | FLOAT | INTEGER | NUMBER | TIMESTAMP | VARCHAR2 }
 [, <column_size> INTEGER])

ParametersParameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A variable that is of the same data type as the column or expression in position position of the SELECT list.

column_size

The maximum length of the returned data. column_size must be specified only if column is VARCHAR2 . Returned data exceeding column_size
is truncated to column_size characters.

ExamplesExamples

The following shows how the empno, ename, hiredate, sal , and comm columns of the emp table are defined with the DEFINE_COLUMN
procedure.

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);
 .
 .
 .
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 608

The following shows an alternative to the prior example that produces the exact same results. Note that the lengths of the data types are irrelevant – the
empno, sal , and comm columns will still return data equivalent to NUMBER(4) and NUMBER(7,2) , respectively, even though v_num is defined

as NUMBER(1) (assuming the declarations in the COLUMN_VALUE procedure are of the appropriate maximum sizes). The ename column will return
data up to ten characters in length as defined by the length parameter in the DEFINE_COLUMN call, not by the data type declaration, VARCHAR2(1)
declared for v_varchar . The actual size of the returned data is dictated by the COLUMN_VALUE procedure.

DECLARE
 curid INTEGER;
 v_num NUMBER(1);
 v_varchar VARCHAR2(1);
 v_date DATE;
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_varchar,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_date);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_num);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_num);
 .
 .
 .
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 609

13.2.17.9 DEFINE_COLUMN_CHAR

The DEFINE_COLUMN_CHAR procedure defines a CHAR column or expression in the SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_CHAR(<c> INTEGER, <position> INTEGER, <column>
CHAR, <column_size> INTEGER)

ParametersParameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A CHAR variable.

column_size

The maximum length of the returned data. Returned data exceeding column_size is truncated to column_size characters.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 610

13.2.17.10 DEFINE_COLUMN_RAW

The DEFINE_COLUMN_RAW procedure defines a RAW column or expression in the SELECT list that is to be returned and retrieved in a cursor.

DEFINE_COLUMN_RAW(<c> INTEGER, <position> INTEGER, <column> RAW,
 <column_size> INTEGER)

ParametersParameters

c

Cursor id of the cursor associated with the SELECT command.

position

Position of the column or expression in the SELECT list that is being defined.

column

A RAW variable.

column_size

The maximum length of the returned data. Returned data exceeding column_size is truncated to column_size characters.

DEFINE_COLUMN_LONG

The DEFINE_COLUMN_LONG procedure defines a long column for a SELECT cursor.

DEFINE_COLUMN_LONG(<c> INTEGER, <position> INTEGER)

ParametersParameters

c

Cursor id of the cursor for a row defined to be selected.

position

Position of the column in a row that is being defined.

ExamplesExamples

The following example shows an anonymous block that defines a long column in the SELECT list using DEFINE_COLUMN_LONG procedure and returns
a part of the LONG column value into a variable using procedure COLUMN_VALUE_LONG .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 611

DECLARE
 curid INTEGER;
 v_ename VARCHAR(20);
 sql_stmt VARCHAR2(50) := 'SELECT ename ' || ' FROM emp WHERE empno
 = 7844';
 v_status INTEGER;
 v_length INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN_LONG(curid, 1);
 v_status := DBMS_SQL.EXECUTE(curid);
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 DBMS_SQL.COLUMN_VALUE_LONG(curid, 1, 7, 0, v_ename, v_length);
 DBMS_OUTPUT.PUT_LINE('ename: ' || v_ename || ' & length: ' || v_length);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

ename: TURNER & length: 6

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 612

13.2.17.11 DESCRIBE_COLUMNS

The DESCRIBE_COLUMNS procedure describes the columns returned by a cursor.

DESCRIBE_COLUMNS(<c> INTEGER, <col_cnt> OUT INTEGER, <desc_t> OUT
 DESC_TAB);

ParametersParameters

c

The cursor ID of the cursor.

col_cnt

The number of columns in cursor result set.

desc_tab

The table that contains a description of each column returned by the cursor. The descriptions are of type DESC_REC , and contain the following values:

Column Name Type

col_type INTEGER

col_max_len INTEGER

col_name VARCHAR2(128)

col_name_len INTEGER

col_schema_name VARCHAR2(128)

col_schema_name_len INTEGER

col_precision INTEGER

col_scale INTEGER

col_charsetid INTEGER

col_charsetform INTEGER

col_null_ok BOOLEAN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 613

13.2.17.12 EXECUTE

The EXECUTE function executes a parsed SQL command or SPL block.

<status> INTEGER EXECUTE(<c> INTEGER)

ParametersParameters

c

Cursor ID of the parsed SQL command or SPL block to be executed.

status

Number of rows processed if the SQL command was DELETE, INSERT , or UPDATE . status is meaningless for all other commands.

ExamplesExamples

The following anonymous block inserts a row into the dept table.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO dept VALUES (50, ''HR'', ''LOS ANGELES'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 614

13.2.17.13 EXECUTE_AND_FETCH

Function EXECUTE_AND_FETCH executes a parsed SELECT command and fetches one row.

<status> INTEGER EXECUTE_AND_FETCH(<c> INTEGER [, <exact> BOOLEAN])

ParametersParameters

c

Cursor id of the cursor for the SELECT command to be executed.

exact

If set to TRUE , an exception is thrown if the number of rows in the result set is not exactly equal to 1. If set to FALSE , no exception is thrown. The
default is FALSE . A NO_DATA_FOUND exception is thrown if exact is TRUE and there are no rows in the result set. A TOO_MANY_ROWS exception
is thrown if exact is TRUE and there is more than one row in the result set.

status

Returns 1 if a row was successfully fetched, 0 if no rows to fetch. If an exception is thrown, no value is returned.

ExamplesExamples

The following stored procedure uses the EXECUTE_AND_FETCH function to retrieve one employee using the employee’s name. An exception will be
thrown if the employee is not found, or there is more than one employee with the same name.

CREATE OR REPLACE PROCEDURE select_by_name(
 p_ename emp.ename%TYPE
)
IS
 curid INTEGER;
 v_empno emp.empno%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR2(10);
 v_sql VARCHAR2(120) := 'SELECT empno, hiredate, sal, ' ||
 'NVL(comm, 0), dname ' ||
 'FROM emp e, dept d ' ||
 'WHERE ename = :p_ename ' ||
 'AND e.deptno = d.deptno';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.BIND_VARIABLE(curid,':p_ename',UPPER(p_ename));
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_comm);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_dname,14);
 v_status := DBMS_SQL.EXECUTE_AND_FETCH(curid,TRUE);
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_hiredate);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 615

 DBMS_SQL.COLUMN_VALUE(curid,3,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_comm);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_dname);
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 DBMS_OUTPUT.PUT_LINE('Number : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || UPPER(p_ename));
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_disp_date);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission: ' || v_comm);
 DBMS_OUTPUT.PUT_LINE('Department: ' || v_dname);
 DBMS_SQL.CLOSE_CURSOR(curid);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_ename || ' not found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('Too many employees named, ' ||
 p_ename || ', found');
 DBMS_SQL.CLOSE_CURSOR(curid);
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EXEC select_by_name('MARTIN')

Number : 7654
Name : MARTIN
Hire Date : 09/28/1981
Salary : 1250
Commission: 1400
Department: SALES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 616

13.2.17.14 FETCH_ROWS

The FETCH_ROWS function retrieves a row from a cursor.

<status> INTEGER FETCH_ROWS(<c> INTEGER)

ParametersParameters

c

Cursor ID of the cursor from which to fetch a row.

status

Returns 1 if a row was successfully fetched, 0 if no more rows to fetch.

ExamplesExamples

The following examples fetches the rows from the emp table and displays the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 617

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 618

13.2.17.15 IS_OPEN

The IS_OPEN function provides the capability to test if the given cursor is open.

<status> BOOLEAN IS_OPEN(<c> INTEGER)

ParametersParameters

c

Cursor ID of the cursor to be tested.

status

Set to TRUE if the cursor is open, set to FALSE if the cursor is not open.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 619

13.2.17.16 LAST_ROW_COUNT

The LAST_ROW_COUNT function returns the number of rows that have been currently fetched.

<rowcnt> INTEGER LAST_ROW_COUNT

ParametersParameters

rowcnt

Number of row fetched thus far.

ExamplesExamples

The following example uses the LAST_ROW_COUNT function to display the total number of rows fetched in the query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 620

DECLARE
 curid INTEGER;
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_sql VARCHAR2(50) := 'SELECT empno, ename, hiredate, sal, ' ||
 'comm FROM emp';
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid,v_sql,DBMS_SQL.native);
 DBMS_SQL.DEFINE_COLUMN(curid,1,v_empno);
 DBMS_SQL.DEFINE_COLUMN(curid,2,v_ename,10);
 DBMS_SQL.DEFINE_COLUMN(curid,3,v_hiredate);
 DBMS_SQL.DEFINE_COLUMN(curid,4,v_sal);
 DBMS_SQL.DEFINE_COLUMN(curid,5,v_comm);

 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME HIREDATE SAL COMM');
 DBMS_OUTPUT.PUT_LINE('----- ---------- ---------- -------- ' ||
 '--------');
 LOOP
 v_status := DBMS_SQL.FETCH_ROWS(curid);
 EXIT WHEN v_status = 0;
 DBMS_SQL.COLUMN_VALUE(curid,1,v_empno);
 DBMS_SQL.COLUMN_VALUE(curid,2,v_ename);
 DBMS_SQL.COLUMN_VALUE(curid,3,v_hiredate);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,4,v_sal);
 DBMS_SQL.COLUMN_VALUE(curid,5,v_comm);
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename,10) || ' ' ||
 TO_CHAR(v_hiredate,'yyyy-mm-dd') || ' ' ||
 TO_CHAR(v_sal,'9,999.99') || ' ' ||
 TO_CHAR(NVL(v_comm,0),'9,999.99'));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Number of rows: ' || DBMS_SQL.LAST_ROW_COUNT);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EMPNO ENAME HIREDATE SAL COMM
----- ---------- ---------- -------- --------
7369 SMITH 1980-12-17 800.00 .00
7499 ALLEN 1981-02-20 1,600.00 300.00
7521 WARD 1981-02-22 1,250.00 500.00
7566 JONES 1981-04-02 2,975.00 .00
7654 MARTIN 1981-09-28 1,250.00 1,400.00
7698 BLAKE 1981-05-01 2,850.00 .00
7782 CLARK 1981-06-09 2,450.00 .00
7788 SCOTT 1987-04-19 3,000.00 .00
7839 KING 1981-11-17 5,000.00 .00
7844 TURNER 1981-09-08 1,500.00 .00
7876 ADAMS 1987-05-23 1,100.00 .00
7900 JAMES 1981-12-03 950.00 .00
7902 FORD 1981-12-03 3,000.00 .00
7934 MILLER 1982-01-23 1,300.00 .00
Number of rows: 14

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 621

LAST_ERROR_POSITION

The LAST_ERROR_POSITION function returns an INTEGER value indicating the byte offset in the SQL statement text where the error occurred. The
error position of the first character in the SQL statement is at 1 .

LAST_ERROR_POSITION RETURN INTEGER;

ExamplesExamples

The following example demonstrates an anonymous block that returns an error position with the LAST_ERROR_POSITION function.

DECLARE
 curid INTEGER;
 sql_stmt VARCHAR2(50) := 'SELECT empno FROM not_exist_table';
 v_position INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, sql_stmt, DBMS_SQL.native);
EXCEPTION WHEN OTHERS THEN
 v_position := DBMS_SQL.LAST_ERROR_POSITION;
 DBMS_OUTPUT.PUT_LINE('error position = ' || v_position);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

error position = 19

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 622

13.2.17.17 OPEN_CURSOR

The OPEN_CURSOR function creates a new cursor. A cursor must be used to parse and execute any dynamic SQL statement. Once a cursor has been
opened, it can be re-used with the same or different SQL statements. The cursor does not have to be closed and re-opened in order to be re-used.

<c> INTEGER OPEN_CURSOR

ParametersParameters

c

Cursor ID number associated with the newly created cursor.

ExamplesExamples

The following example creates a new cursor:

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 .
 .
 .
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 623

13.2.17.18 PARSE

The PARSE procedure parses a SQL command or SPL block. If the SQL command is a DDL command, it is immediately executed and does not require
running the EXECUTE function.

PARSE(<c> INTEGER, <statement> VARCHAR2, <language_flag> INTEGER)

ParametersParameters

c

Cursor ID of an open cursor.

statement

SQL command or SPL block to be parsed. A SQL command must not end with the semi-colon terminator, however an SPL block does require the semi-colon
terminator.

language_flag

Language flag provided for compatibility with Oracle syntax. Use DBMS_SQL.V6, DBMS_SQL.V7 or DBMS_SQL.native . This flag is ignored, and all
syntax is assumed to be in EDB Advanced Server form.

ExamplesExamples

The following anonymous block creates a table named, job . Note that DDL statements are executed immediately by the PARSE procedure and do not
require a separate EXECUTE step.

DECLARE
 curid INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 DBMS_SQL.PARSE(curid, 'CREATE TABLE job (jobno NUMBER(3), ' ||
 'jname VARCHAR2(9))',DBMS_SQL.native);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

The following inserts two rows into the job table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 624

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(50);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_OUTPUT.PUT_LINE('Number of rows processed: ' || v_status);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

Number of rows processed: 1
Number of rows processed: 1

The following anonymous block uses the DBMS_SQL package to execute a block containing two INSERT statements. Note that the end of the block
contains a terminating semi-colon, while in the prior example, each individual INSERT statement does not have a terminating semi-colon.

DECLARE
 curid INTEGER;
 v_sql VARCHAR2(100);
 v_status INTEGER;
BEGIN
 curid := DBMS_SQL.OPEN_CURSOR;
 v_sql := 'BEGIN ' ||
 'INSERT INTO job VALUES (300, ''MANAGER''); ' ||
 'INSERT INTO job VALUES (400, ''SALESMAN''); ' ||
 'END;';
 DBMS_SQL.PARSE(curid, v_sql, DBMS_SQL.native);
 v_status := DBMS_SQL.EXECUTE(curid);
 DBMS_SQL.CLOSE_CURSOR(curid);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 625

13.2.18 DBMS_UTILITY

The DBMS_UTILITY package provides support for the following various utility programs:

Function/Procedure
Function
or
Procedure

Return
Type Description

ANALYZE_DATABASE(method [, estimate_rows [,
estimate_percent [, method_opt]]])

Procedure n/a Analyze database tables.

ANALYZE_PART_OBJECT(schema, object_name [, object_type [,
command_type [, command_opt [, sample_clause]]]])

Procedure n/a Analyze a partitioned table.

ANALYZE_SCHEMA(schema, method [, estimate_rows [,
estimate_percent [, method_opt]]])

Procedure n/a Analyze schema tables.

CANONICALIZE(name, canon_name OUT, canon_len) Procedure n/a Canonicalizes a string – e.g.,
strips off white space.

COMMA_TO_TABLE(list, tablen OUT, tab OUT) Procedure n/a Convert a comma-delimited list
of names to a table of names.

DB_VERSION(version OUT, compatibility OUT) Procedure n/a Get the database version.

EXEC_DDL_STATEMENT (parse_string) Procedure n/a Execute a DDL statement.

FORMAT_CALL_STACK Function TEXT Formats the current call stack.

GET_CPU_TIME Function NUMBER Get the current CPU time.

GET_DEPENDENCY(type, schema, name) Procedure n/a Get objects that are dependent
upon the given object..

GET_HASH_VALUE(name, base, hash_size) Function NUMBER Compute a hash value.

GET_PARAMETER_VALUE(parnam, intval OUT, strval OUT) Procedure
BINARY
_INTEGE
R

Get database initialization
parameter settings.

GET_TIME Function NUMBER Get the current time.

NAME_TOKENIZE(name, a OUT, b OUT, c OUT, dblink OUT,
nextpos OUT)

Procedure n/a Parse the given name into its
component parts.

TABLE_TO_COMMA(tab, tablen OUT, list OUT) Procedure n/a Convert a table of names to a
comma-delimited list.

Advanced Server's implementation of DBMS_UTILITY is a partial implementation when compared to Oracle's version. Only those functions and
procedures listed in the table above are supported.

The following table lists the public variables available in the DBMS_UTILITY package.

Public Variables Data Type Value Description

inv_error_on_restrictions PLS_INTEGER 1 Used by the INVALIDATE procedure.

lname_array TABLE For lists of long names.

uncl_array TABLE For lists of users and names.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 626

LNAME_ARRAY

The LNAME_ARRAY is for storing lists of long names including fully-qualified names.

TYPE lname_array IS TABLE OF VARCHAR2(4000) INDEX BY BINARY_INTEGER;

UNCL_ARRAY

The UNCL_ARRAY is for storing lists of users and names.

TYPE uncl_array IS TABLE OF VARCHAR2(227) INDEX BY BINARY_INTEGER;

ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT

The ANALYZE_DATABASE(), ANALYZE_SCHEMA() and ANALYZE_PART_OBJECT() procedures provide the capability to gather statistics on
tables in the database. When you execute the ANALYZE statement, Postgres samples the data in a table and records distribution statistics in the
pg_statistics system table.

ANALYZE_DATABASE, ANALYZE_SCHEMA , and ANALYZE_PART_OBJECT differ primarily in the number of tables that are processed:

ANALYZE_DATABASE analyzes all tables in all schemas within the current database.
ANALYZE_SCHEMA analyzes all tables in a given schema (within the current database).
ANALYZE_PART_OBJECT analyzes a single table.

The syntax for the ANALYZE commands are:

ANALYZE_DATABASE(<method> VARCHAR2 [, <estimate_rows> NUMBER
 [, <estimate_percent> NUMBER [, <method_opt> VARCHAR2]]])

ANALYZE_SCHEMA(<schema> VARCHAR2, <method> VARCHAR2
 [, <estimate_rows> NUMBER [, <estimate_percent> NUMBER
 [, <method_opt> VARCHAR2]]])

ANALYZE_PART_OBJECT(<schema> VARCHAR2, <object_name> VARCHAR2
 [, <object_type> CHAR [, <command_type> CHAR
 [, <command_opt> VARCHAR2 [, <sample_clause>]]]])

ParametersParameters - ANALYZE_DATABASE and ANALYZE_SCHEMA

method

method determines whether the ANALYZE procedure populates the pg_statistics table or removes entries from the pg_statistics table. If
you specify a method of DELETE , the ANALYZE procedure removes the relevant rows from pg_statistics . If you specify a method of COMPUTE or
ESTIMATE , the ANALYZE procedure analyzes a table (or multiple tables) and records the distribution information in pg_statistics . There is no

difference between COMPUTE and ESTIMATE ; both methods execute the Postgres ANALYZE statement. All other parameters are validated and then
ignored.

estimate_rows

Number of rows upon which to base estimated statistics. One of estimate_rows or estimate_percent must be specified if method is

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 627

Number of rows upon which to base estimated statistics. One of estimate_rows or estimate_percent must be specified if method is
ESTIMATE .

This argument is ignored, but is included for compatibility.

estimate_percent

Percentage of rows upon which to base estimated statistics. One of estimate_rows or estimate_percent must be specified if method is
ESTIMATE .

This argument is ignored, but is included for compatibility.

method_opt

Object types to be analyzed. Any combination of the following:

[FOR TABLE]

[FOR ALL [INDEXED] COLUMNS] [SIZE n]

[FOR ALL INDEXES]

This argument is ignored, but is included for compatibility.

ParametersParameters - ANALYZE_PART_OBJECT

schema

Name of the schema whose objects are to be analyzed.

object_name

Name of the partitioned object to be analyzed.

object_type

Type of object to be analyzed. Valid values are: T – table, I – index.

This argument is ignored, but is included for compatibility.

command_type

Type of analyze functionality to perform. Valid values are: E - gather estimated statistics based upon on a specified number of rows or a percentage of
rows in the sample_clause clause; C - compute exact statistics; or V – validate the structure and integrity of the partitions.

This argument is ignored, but is included for compatibility.

command_opt

For command_type C or E , can be any combination of:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 628

[FOR TABLE]

[FOR ALL COLUMNS]

[FOR ALL LOCAL INDEXES]

For command_type V , can be CASCADE if object_type is T .

This argument is ignored, but is included for compatibility.

sample_clause

If command_type is E , contains the following clause to specify the number of rows or percentage or rows on which to base the estimate.

SAMPLE n { ROWS | PERCENT }

This argument is ignored, but is included for compatibility.

CANONICALIZE

The CANONICALIZE procedure performs the following operations on an input string:

If the string is not double-quoted, verifies that it uses the characters of a legal identifier. If not, an exception is thrown. If the string is double-quoted,
all characters are allowed.
If the string is not double-quoted and does not contain periods, uppercases all alphabetic characters and eliminates leading and trailing spaces.
If the string is double-quoted and does not contain periods, strips off the double quotes.
If the string contains periods and no portion of the string is double-quoted, uppercases each portion of the string and encloses each portion in
double quotes.
If the string contains periods and portions of the string are double-quoted, returns the double-quoted portions unchanged including the double
quotes and returns the non-double-quoted portions uppercased and enclosed in double quotes.

CANONICALIZE(<name> VARCHAR2, <canon_name> OUT VARCHAR2,
 <canon_len> BINARY_INTEGER)

ParametersParameters

name

String to be canonicalized.

canon_name

The canonicalized string.

canon_len

Number of bytes in name to canonicalize starting from the first character.

ExamplesExamples

The following procedure applies the CANONICALIZE procedure on its input parameter and displays the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 629

CREATE OR REPLACE PROCEDURE canonicalize (
 p_name VARCHAR2,
 p_length BINARY_INTEGER DEFAULT 30
)
IS
 v_canon VARCHAR2(100);
BEGIN
 DBMS_UTILITY.CANONICALIZE(p_name,v_canon,p_length);
 DBMS_OUTPUT.PUT_LINE('Canonicalized name ==>' || v_canon || '<==');
 DBMS_OUTPUT.PUT_LINE('Length: ' || LENGTH(v_canon));
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

EXEC canonicalize('Identifier')
Canonicalized name ==>IDENTIFIER<==
Length: 10

EXEC canonicalize('"Identifier"')
Canonicalized name ==>Identifier<==
Length: 10

EXEC canonicalize('"_+142%"')
Canonicalized name ==>_+142%<==
Length: 6

EXEC canonicalize('abc.def.ghi')
Canonicalized name ==>"ABC"."DEF"."GHI"<==
Length: 17

EXEC canonicalize('"abc.def.ghi"')
Canonicalized name ==>abc.def.ghi<==
Length: 11

EXEC canonicalize('"abc".def."ghi"')
Canonicalized name ==>"abc"."DEF"."ghi"<==
Length: 17

EXEC canonicalize('"abc.def".ghi')
Canonicalized name ==>"abc.def"."GHI"<==
Length: 15

COMMA_TO_TABLE

The COMMA_TO_TABLE procedure converts a comma-delimited list of names into a table of names. Each entry in the list becomes a table entry. The
names must be formatted as valid identifiers.

COMMA_TO_TABLE(<list> VARCHAR2, <tablen> OUT BINARY_INTEGER,
 <tab> OUT { LNAME_ARRAY | UNCL_ARRAY })

ParametersParameters

list

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 630

Comma-delimited list of names.

tablen

Number of entries in tab .

tab

Table containing the individual names in list .

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY (as described in the LNAME_ARRAY section).

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY (as described in the UNCL_ARRAY section).

ExamplesExamples

The following procedure uses the COMMA_TO_TABLE procedure to convert a list of names to a table. The table entries are then displayed.

CREATE OR REPLACE PROCEDURE comma_to_table (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
END;

EXEC comma_to_table('edb.dept, edb.emp, edb.jobhist')

edb.dept
edb.emp
edb.jobhist

DB_VERSION

The DB_VERSION procedure returns the version number of the database.

DB_VERSION(<version> OUT VARCHAR2, <compatibility> OUT VARCHAR2)

ParametersParameters

version

Database version number.

compatibility

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 631

compatibility

Compatibility setting of the database. (To be implementation-defined as to its meaning.)

ExamplesExamples

The following anonymous block displays the database version information.

DECLARE
 v_version VARCHAR2(150);
 v_compat VARCHAR2(150);
BEGIN
 DBMS_UTILITY.DB_VERSION(v_version,v_compat);
 DBMS_OUTPUT.PUT_LINE('Version: ' || v_version);
 DBMS_OUTPUT.PUT_LINE('Compatibility: ' || v_compat);
END;

Version: EnterpriseDB 13.0.0 on i686-pc-linux-gnu, compiled by GCC gcc
(GCC) 4.1.2 20080704 (Red Hat 4.1.2-48), 32-bit
Compatibility: EnterpriseDB 13.0.0 on i686-pc-linux-gnu, compiled by GCC
gcc (GCC) 4.1.220080704 (Red Hat 4.1.2-48), 32-bit

EXEC_DDL_STATEMENT

The EXEC_DDL_STATEMENT provides the capability to execute a DDL command.

EXEC_DDL_STATEMENT(<parse_string> VARCHAR2)

ParametersParameters

parse_string

The DDL command to be executed.

ExamplesExamples

The following anonymous block creates the job table.

BEGIN
 DBMS_UTILITY.EXEC_DDL_STATEMENT(
 'CREATE TABLE job (' ||
 'jobno NUMBER(3),' ||
 'jname VARCHAR2(9))'
);
END;

If the parse_string does not include a valid DDL statement, Advanced Server returns the following error:

edb=# exec dbms_utility.exec_ddl_statement('select rownum from dual');
ERROR: EDB-20001: 'parse_string' must be a valid DDL statement

In this case, Advanced Server's behavior differs from Oracle's; Oracle accepts the invalid parse_string without complaint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 632

FORMAT_CALL_STACK

The FORMAT_CALL_STACK function returns the formatted contents of the current call stack.

DBMS_UTILITY.FORMAT_CALL_STACK
return VARCHAR2

This function can be used in a stored procedure, function or package to return the current call stack in a readable format. This function is useful for
debugging purposes.

GET_CPU_TIME

The GET_CPU_TIME function returns the CPU time in hundredths of a second from some arbitrary point in time.

<cputime> NUMBER GET_CPU_TIME

ParametersParameters

cputime

Number of hundredths of a second of CPU time.

ExamplesExamples

The following SELECT command retrieves the current CPU time, which is 603 hundredths of a second or .0603 seconds.

SELECT DBMS_UTILITY.GET_CPU_TIME FROM DUAL;

get_cpu_time

 603

GET_DEPENDENCY

The GET_DEPENDENCY procedure provides the capability to list the objects that are dependent upon the specified object. GET_DEPENDENCY does not
show dependencies for functions or procedures.

GET_DEPENDENCY(<type> VARCHAR2, <schema> VARCHAR2,
 <name> VARCHAR2)

ParametersParameters

type

The object type of name . Valid values are INDEX, PACKAGE, PACKAGE BODY, SEQUENCE, TABLE, TRIGGER, TYPE and VIEW .

schema

Name of the schema in which name exists.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 633

Name of the schema in which name exists.

name

Name of the object for which dependencies are to be obtained.

ExamplesExamples

The following anonymous block finds dependencies on the EMP table.

BEGIN
 DBMS_UTILITY.GET_DEPENDENCY('TABLE','public','EMP');
END;

DEPENDENCIES ON public.EMP
--
*TABLE public.EMP()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.emp()
* CONSTRAINT p public.emp()
* TYPE public.emp()
* CONSTRAINT c public.emp()
* CONSTRAINT f public.jobhist()
* VIEW .empname_view()

GET_HASH_VALUE

The GET_HASH_VALUE function provides the capability to compute a hash value for a given string.

<hash> NUMBER GET_HASH_VALUE(<name> VARCHAR2, <base> NUMBER,
 <hash_size> NUMBER)

ParametersParameters

name

The string for which a hash value is to be computed.

base

Starting value at which hash values are to be generated.

hash_size

The number of hash values for the desired hash table.

hash

The generated hash value.

ExamplesExamples

The following anonymous block creates a table of hash values using the ename column of the emp table and then displays the key along with the hash

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 634

The following anonymous block creates a table of hash values using the ename column of the emp table and then displays the key along with the hash
value. The hash values start at 100 with a maximum of 1024 distinct values.

DECLARE
 v_hash NUMBER;
 TYPE hash_tab IS TABLE OF NUMBER INDEX BY VARCHAR2(10);
 r_hash HASH_TAB;
 CURSOR emp_cur IS SELECT ename FROM emp;
BEGIN
 FOR r_emp IN emp_cur LOOP
 r_hash(r_emp.ename) :=
 DBMS_UTILITY.GET_HASH_VALUE(r_emp.ename,100,1024);
 END LOOP;
 FOR r_emp IN emp_cur LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(r_emp.ename,10) || ' ' ||
 r_hash(r_emp.ename));
 END LOOP;
END;

SMITH 377
ALLEN 740
WARD 718
JONES 131
MARTIN 176
BLAKE 568
CLARK 621
SCOTT 1097
KING 235
TURNER 850
ADAMS 156
JAMES 942
FORD 775
MILLER 148

GET_PARAMETER_VALUE

The GET_PARAMETER_VALUE procedure provides the capability to retrieve database initialization parameter settings.

<status> BINARY_INTEGER GET_PARAMETER_VALUE(<parnam> VARCHAR2,
 <intval> OUT INTEGER, <strval> OUT VARCHAR2)

ParametersParameters

parnam

Name of the parameter whose value is to be returned. The parameters are listed in the pg_settings system view.

intval

Value of an integer parameter or the length of strval .

strval

Value of a string parameter.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 635

status

Returns 0 if the parameter value is INTEGER or BOOLEAN . Returns 1 if the parameter value is a string.

ExamplesExamples

The following anonymous block shows the values of two initialization parameters.

DECLARE
 v_intval INTEGER;
 v_strval VARCHAR2(80);
BEGIN
 DBMS_UTILITY.GET_PARAMETER_VALUE('max_fsm_pages', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('max_fsm_pages' || ': ' || v_intval);
 DBMS_UTILITY.GET_PARAMETER_VALUE('client_encoding', v_intval, v_strval);
 DBMS_OUTPUT.PUT_LINE('client_encoding' || ': ' || v_strval);
END;

max_fsm_pages: 72625
client_encoding: SQL_ASCII

GET_TIME

The GET_TIME function provides the capability to return the current time in hundredths of a second.

<time> NUMBER GET_TIME

ParametersParameters

time

Number of hundredths of a second from the time in which the program is started.

ExamplesExamples

The following example shows calls to the GET_TIME function.

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1555860

SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 get_time

 1556037

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 636

NAME_TOKENIZE

The NAME_TOKENIZE procedure parses a name into its component parts. Names without double quotes are uppercased. The double quotes are stripped
from names with double quotes.

NAME_TOKENIZE(<name> VARCHAR2, <a> OUT VARCHAR2,
 OUT VARCHAR2, <c> OUT VARCHAR2, <dblink> OUT VARCHAR2,
 <nextpos> OUT BINARY_INTEGER)

ParametersParameters

name

String containing a name in the following format:

a[.b[.c]][@dblink]

a

Returns the leftmost component.

b

Returns the second component, if any.

c

Returns the third component, if any.

dblink

Returns the database link name.

nextpos

Position of the last character parsed in name.

ExamplesExamples

The following stored procedure is used to display the returned parameter values of the NAME_TOKENIZE procedure for various names.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 637

CREATE OR REPLACE PROCEDURE name_tokenize (
 p_name VARCHAR2
)
IS
 v_a VARCHAR2(30);
 v_b VARCHAR2(30);
 v_c VARCHAR2(30);
 v_dblink VARCHAR2(30);
 v_nextpos BINARY_INTEGER;
BEGIN
 DBMS_UTILITY.NAME_TOKENIZE(p_name,v_a,v_b,v_c,v_dblink,v_nextpos);
 DBMS_OUTPUT.PUT_LINE('name : ' || p_name);
 DBMS_OUTPUT.PUT_LINE('a : ' || v_a);
 DBMS_OUTPUT.PUT_LINE('b : ' || v_b);
 DBMS_OUTPUT.PUT_LINE('c : ' || v_c);
 DBMS_OUTPUT.PUT_LINE('dblink : ' || v_dblink);
 DBMS_OUTPUT.PUT_LINE('nextpos: ' || v_nextpos);
END;

Tokenize the name, emp :

BEGIN
 name_tokenize('emp');
END;

name : emp
a : EMP
b :
c :
dblink :
nextpos: 3

Tokenize the name, edb.list_emp :

BEGIN
 name_tokenize('edb.list_emp');
END;

name : edb.list_emp
a : EDB
b : LIST_EMP
c :
dblink :
nextpos: 12

Tokenize the name, "edb"."Emp_Admin".update_emp_sal :

BEGIN
 name_tokenize('"edb"."Emp_Admin".update_emp_sal');
END;

name : "edb"."Emp_Admin".update_emp_sal
a : edb
b : Emp_Admin
c : UPDATE_EMP_SAL
dblink :
nextpos: 32

Tokenize the name edb.emp@edb_dblink :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 638

Tokenize the name edb.emp@edb_dblink :

BEGIN
 name_tokenize('edb.emp@edb_dblink');
END;

name : edb.emp@edb_dblink
a : EDB
b : EMP
c :
dblink : EDB_DBLINK
nextpos: 18

TABLE_TO_COMMA

The TABLE_TO_COMMA procedure converts table of names into a comma-delimited list of names. Each table entry becomes a list entry. The names must
be formatted as valid identifiers.

TABLE_TO_COMMA(<tab> { LNAME_ARRAY | UNCL_ARRAY },
 <tablen> OUT BINARY_INTEGER, <list> OUT VARCHAR2)

ParametersParameters

tab

Table containing names.

LNAME_ARRAY

A DBMS_UTILITY LNAME_ARRAY (as described in the LNAME ARRAY section).

UNCL_ARRAY

A DBMS_UTILITY UNCL_ARRAY (as described the UNCL_ARRAY section).

tablen

Number of entries in list .

list

Comma-delimited list of names from tab .

ExamplesExamples

The following example first uses the COMMA_TO_TABLE procedure to convert a comma-delimited list to a table. The TABLE_TO_COMMA procedure then
converts the table back to a comma-delimited list that is displayed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 639

CREATE OR REPLACE PROCEDURE table_to_comma (
 p_list VARCHAR2
)
IS
 r_lname DBMS_UTILITY.LNAME_ARRAY;
 v_length BINARY_INTEGER;
 v_listlen BINARY_INTEGER;
 v_list VARCHAR2(80);
BEGIN
 DBMS_UTILITY.COMMA_TO_TABLE(p_list,v_length,r_lname);
 DBMS_OUTPUT.PUT_LINE('Table Entries');
 DBMS_OUTPUT.PUT_LINE('-------------');
 FOR i IN 1..v_length LOOP
 DBMS_OUTPUT.PUT_LINE(r_lname(i));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('-------------');
 DBMS_UTILITY.TABLE_TO_COMMA(r_lname,v_listlen,v_list);
 DBMS_OUTPUT.PUT_LINE('Comma-Delimited List: ' || v_list);
END;

EXEC table_to_comma('edb.dept, edb.emp, edb.jobhist')

Table Entries

edb.dept
edb.emp
edb.jobhist

Comma-Delimited List: edb.dept, edb.emp, edb.jobhist

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 640

13.2.19 UTL_ENCODE

The UTL_ENCODE package provides a way to encode and decode data. Advanced Server supports the following functions and procedures:

Function/Procedure Return
Type

Description

BASE64_DECODE(r) RAW Use the BASE64_DECODE function to translate a Base64 encoded string to the
original RAW value.

BASE64_ENCODE(r) RAW Use the BASE64_ENCODE function to translate a RAW string to an encoded Base64
value.

BASE64_ENCODE(loid) TEXT Use the BASE64_ENCODE function to translate a TEXT string to an encoded Base64
value.

MIMEHEADER_DECODE(buf) VARCH
AR2

Use the MIMEHEADER_DECODE function to translate an encoded MIMEHEADER
formatted string to it's original value.

MIMEHEADER_ENCODE(buf,
encode_charset, encoding)

VARCH
AR2

Use the MIMEHEADER_ENCODE function to convert and encode a string in
MIMEHEADER format.

QUOTED_PRINTABLE_DECODE(r) RAW Use the QUOTED_PRINTABLE_DECODE function to translate an encoded string to a
RAW value.

QUOTED_PRINTABLE_ENCODE(r) RAW Use the QUOTED_PRINTABLE_ENCODE function to translate an input string to a
quoted-printable formatted RAW value.

TEXT_DECODE(buf, encode_charset,
encoding)

VARCH
AR2

Use the TEXT_DECODE function to decode a string encoded by TEXT_ENCODE .

TEXT_ENCODE(buf, encode_charset,
encoding)

VARCH
AR2

Use the TEXT_ENCODE function to translate a string to a user-specified character set,
and then encode the string.

UUDECODE(r) RAW Use the UUDECODE function to translate a uuencode encoded string to a RAW value.

UUENCODE(r, type, filename,
permission)

RAW Use the UUENCODE function to translate a RAW string to an encoded uuencode
value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 641

13.2.19.1 BASE64_DECODE

Use the BASE64_DECODE function to translate a Base64 encoded string to the original value originally encoded by BASE64_ENCODE . The signature is:

BASE64_DECODE (<r> IN RAW)

This function returns a RAW value.

ParametersParameters

r

r is the string that contains the Base64 encoded data that will be translated to RAW form.

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example first encodes (using BASE64_ENCODE), and then decodes (using BASE64_DECODE) a string that contains the text abc:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 642

https://www.postgresql.org/docs/current/static/datatype-binary.html

13.2.19.2 BASE64_ENCODE

Use the BASE64_ENCODE function to translate and encode a string in Base64 format (as described in RFC 4648). This function can be useful when
composing MIME email that you intend to send using the UTL_SMTP package. The BASE64_ENCODE function has two signatures:

BASE64_ENCODE(<r> IN RAW)

and

BASE64_ENCODE(<loid> IN OID)

This function returns a RAW value or an OID .

ParametersParameters

r

r specifies the RAW string that will be translated to Base64.

loid

loid specifies the object ID of a large object that will be translated to Base64.

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example first encodes (using BASE64_ENCODE), and then decodes (using BASE64_DECODE) a string that contains the text abc:

edb=# SELECT UTL_ENCODE.BASE64_ENCODE(CAST ('abc' AS RAW));
 base64_encode

 YWJj
(1 row)

edb=# SELECT UTL_ENCODE.BASE64_DECODE(CAST ('YWJj' AS RAW));
 base64_decode

 abc
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 643

https://www.postgresql.org/docs/current/static/datatype-binary.html

13.2.19.3 MIMEHEADER_DECODE

Use the MIMEHEADER_DECODE function to decode values that are encoded by the MIMEHEADER_ENCODE function. The signature is:

MIMEHEADER_DECODE(<buf> IN VARCHAR2)

This function returns a VARCHAR2 value.

ParametersParameters

buf

buf contains the value (encoded by MIMEHEADER_ENCODE) that will be decoded.

ExamplesExamples

The following examples use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 644

13.2.19.4 MIMEHEADER_ENCODE

Use the MIMEHEADER_ENCODE function to convert a string into mime header format, and then encode the string. The signature is:

MIMEHEADER_ENCODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2
DEFAULT NULL, <encoding> IN INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

ParametersParameters

buf

buf contains the string that will be formatted and encoded. The string is a VARCHAR2 value.

encode_charset

encode_charset specifies the character set to which the string will be converted before being formatted and encoded. The default value is NULL .

encoding

encoding specifies the encoding type used when encoding the string. You can specify:

Q to enable quoted-printable encoding. If you do not specify a value, MIMEHEADER_ENCODE will use quoted-printable encoding.
B to enable base-64 encoding.

ExamplesExamples

The following examples use the MIMEHEADER_ENCODE and MIMEHEADER_DECODE functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.MIMEHEADER_ENCODE('What is the date?') FROM DUAL;
 mimeheader_encode

 =?UTF8?Q?What is the date??=
(1 row)

edb=# SELECT UTL_ENCODE.MIMEHEADER_DECODE('=?UTF8?Q?What is the date??=')
FROM DUAL;
 mimeheader_decode

 What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 645

13.2.19.5 QUOTED_PRINTABLE_DECODE

Use the QUOTED_PRINTABLE_DECODE function to translate an encoded quoted-printable string into a decoded RAW string.

The signature is:

QUOTED_PRINTABLE_DECODE(<r> IN RAW)

This function returns a RAW value.

ParametersParameters

r

r contains the encoded string that will be decoded. The string is a RAW value, encoded by QUOTED_PRINTABLE_ENCODE .

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 646

https://www.postgresql.org/docs/current/static/datatype-binary.html

13.2.19.6 QUOTED_PRINTABLE_ENCODE

Use the QUOTED_PRINTABLE_ENCODE function to translate and encode a string in quoted-printable format. The signature is:

QUOTED_PRINTABLE_ENCODE(<r> IN RAW)

This function returns a RAW value.

ParametersParameters

r

r contains the string (a RAW value) that will be encoded in a quoted-printable format.

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example first encodes and then decodes a string:

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_ENCODE('E=mc2') FROM DUAL;
quoted_printable_encode

 E=3Dmc2
(1 row)

edb=# SELECT UTL_ENCODE.QUOTED_PRINTABLE_DECODE('E=3Dmc2') FROM DUAL;
 quoted_printable_decode

 E=mc2
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 647

https://www.postgresql.org/docs/current/static/datatype-binary.html

13.2.19.7 TEXT_DECODE

Use the TEXT_DECODE function to translate and decode an encoded string to the VARCHAR2 value that was originally encoded by the TEXT_ENCODE
function. The signature is:

TEXT_DECODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2 DEFAULT
NULL, <encoding> IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

ParametersParameters

buf

buf contains the encoded string that will be translated to the original value encoded by TEXT_ENCODE .

encode_charset

encode_charset specifies the character set to which the string will be translated before encoding. The default value is NULL .

encoding

encoding specifies the encoding type used by TEXT_DECODE . Specify:

UTL_ENCODE.BASE64 to specify base-64 encoding.
UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding. This is the default.

ExamplesExamples

The following example uses the TEXT_ENCODE and TEXT_DECODE functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 648

13.2.19.8 TEXT_ENCODE

Use the TEXT_ENCODE function to translate a string to a user-specified character set, and then encode the string. The signature is:

TEXT_DECODE(<buf> IN VARCHAR2, <encode_charset> IN VARCHAR2 DEFAULT
NULL, <encoding> IN PLS_INTEGER DEFAULT NULL)

This function returns a VARCHAR2 value.

ParametersParameters

buf

buf contains the encoded string that will be translated to the specified character set and encoded by TEXT_ENCODE .

encode_charset

encode_charset specifies the character set to which the value will be translated before encoding. The default value is NULL .

encoding

encoding specifies the encoding type used by TEXT_ENCODE . Specify:

UTL_ENCODE.BASE64 to specify base-64 encoding.
UTL_ENCODE.QUOTED_PRINTABLE to specify quoted printable encoding. This is the default.

ExamplesExamples

The following example uses the TEXT_ENCODE and TEXT_DECODE functions to first encode, and then decode a string:

edb=# SELECT UTL_ENCODE.TEXT_ENCODE('What is the date?', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_encode

V2hhdCBpcyB0aGUgZGF0ZT8=
(1 row)

edb=# SELECT UTL_ENCODE.TEXT_DECODE('V2hhdCBpcyB0aGUgZGF0ZT8=', 'BIG5',
UTL_ENCODE.BASE64) FROM DUAL;
 text_decode

What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 649

13.2.19.9 UUDECODE

Use the UUDECODE function to translate and decode a uuencode encoded string to the RAW value that was originally encoded by the UUENCODE
function. The signature is:

UUDECODE(<r> IN RAW)

This function returns a RAW value.

If you are using the Advanced Server UUDECODE function to decode uuencoded data that was created by the Oracle implementation of the
UTL_ENCODE.UUENCODE function, then you must first set the Advanced Server configuration parameter utl_encode.uudecode_redwood to
TRUE before invoking the Advanced Server UUDECODE function on the Oracle-created data. (For example, this situation may occur if you migrated

Oracle tables containing uuencoded data to an Advanced Server database.)

The uuencoded data created by the Oracle version of the UUENCODE function results in a format that differs from the uuencoded data created by the
Advanced Server UUENCODE function. As a result, attempting to use the Advanced Server UUDECODE function on the Oracle uuencoded data results in
an error unless the configuration parameter utl_encode.uudecode_redwood is set to TRUE .

However, if you are using the Advanced Server UUDECODE function on uuencoded data created by the Advanced Server UUENCODE function, then
utl_encode.uudecode_redwood must be set to FALSE , which is the default setting.

ParametersParameters

r

r contains the uuencoded string that will be translated to RAW .

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a string:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 650

https://www.postgresql.org/docs/current/static/datatype-binary.html

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 651

13.2.19.10 UUENCODE

Use the UUENCODE function to translate RAW data into a uuencode formatted encoded string. The signature is:

UUENCODE(<r> IN RAW, <type> IN INTEGER DEFAULT 1, <filename> IN
VARCHAR2 DEFAULT NULL, <permission> IN VARCHAR2 DEFAULT NULL)

This function returns a RAW value.

ParametersParameters

r

r contains the RAW string that will be translated to uuencode format.

type

type is an INTEGER value or constant that specifies the type of uuencoded string that will be returned; the default value is 1 . The possible values are:

ValueValue ConstantConstant

1 complete

2 header_piece

3 middle_piece

4 end_piece

filename

filename is a VARCHAR2 value that specifies the file name that you want to embed in the encoded form; if you do not specify a file name, UUENCODE
will include a filename of uuencode.txt in the encoded form.

permission

permission is a VARCHAR2 that specifies the permission mode; the default value is NULL .

ExamplesExamples

Before executing the following example, invoke the command:

SET bytea_output = escape;

This command instructs the server to escape any non-printable characters, and to display BYTEA or RAW values onscreen in readable form. For more
information, refer to the Postgres Core Documentation available at:

https://www.postgresql.org/docs/current/static/datatype-binary.html

The following example uses UUENCODE and UUDECODE to first encode and then decode a string:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 652

https://www.postgresql.org/docs/current/static/datatype-binary.html

edb=# SET bytea_output = escape;
SET
edb=# SELECT UTL_ENCODE.UUENCODE('What is the date?') FROM DUAL;
 uuencode
--
 begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012
(1 row)

edb=# SELECT UTL_ENCODE.UUDECODE
edb-# ('begin 0 uuencode.txt\01215VAA="!I<R!T:&4@9&%T93\\`\012`\012end\012')
edb-# FROM DUAL;
 uudecode

 What is the date?
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 653

13.2.20 UTL_FILE

The UTL_FILE package provides the capability to read from, and write to files on the operating system’s file system. Non-superusers must be granted
EXECUTE privilege on the UTL_FILE package by a superuser before using any of the functions or procedures in the package. For example the following

command grants the privilege to user mary :

GRANT EXECUTE ON PACKAGE SYS.UTL_FILE TO mary;

Also, the operating system username, enterprisedb , must have the appropriate read and/or write permissions on the directories and files to be
accessed using the UTL_FILE functions and procedures. If the required file permissions are not in place, an exception is thrown in the UTL_FILE
function or procedure.

A handle to the file to be written to, or read from is used to reference the file. The file handle is defined by a public variable in the UTL_FILE package
named, UTL_FILE.FILE_TYPE . A variable of type FILE_TYPE must be declared to receive the file handle returned by calling the FOPEN function.
The file handle is then used for all subsequent operations on the file.

References to directories on the file system are done using the directory name or alias that is assigned to the directory using the CREATE DIRECTORY
command.

The procedures and functions available in the UTL_FILE package are listed in the following table:

Function/Procedure Return
Type

Description

FCLOSE(file IN OUT) n/a Closes the specified file identified by file .

FCLOSE_ALL n/a Closes all open files.

FCOPY(location, filename, dest_dir,
dest_file [, start_line [, end_line]
])

n/a
Copies filename in the directory identified by location to file,
dest_file , in directory, dest_dir , starting from line, start_line , to

line, end_line .

FFLUSH(file) n/a Forces data in the buffer to be written to disk in the file identified by file .

FOPEN(location, filename, open_mode
[, max_linesize])

FILE
_TYP
E

Opens file, filename , in the directory identified by location .

FREMOVE(location, filename) n/a Removes the specified file from the file system.

FRENAME(location, filename, dest_dir,
dest_file [, overwrite])

n/a Renames the specified file.

GET_LINE(file, buffer OUT) n/a Reads a line of text into variable, buffer , from the file identified by file .

IS_OPEN(file) BOOL
EAN

Determines whether or not the given file is open.

NEW_LINE(file [, lines]) n/a Writes an end-of-line character sequence into the file.

PUT(file, buffer) n/a Writes buffer to the given file. PUT does not write an end-of-line character
sequence.

PUT_LINE(file, buffer) n/a
Writes buffer to the given file. An end-of-line character sequence is added by
the PUT_LINE procedure.

PUTF(file, format [, arg1] [, ...]) n/a
Writes a formatted string to the given file. Up to five substitution parameters,
arg1,...arg5 may be specified for replacement in format .

Advanced Server's implementation of UTL_FILE is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

UTL_FILE Exception CodesUTL_FILE Exception Codes

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 654

If a call to a UTL_FILE procedure or function raises an exception, you can use the condition name to catch the exception. The UTL_FILE package
reports the following exception codes compatible with Oracle databases:

Exception CodeException Code Condition nameCondition name

-29283 invalid_operation

-29285 write_error

-29284 read_error

-29282 invalid_filehandle

-29287 invalid_maxlinesize

-29281 invalid_mode

-29280 invalid_path

Setting File Permissions with utl_file.umask

When a UTL_FILE function or procedure creates a file, there are default file permissions as shown by the following.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

Note that all permissions are denied on users belonging to the enterprisedb group as well as all other users. Only the enterprisedb user has read
and write permissions on the created file.

If you wish to have a different set of file permissions on files created by the UTL_FILE functions and procedures, you can accomplish this by setting the
utl_file.umask configuration parameter.

The utl_file.umask parameter sets the file mode creation mask or simply, the mask, in a manner similar to the Linux umask command. This is for
usage only within the Advanced Server UTL_FILE package.

NoteNote

The utl_file.umask parameter is not supported on Windows systems.

The value specified for utl_file.umask is a 3 or 4-character octal string that would be valid for the Linux umask command. The setting determines
the permissions on files created by the UTL_FILE functions and procedures. (Refer to any information source regarding Linux or Unix systems for
information on file permissions and the usage of the umask command.)

The following is an example of setting the file permissions with utl_file.umask .

First, set up the directory in the file system to be used by the UTL_FILE package. Be sure the operating system account, enterprisedb or
postgres , whichever is applicable, can read and write in the directory.

mkdir /tmp/utldir
chmod 777 /tmp/utldir

The CREATE DIRECTORY command is issued in psql to create the directory database object using the file system directory created in the preceding
step.

CREATE DIRECTORY utldir AS '/tmp/utldir';

Set the utl_file.umask configuration parameter. The following setting allows the file owner any permission. Group users and other users are

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 655

Set the utl_file.umask configuration parameter. The following setting allows the file owner any permission. Group users and other users are
permitted any permission except for the execute permission.

SET utl_file.umask TO '0011';

In the same session during which the utl_file.umask parameter is set to the desired value, run the UTL_FILE functions and procedures.

DECLARE
 v_utlfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'utldir';
 v_filename VARCHAR2(20) := 'utlfile';
BEGIN
 v_utlfile := UTL_FILE.FOPEN(v_directory, v_filename, 'w');
 UTL_FILE.PUT_LINE(v_utlfile, 'Simple one-line file');
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_utlfile);
END;

The permission settings on the resulting file show that group users and other users have read and write permissions on the file as well as the file owner.

$ pwd
/tmp/utldir
$ ls -l
total 4
-rw-rw-rw- 1 enterprisedb enterprisedb 21 Jul 24 16:04 utlfile

This parameter can also be set on a per role basis with the ALTER ROLE command, on a per database basis with the ALTER DATABASE command, or
for the entire database server instance by setting it in the postgresql.conf file.

FCLOSE

The FCLOSE procedure closes an open file.

FCLOSE(<file> IN OUT FILE_TYPE)

ParametersParameters

file

Variable of type FILE_TYPE containing a file handle of the file to be closed.

FCLOSE_ALL

The FLCLOSE_ALL procedures closes all open files. The procedure executes successfully even if there are no open files to close.

FCLOSE_ALL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 656

FCOPY

The FCOPY procedure copies text from one file to another.

FCOPY(<location> VARCHAR2, <filename> VARCHAR2,
 <dest_dir> VARCHAR2, <dest_file> VARCHAR2
 [, <start_line> PLS_INTEGER [, <end_line> PLS_INTEGER]])

ParametersParameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory containing the file to be copied.

filename

Name of the source file to be copied.

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory to which the file is to be copied.

dest_file

Name of the destination file.

start_line

Line number in the source file from which copying will begin. The default is 1.

end_line

Line number of the last line in the source file to be copied. If omitted or null, copying will go to the last line of the file.

ExamplesExamples

The following makes a copy of a file, C:\TEMP\EMPDIR\empfile.csv , containing a comma-delimited list of employees from the emp table. The
copy, empcopy.csv , is then listed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 657

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'empdir';
 v_dest_file VARCHAR2(20) := 'empcopy.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FCOPY(v_src_dir,v_src_file,v_dest_dir,v_dest_file);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the destination file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the destination file, 'empcopy.csv'
7369,SMITH,CLERK,7902,17-DEC-80,800,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81,1600,300,30
7521,WARD,SALESMAN,7698,22-FEB-81,1250,500,30
7566,JONES,MANAGER,7839,02-APR-81,2975,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81,1250,1400,30
7698,BLAKE,MANAGER,7839,01-MAY-81,2850,,30
7782,CLARK,MANAGER,7839,09-JUN-81,2450,,10
7788,SCOTT,ANALYST,7566,19-APR-87,3000,,20
7839,KING,PRESIDENT,,17-NOV-81,5000,,10
7844,TURNER,SALESMAN,7698,08-SEP-81,1500,0,30
7876,ADAMS,CLERK,7788,23-MAY-87,1100,,20
7900,JAMES,CLERK,7698,03-DEC-81,950,,30
7902,FORD,ANALYST,7566,03-DEC-81,3000,,20
7934,MILLER,CLERK,7782,23-JAN-82,1300,,10
14 records retrieved

FFLUSH

The FFLUSH procedure flushes unwritten data from the write buffer to the file.

FFLUSH(<file> FILE_TYPE)

ParametersParameters

file

Variable of type FILE_TYPE containing a file handle.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 658

Variable of type FILE_TYPE containing a file handle.

ExamplesExamples

Each line is flushed after the NEW_LINE procedure is called.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 UTL_FILE.FFLUSH(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

FOPEN

The FOPEN function opens a file for I/O.

<filetype> FILE_TYPE FOPEN(<location> VARCHAR2,
 <filename> VARCHAR2,<open_mode> VARCHAR2
 [, <max_linesize> BINARY_INTEGER])

ParametersParameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory containing the file to be opened.

filename

Name of the file to be opened.

open_mode

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 659

open_mode

Mode in which the file will be opened. Modes are: a - append to file; r - read from file; w - write to file.

max_linesize

Maximum size of a line in characters. In read mode, an exception is thrown if an attempt is made to read a line exceeding max_linesize . In write and
append modes, an exception is thrown if an attempt is made to write a line exceeding max_linesize . The end-of-line character(s) are not included in
determining if the maximum line size is exceeded. This behavior is not compatible with Oracle databases; Oracle does count the end-of-line character(s).

filetype

Variable of type FILE_TYPE containing the file handle of the opened file.

FREMOVE

The FREMOVE procedure removes a file from the system.

FREMOVE(<location> VARCHAR2, <filename> VARCHAR2)

An exception is thrown if the file to be removed does not exist.

ParametersParameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory containing the file to be removed.

filename

Name of the file to be removed.

ExamplesExamples

The following removes file empfile.csv .

DECLARE
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
BEGIN
 UTL_FILE.FREMOVE(v_directory,v_filename);
 DBMS_OUTPUT.PUT_LINE('Removed file: ' || v_filename);
 EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Removed file: empfile.csv

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 660

FRENAME

The FRENAME procedure renames a given file. This effectively moves a file from one location to another.

FRENAME(<location> VARCHAR2, <filename> VARCHAR2,
 <dest_dir> VARCHAR2, <dest_file> VARCHAR2,
 [<overwrite> BOOLEAN])

ParametersParameters

location

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory containing the file to be renamed.

filename

Name of the source file to be renamed.

dest_dir

Directory name, as stored in pg_catalog.edb_dir.dirname , of the directory to which the renamed file is to exist.

dest_file

New name of the original file.

overwrite

Replaces any existing file named dest_file in dest_dir if set to TRUE , otherwise an exception is thrown if set to FALSE . This is the default.

ExamplesExamples

The following renames a file, C:\TEMP\EMPDIR\empfile.csv , containing a comma-delimited list of employees from the emp table. The renamed
file, C:\TEMP\NEWDIR\newemp.csv , is then listed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 661

CREATE DIRECTORY "newdir" AS 'C:/TEMP/NEWDIR';

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_src_dir VARCHAR2(50) := 'empdir';
 v_src_file VARCHAR2(20) := 'empfile.csv';
 v_dest_dir VARCHAR2(50) := 'newdir';
 v_dest_file VARCHAR2(50) := 'newemp.csv';
 v_replace BOOLEAN := FALSE;
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 UTL_FILE.FRENAME(v_src_dir,v_src_file,v_dest_dir,
 v_dest_file,v_replace);
 v_empfile := UTL_FILE.FOPEN(v_dest_dir,v_dest_file,'r');
 DBMS_OUTPUT.PUT_LINE('The following is the renamed file, ''' ||
 v_dest_file || '''');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE(v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

The following is the renamed file, 'newemp.csv'
7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
14 records retrieved

GET_LINE

The GET_LINE procedure reads a line of text from a given file up to, but not including the end-of-line terminator. A NO_DATA_FOUND exception is
thrown when there are no more lines to read.

GET_LINE(<file> FILE_TYPE, <buffer> OUT VARCHAR2)

ParametersParameters

file

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 662

file

Variable of type FILE_TYPE containing the file handle of the opened file.

buffer

Variable to receive a line from the file.

ExamplesExamples

The following anonymous block reads through and displays the records in file empfile.csv .

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 v_count INTEGER := 0;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'r');
 LOOP
 UTL_FILE.GET_LINE(v_empfile,v_emprec);
 DBMS_OUTPUT.PUT_LINE(v_emprec);
 v_count := v_count + 1;
 END LOOP;
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 UTL_FILE.FCLOSE(v_empfile);
 DBMS_OUTPUT.PUT_LINE('End of file ' || v_filename || ' - ' ||
 v_count || ' records retrieved');
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10
End of file empfile.csv - 14 records retrieved

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 663

IS_OPEN

The IS_OPEN function determines whether or not the given file is open.

<status> BOOLEAN IS_OPEN(<file> FILE_TYPE)

ParametersParameters

file

Variable of type FILE_TYPE containing the file handle of the file to be tested.

status

TRUE if the given file is open, FALSE otherwise.

NEW_LINE

The NEW_LINE procedure writes an end-of-line character sequence in the file.

NEW_LINE(<file> FILE_TYPE [, <lines> INTEGER])

ParametersParameters

file

Variable of type FILE_TYPE containing the file handle of the file to which end-of-line character sequences are to be written.

lines

Number of end-of-line character sequences to be written. The default is one.

ExamplesExamples

A file containing a double-spaced list of employee records is written.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 664

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile,2);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

This file is then displayed:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 665

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20

7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30

7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30

7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20

7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30

7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30

7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10

7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20

7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10

7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30

7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20

7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30

7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20

7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT

The PUT procedure writes a string to the given file. No end-of-line character sequence is written at the end of the string. Use the NEW_LINE procedure
to add an end-of-line character sequence.

PUT(<file> FILE_TYPE, <buffer> { DATE | NUMBER | TIMESTAMP | VARCHAR2 })

ParametersParameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the given string is to be written.

buffer

Text to be written to the specified file.

ExamplesExamples

The following example uses the PUT procedure to create a comma-delimited file of employees from the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 666

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUT(v_empfile,i.empno);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.ename);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.job);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.mgr);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.hiredate);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.sal);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.comm);
 UTL_FILE.PUT(v_empfile,',');
 UTL_FILE.PUT(v_empfile,i.deptno);
 UTL_FILE.NEW_LINE(v_empfile);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

PUT_LINE

The PUT_LINE procedure writes a single line to the given file including an end-of-line character sequence.

PUT_LINE(<file> FILE_TYPE, <buffer> { DATE | NUMBER | TIMESTAMP | VARCHAR2 })

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 667

ParametersParameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the given line is to be written.

buffer

Text to be written to the specified file.

ExamplesExamples

The following example uses the PUT_LINE procedure to create a comma-delimited file of employees from the emp table.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_emprec VARCHAR2(120);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 v_emprec := i.empno || ',' || i.ename || ',' || i.job || ',' ||
 NVL(LTRIM(TO_CHAR(i.mgr,'9999')),'') || ',' || i.hiredate ||
 ',' || i.sal || ',' ||
 NVL(LTRIM(TO_CHAR(i.comm,'9990.99')),'') || ',' || i.deptno;
 UTL_FILE.PUT_LINE(v_empfile,v_emprec);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
END;

The following is the contents of empfile.csv created above:

C:\TEMP\EMPDIR>TYPE empfile.csv

7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 668

PUTF

The PUTF procedure writes a formatted string to the given file.

PUTF(<file> FILE_TYPE, <format> VARCHAR2 [, <arg1> VARCHAR2] [, ...])

ParametersParameters

file

Variable of type FILE_TYPE containing the file handle of the file to which the formatted line is to be written.

format

String to format the text written to the file. The special character sequence, %s , is substituted by the value of arg. The special character sequence, \n ,
indicates a new line. Note, however, in Advanced Server, a new line character must be specified with two consecutive backslashes instead of one - \\n .
This characteristic is not compatible with Oracle databases.

arg1

Up to five arguments, arg1 ,... arg5 , to be substituted in the format string for each occurrence of %s . The first arg is substituted for the first occurrence
of %s , the second arg is substituted for the second occurrence of %s , etc.

ExamplesExamples

The following anonymous block produces formatted output containing data from the emp table. Note the use of the E literal syntax and double
backslashes for the new line character sequence in the format string which are not compatible with Oracle databases.

DECLARE
 v_empfile UTL_FILE.FILE_TYPE;
 v_directory VARCHAR2(50) := 'empdir';
 v_filename VARCHAR2(20) := 'empfile.csv';
 v_format VARCHAR2(200);
 CURSOR emp_cur IS SELECT * FROM emp ORDER BY empno;
BEGIN
 v_format := E'%s %s, %s\\nSalary: $%s Commission: $%s\\n\\n';
 v_empfile := UTL_FILE.FOPEN(v_directory,v_filename,'w');
 FOR i IN emp_cur LOOP
 UTL_FILE.PUTF(v_empfile,v_format,i.empno,i.ename,i.job,i.sal,
 NVL(i.comm,0));
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Created file: ' || v_filename);
 UTL_FILE.FCLOSE(v_empfile);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

Created file: empfile.csv

The following is the contents of empfile.csv created above:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 669

C:\TEMP\EMPDIR>TYPE empfile.csv
7369 SMITH, CLERK
Salary: $800.00 Commission: $0
7499 ALLEN, SALESMAN
Salary: $1600.00 Commission: $300.00
7521 WARD, SALESMAN
Salary: $1250.00 Commission: $500.00
7566 JONES, MANAGER
Salary: $2975.00 Commission: $0
7654 MARTIN, SALESMAN
Salary: $1250.00 Commission: $1400.00
7698 BLAKE, MANAGER
Salary: $2850.00 Commission: $0
7782 CLARK, MANAGER
Salary: $2450.00 Commission: $0
7788 SCOTT, ANALYST
Salary: $3000.00 Commission: $0
7839 KING, PRESIDENT
Salary: $5000.00 Commission: $0
7844 TURNER, SALESMAN
Salary: $1500.00 Commission: $0.00
7876 ADAMS, CLERK
Salary: $1100.00 Commission: $0
7900 JAMES, CLERK
Salary: $950.00 Commission: $0
7902 FORD, ANALYST
Salary: $3000.00 Commission: $0
7934 MILLER, CLERK
Salary: $1300.00 Commission: $0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 670

13.2.21 UTL_HTTP

The UTL_HTTP package provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL. Advanced Server supports the
following functions and procedures:

Function/Procedure Return Type Description

BEGIN_REQUEST(url, method,
http_version)

UTL_HTTP.REQ Initiates a new HTTP request.

END_REQUEST(r IN OUT) n/a Ends an HTTP request before allowing it to complete.

END_RESPONSE(r IN OUT) n/a Ends the HTTP response.

END_OF_BODY(r IN OUT) n/a Ends package body

GET_BODY_CHARSET VARCHAR2 Returns the default character set of the body of future HTTP requests.

GET_BODY_CHARSET(charset OUT) n/a Returns the default character set of the body of future HTTP requests.

GET_FOLLOW_REDIRECT(max_redirects
OUT)

n/a Current setting for the maximum number of redirections allowed.

GET_HEADER(r IN OUT, n, name OUT,
value OUT)

n/a Returns the nth header of the HTTP response.

GET_HEADER_BY_NAME(r IN OUT, name,
value OUT, n)

n/a Returns the HTTP response header for the specified name.

GET_HEADER_COUNT(r IN OUT) INTEGER Returns the number of HTTP response headers.

GET_RESPONSE(r IN OUT) UTL_HTTP.RESP Returns the HTTP response.

GET_RESPONSE_ERROR_CHECK(enable
OUT)

n/a Returns whether or not response error check is set.

GET_TRANSFER_TIMEOUT(timeout OUT) n/a Returns the transfer timeout setting for HTTP requests.

READ_LINE(r IN OUT, data OUT,
remove_crlf)

n/a Returns the HTTP response body in text form until the end of line.

READ_RAW(r IN OUT, data OUT, len) n/a Returns the HTTP response body in binary form for a specified number
of bytes.

READ_TEXT(r IN OUT, data OUT, len) n/a Returns the HTTP response body in text form for a specified number of
characters.

REQUEST(url) VARCHAR2 Returns the content of a web page.

REQUEST_PIECES(url, max_pieces) UTL_HTTP.
HTML_PIECES

Returns a table of 2000-byte segments retrieved from an URL.

SET_BODY_CHARSET(charset) n/a Sets the default character set of the body of future HTTP requests.

SET_FOLLOW_REDIRECT(max_redirects) n/a Sets the maximum number of times to follow the redirect instruction.

SET_FOLLOW_REDIRECT(r IN OUT,
max_redirects)

n/a Sets the maximum number of times to follow the redirect instruction
for an individual request.

SET_HEADER(r IN OUT, name, value) n/a Sets the HTTP request header.

SET_RESPONSE_ERROR_CHECK(enable) n/a Determines whether or not HTTP 4xx and 5xx status codes are to be
treated as errors.

SET_TRANSFER_TIMEOUT(timeout) n/a Sets the default, transfer timeout value for HTTP requests.

SET_TRANSFER_TIMEOUT(r IN OUT,
timeout)

n/a Sets the transfer timeout value for an individual HTTP request.

WRITE_LINE(r IN OUT, data) n/a Writes CRLF terminated data to the HTTP request body in TEXT form.

WRITE_RAW(r IN OUT, data) n/a Writes data to the HTTP request body in BINARY form.

WRITE_TEXT(r IN OUT, data) n/a Writes data to the HTTP request body in TEXT form.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 671

Advanced Server's implementation of UTL_HTTP is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

NoteNote

In Advanced Server, an HTTP 4xx or HTTP 5xx response produces a database error; in Oracle, this is configurable but FALSE by default.

In Advanced Server, the UTL_HTTP text interfaces expect the downloaded data to be in the database encoding. All currently-available interfaces are text
interfaces. In Oracle, the encoding is detected from HTTP headers; in the absence of the header, the default is configurable and defaults to ISO-8859-1 .

Advanced Server ignores all cookies it receives.

The UTL_HTTP exceptions that can be raised in Oracle are not recognized by Advanced Server. In addition, the error codes returned by Advanced Server
are not the same as those returned by Oracle.

UTL_HTTP Exception CodesUTL_HTTP Exception Codes

If a call to a UTL_HTTP procedure or function raises an exception, you can use the condition name to catch the exception. The UTL_HTTP package
reports the following exception codes compatible with Oracle databases:

Exception CodeException Code Condition NameCondition Name DescriptionDescription Raised WhereRaised Where

-29266 END_OF_BODY The end of HTTP response body is reached READ_LINE, READ_RAW , and READ_TEXT
functions

To use the UTL_HTTP.END_OF_BODY exception, first you need to run the utl_http_public.sql file from the contrib/utl_http directory of
your installation directory.

There are various public constants available with UTL_HTTP . These are listed in the following tables.

The following table contains UTL_HTTP public constants defining HTTP versions and port assignments.

HTTP VERSIONSHTTP VERSIONS

HTTP_VERSION_1_0 CONSTANT VARCHAR2(64) :=
'HTTP/1.0';

HTTP_VERSION_1_1 CONSTANT VARCHAR2(64) :=
'HTTP/1.1';

STANDARD PORT ASSIGNMENTSSTANDARD PORT ASSIGNMENTS

DEFAULT_HTTP_PORT CONSTANT INTEGER := 80;

DEFAULT_HTTPS_PORT CONSTANT INTEGER := 443;

The following table contains UTL_HTTP public status code constants.

1XX INFORMATIONAL1XX INFORMATIONAL

HTTP_CONTINUE CONSTANT INTEGER := 100;

HTTP_SWITCHING_PROTOCOLS CONSTANT INTEGER := 101;

HTTP_PROCESSING CONSTANT INTEGER := 102;

2XX SUCCESS2XX SUCCESS

HTTP_OK CONSTANT INTEGER := 200;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 672

HTTP_CREATED CONSTANT INTEGER := 201;

HTTP_ACCEPTED CONSTANT INTEGER := 202;

HTTP_NON_AUTHORITATIVE_INFO CONSTANT INTEGER := 203;

HTTP_NO_CONTENT CONSTANT INTEGER := 204;

HTTP_RESET_CONTENT CONSTANT INTEGER := 205;

HTTP_PARTIAL_CONTENT CONSTANT INTEGER := 206;

HTTP_MULTI_STATUS CONSTANT INTEGER := 207;

HTTP_ALREADY_REPORTED CONSTANT INTEGER := 208;

HTTP_IM_USED CONSTANT INTEGER := 226;

3XX REDIRECTION3XX REDIRECTION

HTTP_MULTIPLE_CHOICES CONSTANT INTEGER := 300;

HTTP_MOVED_PERMANENTLY CONSTANT INTEGER := 301;

HTTP_FOUND CONSTANT INTEGER := 302;

HTTP_SEE_OTHER CONSTANT INTEGER := 303;

HTTP_NOT_MODIFIED CONSTANT INTEGER := 304;

HTTP_USE_PROXY CONSTANT INTEGER := 305;

HTTP_SWITCH_PROXY CONSTANT INTEGER := 306;

HTTP_TEMPORARY_REDIRECT CONSTANT INTEGER := 307;

HTTP_PERMANENT_REDIRECT CONSTANT INTEGER := 308;

1XX INFORMATIONAL1XX INFORMATIONAL

4XX CLIENT ERROR4XX CLIENT ERROR

HTTP_BAD_REQUEST CONSTANT INTEGER := 400;

HTTP_UNAUTHORIZED CONSTANT INTEGER := 401;

HTTP_PAYMENT_REQUIRED CONSTANT INTEGER := 402;

HTTP_FORBIDDEN CONSTANT INTEGER := 403;

HTTP_NOT_FOUND CONSTANT INTEGER := 404;

HTTP_METHOD_NOT_ALLOWED CONSTANT INTEGER := 405;

HTTP_NOT_ACCEPTABLE CONSTANT INTEGER := 406;

HTTP_PROXY_AUTH_REQUIRED CONSTANT INTEGER := 407;

HTTP_REQUEST_TIME_OUT CONSTANT INTEGER := 408;

HTTP_CONFLICT CONSTANT INTEGER := 409;

HTTP_GONE CONSTANT INTEGER := 410;

HTTP_LENGTH_REQUIRED CONSTANT INTEGER := 411;

HTTP_PRECONDITION_FAILED CONSTANT INTEGER := 412;

HTTP_REQUEST_ENTITY_TOO_LARGE CONSTANT INTEGER := 413;

HTTP_REQUEST_URI_TOO_LARGE CONSTANT INTEGER := 414;

HTTP_UNSUPPORTED_MEDIA_TYPE CONSTANT INTEGER := 415;

HTTP_REQ_RANGE_NOT_SATISFIABLE CONSTANT INTEGER := 416;

HTTP_EXPECTATION_FAILED CONSTANT INTEGER := 417;

HTTP_I_AM_A_TEAPOT CONSTANT INTEGER := 418;

HTTP_AUTHENTICATION_TIME_OUT CONSTANT INTEGER := 419;

HTTP_ENHANCE_YOUR_CALM CONSTANT INTEGER := 420;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 673

HTTP_UNPROCESSABLE_ENTITY CONSTANT INTEGER := 422;

HTTP_LOCKED CONSTANT INTEGER := 423;

HTTP_FAILED_DEPENDENCY CONSTANT INTEGER := 424;

HTTP_UNORDERED_COLLECTION CONSTANT INTEGER := 425;

HTTP_UPGRADE_REQUIRED CONSTANT INTEGER := 426;

HTTP_PRECONDITION_REQUIRED CONSTANT INTEGER := 428;

HTTP_TOO_MANY_REQUESTS CONSTANT INTEGER := 429;

HTTP_REQUEST_HEADER_FIELDS_TOO_LARGE CONSTANT INTEGER := 431;

HTTP_NO_RESPONSE CONSTANT INTEGER := 444;

HTTP_RETRY_WITH CONSTANT INTEGER := 449;

HTTP_BLOCKED_BY_WINDOWS_PARENTAL_CONTROLS CONSTANT INTEGER := 450;

HTTP_REDIRECT CONSTANT INTEGER := 451;

HTTP_REQUEST_HEADER_TOO_LARGE CONSTANT INTEGER := 494;

HTTP_CERT_ERROR CONSTANT INTEGER := 495;

HTTP_NO_CERT CONSTANT INTEGER := 496;

HTTP_HTTP_TO_HTTPS CONSTANT INTEGER := 497;

HTTP_CLIENT_CLOSED_REQUEST CONSTANT INTEGER := 499;

4XX CLIENT ERROR4XX CLIENT ERROR

5XX SERVER ERROR5XX SERVER ERROR

HTTP_INTERNAL_SERVER_ERROR CONSTANT INTEGER := 500;

HTTP_NOT_IMPLEMENTED CONSTANT INTEGER := 501;

HTTP_BAD_GATEWAY CONSTANT INTEGER := 502;

HTTP_SERVICE_UNAVAILABLE CONSTANT INTEGER := 503;

HTTP_GATEWAY_TIME_OUT CONSTANT INTEGER := 504;

HTTP_VERSION_NOT_SUPPORTED CONSTANT INTEGER := 505;

HTTP_VARIANT_ALSO_NEGOTIATES CONSTANT INTEGER := 506;

HTTP_INSUFFICIENT_STORAGE CONSTANT INTEGER := 507;

HTTP_LOOP_DETECTED CONSTANT INTEGER := 508;

HTTP_BANDWIDTH_LIMIT_EXCEEDED CONSTANT INTEGER := 509;

HTTP_NOT_EXTENDED CONSTANT INTEGER := 510;

HTTP_NETWORK_AUTHENTICATION_REQUIRED CONSTANT INTEGER := 511;

HTTP_NETWORK_READ_TIME_OUT_ERROR CONSTANT INTEGER := 598;

HTTP_NETWORK_CONNECT_TIME_OUT_ERROR CONSTANT INTEGER := 599;

HTML_PIECES

The UTL_HTTP package declares a type named HTML_PIECES , which is a table of type VARCHAR2 (2000) indexed by BINARY INTEGER . A value
of this type is returned by the REQUEST_PIECES function.

TYPE html_pieces IS TABLE OF VARCHAR2(2000) INDEX BY BINARY_INTEGER;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 674

REQ

The REQ record type holds information about each HTTP request.

TYPE req IS RECORD (
 url VARCHAR2(32767), -- URL to be accessed
 method VARCHAR2(64), -- HTTP method
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this request
);

RESP

The RESP record type holds information about the response from each HTTP request.

TYPE resp IS RECORD (
 status_code INTEGER, -- HTTP status code
 reason_phrase VARCHAR2(256), -- HTTP response reason phrase
 http_version VARCHAR2(64), -- HTTP version
 private_hndl INTEGER -- Holds handle for this response
);

BEGIN_REQUEST

The BEGIN_REQUEST function initiates a new HTTP request. A network connection is established to the web server with the specified URL. The signature
is:

BEGIN_REQUEST(<url> IN VARCHAR2, <method> IN VARCHAR2 DEFAULT
'GET ', <http_version> IN VARCHAR2 DEFAULT NULL) RETURN
UTL_HTTP.REQ

The BEGIN_REQUEST function returns a record of type UTL_HTTP.REQ .

ParametersParameters

url

url is the Uniform Resource Locator from which UTL_HTTP will return content.

method

method is the HTTP method to be used. The default is GET .

http_version

http_version is the HTTP protocol version sending the request. The specified values should be either HTTP/1.0 or HTTP/1.1 . The default is null
in which case the latest HTTP protocol version supported by the UTL_HTTP package is used which is 1.1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 675

END_REQUEST

The END_REQUEST procedure terminates an HTTP request. Use the END_REQUEST procedure to terminate an HTTP request without completing it and
waiting for the response. The normal process is to begin the request, get the response, then close the response. The signature is:

END_REQUEST(<r> IN OUT UTL_HTTP.REQ)

ParametersParameters

r

r is the HTTP request record.

END_RESPONSE

The END_RESPONSE procedure terminates the HTTP response. The END_RESPONSE procedure completes the HTTP request and response. This is the
normal method to end the request and response process. The signature is:

END_RESPONSE(<r> IN OUT UTL_HTTP.RESP)

ParametersParameters

r

r is the HTTP response record.

GET_BODY_CHARSET

The GET_BODY_CHARSET program is available in the form of both a procedure and a function. A call to GET_BODY_CHARSET returns the default
character set of the body of future HTTP requests.

The procedure signature is:

GET_BODY_CHARSET(<charset> OUT VARCHAR2)

The function signature is:

GET_BODY_CHARSET() RETURN VARCHAR2

This function returns a VARCHAR2 value.

ParametersParameters

charset

charset is the character set of the body.

ExamplesExamples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 676

The following is an example of the GET_BODY_CHARSET function.

edb=# SELECT UTL_HTTP.GET_BODY_CHARSET() FROM DUAL;
 get_body_charset

 ISO-8859-1
(1 row)

GET_FOLLOW_REDIRECT

The GET_FOLLOW_REDIRECT procedure returns the current setting for the maximum number of redirections allowed. The signature is:

GET_FOLLOW_REDIRECT(<max_redirects> OUT INTEGER)

ParametersParameters

max_redirects

max_redirects is maximum number of redirections allowed.

GET_HEADER

The GET_HEADER procedure returns the nth header of the HTTP response. The signature is:

GET_HEADER(<r> IN OUT UTL_HTTP.RESP, <n> INTEGER, <name> OUT
VARCHAR2, <value> OUT VARCHAR2)

ParametersParameters

r

r is the HTTP response record.

n

n is the nth header of the HTTP response record to retrieve.

name

name is the name of the response header.

value

value is the value of the response header.

ExamplesExamples

The following example retrieves the header count, then the headers.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 677

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30);
 v_value VARCHAR2(200);
 v_header_cnt INTEGER;
BEGIN
 -- Initiate request and get response
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);

 -- Get header count
 v_header_cnt := UTL_HTTP.GET_HEADER_COUNT(v_resp);
 DBMS_OUTPUT.PUT_LINE('Header Count: ' || v_header_cnt);

 -- Get all headers
 FOR i IN 1 .. v_header_cnt LOOP
 UTL_HTTP.GET_HEADER(v_resp, i, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 END LOOP;

 -- Terminate request
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

Header Count: 23
Age: 570
Cache-Control: must-revalidate
Content-Type: text/html; charset=utf-8
Date: Wed, 30 Apr 2015 14:57:52 GMT
ETag: "aab02f2bd2d696eed817ca89ef411dda"
Expires: Sun, 19 Nov 1978 05:00:00 GMT
Last-Modified: Wed, 30 Apr 2015 14:15:49 GMT
RTSS: 1-1307-3
Server: Apache/2.2.3 (Red Hat)
Set-Cookie:
SESS2771d0952de2a1a84d322a262e0c173c=jn1u1j1etmdi5gg4lh8hakvs01;
expires=Fri, 23-May-2015 18:21:43 GMT; path=/; domain=.enterprisedb.com
Vary: Accept-Encoding
Via: 1.1 varnish
X-EDB-Backend: ec
X-EDB-Cache: HIT
X-EDB-Cache-Address: 10.31.162.212
X-EDB-Cache-Server: ip-10-31-162-212
X-EDB-Cache-TTL: 600.000
X-EDB-Cacheable: MAYBE: The user has a cookie of some sort. Maybe it's
double choc-chip!
X-EDB-Do-GZIP: false
X-Powered-By: PHP/5.2.17
X-Varnish: 484508634 484506789
transfer-encoding: chunked
Connection: keep-alive

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 678

GET_HEADER_BY_NAME

The GET_HEADER_BY_NAME procedure returns the header of the HTTP response according to the specified name. The signature is:

GET_HEADER_BY_NAME(<r> IN OUT UTL_HTTP.RESP, <name> VARCHAR2,
<value> OUT VARCHAR2, <n> INTEGER DEFAULT 1)

ParametersParameters

r

r is the HTTP response record.

name

name is the name of the response header to retrieve.

value

value is the value of the response header.

n

n is the nth header of the HTTP response record to retrieve according to the values specified by name . The default is 1.

ExamplesExamples

The following example retrieves the header for Content-Type.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_name VARCHAR2(30) := 'Content-Type';
 v_value VARCHAR2(200);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.GET_HEADER_BY_NAME(v_resp, v_name, v_value);
 DBMS_OUTPUT.PUT_LINE(v_name || ': ' || v_value);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Content-Type: text/html; charset=utf-8

GET_HEADER_COUNT

The GET_HEADER_COUNT function returns the number of HTTP response headers. The signature is:

GET_HEADER_COUNT(<r> IN OUT UTL_HTTP.RESP) RETURN INTEGER

This function returns an INTEGER value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 679

ParametersParameters

r

r is the HTTP response record.

GET_RESPONSE

The GET_RESPONSE function sends the network request and returns any HTTP response. The signature is:

GET_RESPONSE(<r> IN OUT UTL_HTTP.REQ) RETURN UTL_HTTP.RESP

This function returns a UTL_HTTP.RESP record.

ParametersParameters

r

r is the HTTP request record.

GET_RESPONSE_ERROR_CHECK

The GET_RESPONSE_ERROR_CHECK procedure returns whether or not response error check is set. The signature is:

GET_RESPONSE_ERROR_CHECK(<enable> OUT BOOLEAN)

ParametersParameters

enable

enable returns TRUE if response error check is set, otherwise it returns FALSE .

GET_TRANSFER_TIMEOUT

The GET_TRANSFER_TIMEOUT procedure returns the current, default transfer timeout setting for HTTP requests. The signature is:

GET_TRANSFER_TIMEOUT(<timeout> OUT INTEGER)

ParametersParameters

timeout

timeout is the transfer timeout setting in seconds.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 680

READ_LINE

The READ_LINE procedure returns the data from the HTTP response body in text form until the end of line is reached. A CR character, a LF character, a
CR LF sequence, or the end of the response body constitutes the end of line. The signature is:

READ_LINE(<r> IN OUT UTL_HTTP.RESP, <data> OUT VARCHAR2,
<remove_crlf> BOOLEAN DEFAULT FALSE)

ParametersParameters

r

r is the HTTP response record.

data

data is the response body in text form.

remove_crlf

Set remove_crlf to TRUE to remove new line characters, otherwise set to FALSE . The default is FALSE .

ExamplesExamples

The following example retrieves and displays the body of the specified website.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_value VARCHAR2(1024);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 LOOP
 UTL_HTTP.READ_LINE(v_resp, v_value, TRUE);
 DBMS_OUTPUT.PUT_LINE(v_value);
 END LOOP;
 EXCEPTION
 WHEN OTHERS THEN
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 681

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/xhtml" xml:lang="en" lang="en" dir="ltr">

 <!-- ___________________________ HEAD ___________________________ -->

 <head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />

 <title>EnterpriseDB | The Postgres Database Company</title>

 <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<meta name="keywords" content="postgres, postgresql, postgresql installer,
mysql migration, open source database, training, replication" />
<meta name="description" content="The leader in open source database
products, services, support, training and expertise based on PostgreSQL.
Free downloads, documentation, and tutorials." />
<meta name="abstract" content="The Enterprise PostgreSQL Company" />
<link rel="EditURI" type="application/rsd+xml" title="RSD" href="http://
www.enterprisedb.com/blogapi/rsd" />
<link rel="alternate" type="application/rss+xml" title="EnterpriseDB RSS"
href="http://www.enterprisedb.com/rss.xml" />
<link rel="shortcut icon" href="/sites/all/themes/edb_pixelcrayons/
favicon.ico" type="image/x-icon" />
 <link type="text/css" rel="stylesheet" media="all" href="/sites/default/
 files/css/css_db11adabae0aed6b79a2c3c52def4754.css" />
<!--[if IE 6]>
<link type="text/css" rel="stylesheet" media="all" href="/sites/all/themes/
oho_basic/css/ie6.css?g" />
<![endif]-->
<!--[if IE 7]>
<link type="text/css" rel="stylesheet" media="all" href="/sites/all/themes/
oho_basic/css/ie7.css?g" />
<![endif]-->
 <script type="text/javascript" src="/sites/default/files/js/
 js_74d97b1176812e2fd6e43d62503a5204.js"></script>
<script type="text/javascript">
<!--//--><![CDATA[//><!--

READ_RAW

The READ_RAW procedure returns the data from the HTTP response body in binary form. The number of bytes returned is specified by the len parameter.
The signature is:

READ_RAW(<r> IN OUT UTL_HTTP.RESP, <data> OUT RAW, <len> INTEGER)

ParametersParameters

r

r is the HTTP response record.

data

data is the response body in binary form.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 682

len

Set len to the number of bytes of data to be returned.

ExamplesExamples

The following example retrieves and displays the first 150 bytes in binary form.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data RAW;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_RAW(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output from the example.

\x3c21444f43545950452068746d6c205055424c494320222d2f2f5733432f2f4454442058485
44d4c20312e30205374726963742f2f454e220d0a202022687474703a2f2f7777772e77332e6f
72672f54522f7868746d6c312f4454442f7868746d6c312d7374726963742e647464223e0d0a3
c68746d6c20786d6c6e733d22687474703a2f2f7777772e77332e6f72672f313939392f

READ_TEXT

The READ_TEXT procedure returns the data from the HTTP response body in text form. The maximum number of characters returned is specified by the
len parameter. The signature is:

READ_TEXT(<r> IN OUT UTL_HTTP.RESP, <data> OUT VARCHAR2, <len> INTEGER)

ParametersParameters

r

r is the HTTP response record.

data

data is the response body in text form.

len

Set len to the maximum number of characters to be returned.

ExamplesExamples

The following example retrieves the first 150 characters.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 683

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
 v_data VARCHAR2(150);
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.enterprisedb.com');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 UTL_HTTP.READ_TEXT(v_resp, v_data, 150);
 DBMS_OUTPUT.PUT_LINE(v_data);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The following is the output.

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Strict//EN"
 "http://www.w3.org/TR/xhtml1/DTD/xhtml1-strict.dtd">
<html xmlns="http://www.w3.org/1999/

REQUEST

The REQUEST function returns the first 2000 bytes retrieved from a user-specified URL. The signature is:

REQUEST(<url> IN VARCHAR2) RETURN VARCHAR2

If the data found at the given URL is longer than 2000 bytes, the remainder will be discarded. If the data found at the given URL is shorter than 2000 bytes,
the result will be shorter than 2000 bytes.

ParametersParameters

url

url is the Uniform Resource Locator from which UTL_HTTP will return content.

ExampleExample

The following command returns the first 2000 bytes retrieved from the EDB website:

SELECT UTL_HTTP.REQUEST('http://www.enterprisedb.com/') FROM DUAL;

REQUEST_PIECES

The REQUEST_PIECES function returns a table of 2000-byte segments retrieved from an URL. The signature is:

REQUEST_PIECES(<url> IN VARCHAR2, <max_pieces> NUMBER IN
DEFAULT 32767) RETURN UTL_HTTP.HTML_PIECES

ParametersParameters

url

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 684

url is the Uniform Resource Locator from which UTL_HTTP will return content.

max_pieces

max_pieces specifies the maximum number of 2000-byte segments that the REQUEST_PIECES function will return. If max_pieces specifies more
units than are available at the specified url , the final unit will contain fewer bytes.

ExampleExample

The following example returns the first four 2000 byte segments retrieved from the EDB website:

DECLARE
 result UTL_HTTP.HTML_PIECES;
BEGIN
result := UTL_HTTP.REQUEST_PIECES('http://www.enterprisedb.com/', 4);
END;

SET_BODY_CHARSET

The SET_BODY_CHARSET procedure sets the default character set of the body of future HTTP requests. The signature is:

SET_BODY_CHARSET(<charset> VARCHAR2 DEFAULT NULL)

ParametersParameters

charset

charset is the character set of the body of future requests. The default is null in which case the database character set is assumed.

SET_FOLLOW_REDIRECT

The SET_FOLLOW_REDIRECT procedure sets the maximum number of times the HTTP redirect instruction is to be followed in the response to this
request or future requests. This procedures has two signatures:

SET_FOLLOW_REDIRECT(<max_redirects> IN INTEGER DEFAULT 3)

and

SET_FOLLOW_REDIRECT(<r> IN OUT UTL_HTTP.REQ, <max_redirects>
IN INTEGER DEFAULT 3)

Use the second form to change the maximum number of redirections for an individual request that a request inherits from the session default settings.

ParametersParameters

r

r is the HTTP request record.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 685

max_redirects

max_redirects is maximum number of redirections allowed. Set to 0 to disable redirections. The default is 3.

SET_HEADER

The SET_HEADER procedure sets the HTTP request header. The signature is:

SET_HEADER(<r> IN OUT UTL_HTTP.REQ, <name> IN VARCHAR2, <value>
IN VARCHAR2 DEFAULT NULL)

ParametersParameters

r

r is the HTTP request record.

name

name is the name of the request header.

value

value is the value of the request header. The default is null.

SET_RESPONSE_ERROR_CHECK

The SET_RESPONSE_ERROR_CHECK procedure determines whether or not HTTP 4xx and 5xx status codes returned by the GET_RESPONSE function
should be interpreted as errors. The signature is:

SET_RESPONSE_ERROR_CHECK(<enable> IN BOOLEAN DEFAULT FALSE)

ParametersParameters

enable

Set enable to TRUE if HTTP 4xx and 5xx status codes are to be treated as errors, otherwise set to FALSE . The default is FALSE .

SET_TRANSFER_TIMEOUT

The SET_TRANSFER_TIMEOUT procedure sets the default, transfer timeout setting for waiting for a response from an HTTP request. This procedure has
two signatures:

SET_TRANSFER_TIMEOUT(<timeout> IN INTEGER DEFAULT 60)

and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 686

SET_TRANSFER_TIMEOUT(<r> IN OUT UTL_HTTP.REQ, <timeout> IN
INTEGER DEFAULT 60)

Use the second form to change the transfer timeout setting for an individual request that a request inherits from the session default settings.

ParametersParameters

r

r is the HTTP request record.

timeout

timeout is the transfer timeout setting in seconds for HTTP requests. The default is 60 seconds.

WRITE_LINE

The WRITE_LINE procedure writes data to the HTTP request body in text form; the text is terminated with a CRLF character pair. The signature is:

WRITE_LINE(<r> IN OUT UTL_HTTP.REQ, <data> IN VARCHAR2)

ParametersParameters

r

r is the HTTP request record.

data

data is the request body in TEXT form.

ExampleExample

The following example writes data (Account balance $500.00) in text form to the request body to be sent using the HTTP POST method. The data
is sent to a hypothetical web application (post.php) that accepts and processes data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_LINE(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Assuming the web application successfully processed the POST method, the following output would be displayed:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 687

Status Code: 200
Reason Phrase: OK

WRITE_RAW

The WRITE_RAW procedure writes data to the HTTP request body in binary form. The signature is:

WRITE_RAW(<r> IN OUT UTL_HTTP.REQ, <data> IN RAW)

ParametersParameters

r

r is the HTTP request record.

data

data is the request body in binary form.

ExampleExample

The following example writes data in binary form to the request body to be sent using the HTTP POST method to a hypothetical web application that
accepts and processes such data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_RAW(v_req, HEXTORAW
('54657374696e6720504f5354206d6574686f6420696e20485454502072657175657374'));
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

The text string shown in the HEXTORAW function is the hexadecimal translation of the text Testing POST method in HTTP request .

Assuming the web application successfully processed the POST method, the following output would be displayed:

Status Code: 200
Reason Phrase: OK

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 688

WRITE_TEXT

The WRITE_TEXT procedure writes data to the HTTP request body in text form. The signature is:

WRITE_TEXT(<r> IN OUT UTL_HTTP.REQ, <data> IN VARCHAR2)

ParametersParameters

r

r is the HTTP request record.

data

data is the request body in text form.

ExampleExample

The following example writes data (Account balance $500.00) in text form to the request body to be sent using the HTTP POST method. The data
is sent to a hypothetical web application (post.php) that accepts and processes data.

DECLARE
 v_req UTL_HTTP.REQ;
 v_resp UTL_HTTP.RESP;
BEGIN
 v_req := UTL_HTTP.BEGIN_REQUEST('http://www.example.com/post.php',
 'POST');
 UTL_HTTP.SET_HEADER(v_req, 'Content-Length', '23');
 UTL_HTTP.WRITE_TEXT(v_req, 'Account balance $500.00');
 v_resp := UTL_HTTP.GET_RESPONSE(v_req);
 DBMS_OUTPUT.PUT_LINE('Status Code: ' || v_resp.status_code);
 DBMS_OUTPUT.PUT_LINE('Reason Phrase: ' || v_resp.reason_phrase);
 UTL_HTTP.END_RESPONSE(v_resp);
END;

Assuming the web application successfully processed the POST method, the following output would be displayed:

Status Code: 200
Reason Phrase: OK

END_OF_BODY

The END_OF_BODY exception will be raised when it reaches the end of the HTTP response body.

ExampleExample

The following example handles the exception and writes Exception caught in text form to the request body to be sent using the HTTP POST method.
The data is sent to a hypothetical web application (post.php) that accepts and processes data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 689

DECLARE
 req UTL_HTTP.REQ;
 resp UTL_HTTP.RESP;
 value VARCHAR2(32768);
BEGIN
 req := UTL_HTTP.BEGIN_REQUEST('https://www.google.com/');
 resp := UTL_HTTP.GET_RESPONSE(req);
LOOP
 UTL_HTTP.READ_LINE(resp, value, TRUE);
END LOOP;
 UTL_HTTP.END_RESPONSE(resp);
EXCEPTION
 WHEN UTL_HTTP.END_OF_BODY THEN
 DBMS_OUTPUT.PUT_LINE('Exception caught');
 UTL_HTTP.END_RESPONSE(resp);
END;

Assuming the web application successfully processed the POST method, the following output will be displayed:

Output is:
Exception caught

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 690

13.2.22 UTL_MAIL

The UTL_MAIL package provides the capability to manage e-mail. Advanced Server supports the following procedures:

Function/Procedure Return
Type

Description

SEND(sender, recipients, cc, bcc, subject, message [, mime_type [,
priority]])

n/a Packages and sends an e-mail to
an SMTP server.

SEND_ATTACH_RAW(sender, recipients, cc, bcc, subject, message,
mime_type, priority, attachment [, att_inline [, att_mime_type [,
att_filename]]])

n/a
Same as the SEND procedure,
but with BYTEA or large object
attachments.

SEND_ATTACH_VARCHAR2(sender, recipients, cc, bcc, subject, message,
mime_type, priority, attachment [, att_inline [, att_mime_type [,
att_filename]]])

n/a
Same as the SEND procedure,
but with VARCHAR2
attachments.

NoteNote

An administrator must grant execute privileges to each user or group before they can use this package.

SEND

The SEND procedure provides the capability to send an e-mail to an SMTP server.

SEND(<sender> VARCHAR2, <recipients> VARCHAR2, <cc> VARCHAR2,
 <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2
 [, <mime_type> VARCHAR2 [, <priority> PLS_INTEGER]])

ParametersParameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 691

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the e-mail The default is 3.

ExamplesExamples

The following anonymous block sends a simple e-mail message.

DECLARE
 v_sender VARCHAR2(30);
 v_recipients VARCHAR2(60);
 v_subj VARCHAR2(20);
 v_msg VARCHAR2(200);
BEGIN
 v_sender := 'jsmith@enterprisedb.com';
 v_recipients := 'ajones@enterprisedb.com,rrogers@enterprisedb.com';
 v_subj := 'Holiday Party';
 v_msg := 'This year''s party is scheduled for Friday, Dec. 21 at ' ||
 '6:00 PM. Please RSVP by Dec. 15th.';
 UTL_MAIL.SEND(v_sender,v_recipients,NULL,NULL,v_subj,v_msg);
END;

SEND_ATTACH_RAW

The SEND_ATTACH_RAW procedure provides the capability to send an e-mail to an SMTP server with an attachment containing either BYTEA data or a
large object (identified by the large object's OID). The call to SEND_ATTACH_RAW can be written in two ways:

SEND_ATTACH_RAW(<sender> VARCHAR2, <recipients> VARCHAR2,
 <cc> VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
 <mime_type> VARCHAR2, <priority> PLS_INTEGER,
 <attachment> BYTEA[, <att_inline> BOOLEAN
 [, <att_mime_type> VARCHAR2[, <att_filename> VARCHAR2]]])

or

SEND_ATTACH_RAW(<sender> VARCHAR2, <recipients> VARCHAR2,
 <cc> VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
 <mime_type> VARCHAR2, <priority> PLS_INTEGER, <attachment> OID
 [, <att_inline> BOOLEAN [, <att_mime_type> VARCHAR2
 [, <att_filename> VARCHAR2]]])

ParametersParameters

sender

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 692

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the e-mail. The default is 3 .

attachment

The attachment.

att_inline

If set to TRUE , then the attachment is viewable inline, FALSE otherwise. The default is TRUE .

att_mime_type

Mime type of the attachment. The default is application/octet .

att_filename

The file name containing the attachment. The default is NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 693

SEND_ATTACH_VARCHAR2

The SEND_ATTACH_VARCHAR2 procedure provides the capability to send an e-mail to an SMTP server with a text attachment.

SEND_ATTACH_VARCHAR2(<sender> VARCHAR2, <recipients> VARCHAR2, <cc>
VARCHAR2, <bcc> VARCHAR2, <subject> VARCHAR2, <message> VARCHAR2,
<mime_type> VARCHAR2, <priority> PLS_INTEGER, <attachment> VARCHAR2 [,
<att_inline> BOOLEAN [, <att_mime_type> VARCHAR2 [, <att_filename> VARCHAR2
]]])

ParametersParameters

sender

E-mail address of the sender.

recipients

Comma-separated e-mail addresses of the recipients.

cc

Comma-separated e-mail addresses of copy recipients.

bcc

Comma-separated e-mail addresses of blind copy recipients.

subject

Subject line of the e-mail.

message

Body of the e-mail.

mime_type

Mime type of the message. The default is text/plain; charset=us-ascii .

priority

Priority of the e-mail The default is 3.

attachment

The VARCHAR2 attachment.

att_inline

If set to TRUE , then the attachment is viewable inline, FALSE otherwise. The default is TRUE .

att_mime_type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 694

Mime type of the attachment. The default is text/plain; charset=us-ascii .

att_filename

The file name containing the attachment. The default is NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 695

13.2.23 UTL_RAW

The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

NoteNote

An administrator must grant execute privileges to each user or group before they can use this package.

Function/Procedure Function or
Procedure

Return
Type

Description

CAST_TO_RAW(c IN VARCHAR2) Function RAW Converts a VARCHAR2 string to a RAW value.

CAST_TO_VARCHAR2(r IN RAW) Function
VARC
HAR2

Converts a RAW value to a VARCHAR2 string.

CONCAT(r1 IN RAW, r2 IN RAW, r3 IN RAW,…) Function RAW Concatenate multiple RAW values into a single RAW
value.

CONVERT(r IN RAW, to_charset IN VARCHAR2,
from_charset IN VARCHAR2)

Function RAW Converts encoded data from one encoding to another, and
returns the result as a RAW value.

LENGTH(r IN RAW) Function
NUMB
ER

Returns the length of a RAW value.

SUBSTR(r IN RAW, pos IN INTEGER, len IN
INTEGER)

Function RAW Returns a portion of a RAW value.

Advanced Server's implementation of UTL_RAW is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

CAST_TO_RAW

The CAST_TO_RAW function converts a VARCHAR2 string to a RAW value. The signature is:

CAST_TO_RAW(<c> VARCHAR2)

The function returns a RAW value if you pass a non- NULL value; if you pass a NULL value, the function will return NULL .

ParametersParameters

c

The VARCHAR2 value that will be converted to RAW .

ExampleExample

The following example uses the CAST_TO_RAW function to convert a VARCHAR2 string to a RAW value:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 696

DECLARE
 v VARCHAR2;
 r RAW;
BEGIN
 v := 'Accounts';
 dbms_output.put_line(v);
 r := UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value:

Accounts
\x4163636f756e7473

CAST_TO_VARCHAR2

The CAST_TO_VARCHAR2 function converts RAW data to VARCHAR2 data. The signature is:

CAST_TO_VARCHAR2(<r> RAW)

The function returns a VARCHAR2 value if you pass a non- NULL value; if you pass a NULL value, the function will return NULL .

ParametersParameters

r

The RAW value that will be converted to a VARCHAR2 value.

ExampleExample

The following example uses the CAST_TO_VARCHAR2 function to convert a RAW value to a VARCHAR2 string:

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 r := '\x4163636f756e7473'
 dbms_output.put_line(v);
 v := UTL_RAW.CAST_TO_VARCHAR2(r);
 dbms_output.put_line(r);
END;

The result set includes the content of the original string and the converted RAW value:

\x4163636f756e7473
Accounts

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 697

CONCAT

The CONCAT function concatenates multiple RAW values into a single RAW value. The signature is:

CONCAT(<r1> RAW, <r2> RAW, <r3> RAW,…)

The function returns a RAW value. Unlike the Oracle implementation, the Advanced Server implementation is a variadic function, and does not place a
restriction on the number of values that can be concatenated.

ParametersParameters

r1, r2, r3,…

The RAW values that CONCAT will concatenate.

ExampleExample

The following example uses the CONCAT function to concatenate multiple RAW values into a single RAW value:

SELECT UTL_RAW.CAST_TO_VARCHAR2(UTL_RAW.CONCAT('\x61', '\x62', '\x63')) FROM
DUAL;
 concat

 abc
(1 row)

The result (the concatenated values) is then converted to VARCHAR2 format by the CAST_TO_VARCHAR2 function.

CONVERT

The CONVERT function converts a string from one encoding to another encoding and returns the result as a RAW value. The signature is:

CONVERT(<r> RAW, <to_charset> VARCHAR2, <from_charset> VARCHAR2)

The function returns a RAW value.

ParametersParameters

r

The RAW value that will be converted.

to_charset

The name of the encoding to which r will be converted.

from_charset

The name of the encoding from which r will be converted.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 698

ExampleExample

The following example uses the UTL_RAW.CAST_TO_RAW function to convert a VARCHAR2 string (Accounts) to a raw value, and then convert the
value from UTF8 to LATIN7 , and then from LATIN7 to UTF8 :

DECLARE
 r RAW;
 v VARCHAR2;
BEGIN
 v:= 'Accounts';
 dbms_output.put_line(v);
 r:= UTL_RAW.CAST_TO_RAW(v);
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'UTF8', 'LATIN7');
 dbms_output.put_line(r);
 r:= UTL_RAW.CONVERT(r, 'LATIN7', 'UTF8');
 dbms_output.put_line(r);

The example returns the VARCHAR2 value, the RAW value, and the converted values:

Accounts
\x4163636f756e7473
\x4163636f756e7473
\x4163636f756e7473

LENGTH

The LENGTH function returns the length of a RAW value. The signature is:

LENGTH(<r> RAW)

The function returns a RAW value.

ParametersParameters

r

The RAW value that LENGTH will evaluate.

ExampleExample

The following example uses the LENGTH function to return the length of a RAW value:

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('Accounts')) FROM DUAL;
 length

 8
(1 row)

The following example uses the LENGTH function to return the length of a RAW value that includes multi-byte characters:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 699

SELECT UTL_RAW.LENGTH(UTL_RAW.CAST_TO_RAW('����'));
 length

 12
(1 row)

SUBSTR

The SUBSTR function returns a substring of a RAW value. The signature is:

SUBSTR (<r> RAW, <pos> INTEGER, <len> INTEGER)

This function returns a RAW value.

ParametersParameters

r

The RAW value from which the substring will be returned.

pos

The position within the RAW value of the first byte of the returned substring.

If pos is 0 or 1 , the substring begins at the first byte of the RAW value.
If pos is greater than one, the substring begins at the first byte specified by pos . For example, if pos is 3 , the substring begins at the third byte
of the value.
If pos is negative, the substring begins at pos bytes from the end of the source value. For example, if pos is -3 , the substring begins at the
third byte from the end of the value.

len

The maximum number of bytes that will be returned.

ExampleExample

The following example uses the SUBSTR function to select a substring that begins 3 bytes from the start of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), 3, 5) FROM DUAL;
 substr

 count
(1 row)

The following example uses the SUBSTR function to select a substring that starts 5 bytes from the end of a RAW value:

SELECT UTL_RAW.SUBSTR(UTL_RAW.CAST_TO_RAW('Accounts'), -5 , 3) FROM DUAL;
 substr

 oun
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 700

13.2.24 UTL_SMTP

The UTL_SMTP package provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

NoteNote

An administrator must grant execute privileges to each user or group before they can use this package.

Function/Procedure Function or
Procedure

Return
Type

Description

CLOSE_DATA(c IN OUT) Procedure n/a Ends an e-mail message.

COMMAND(c IN OUT, cmd [, arg]) Both REPLY Execute an SMTP command.

COMMAND_REPLIES(c IN OUT, cmd [,
arg])

Function REPLIES Execute an SMTP command where multiple reply lines are
expected.

DATA(c IN OUT, body VARCHAR2) Procedure n/a Specify the body of an e-mail message.

EHLO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP server and return
extended information.

HELO(c IN OUT, domain) Procedure n/a Perform initial handshaking with an SMTP server

HELP(c IN OUT [, command]) Function REPLIES Send the HELP command.

MAIL(c IN OUT, sender [, parameters
])

Procedure n/a Start a mail transaction.

NOOP(c IN OUT) Both REPLY Send the null command.

OPEN_CONNECTION(host [, port [,
tx_timeout]])

Function
CONNECT
ION

Open a connection.

OPEN_DATA(c IN OUT) Both REPLY Send the DATA command.

QUIT(c IN OUT) Procedure n/a Terminate the SMTP session and disconnect.

RCPT(c IN OUT, recipient [,
parameters])

Procedure n/a Specify the recipient of an e-mail message.

RSET(c IN OUT) Procedure n/a Terminate the current mail transaction.

VRFY(c IN OUT, recipient) Function REPLY Validate an e-mail address.

WRITE_DATA(c IN OUT, data) Procedure n/a Write a portion of the e-mail message.

Advanced Server's implementation of UTL_SMTP is a partial implementation when compared to Oracle's version. Only those functions and procedures
listed in the table above are supported.

The following table lists the public variables available in the UTL_SMTP package.

Public Variables Data Type Value Description

connection RECORD Description of an SMTP connection.

reply RECORD SMTP reply line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 701

CONNECTION

The CONNECTION record type provides a description of an SMTP connection.

TYPE connection IS RECORD (
 host VARCHAR2(255),
 port PLS_INTEGER,
 tx_timeout PLS_INTEGER
);

REPLY/REPLIES

The REPLY record type provides a description of an SMTP reply line. REPLIES is a table of multiple SMTP reply lines.

TYPE reply IS RECORD (
 code INTEGER,
 text VARCHAR2(508)
);
TYPE replies IS TABLE OF reply INDEX BY BINARY_INTEGER;

CLOSE_DATA

The CLOSE_DATA procedure terminates an e-mail message by sending the following sequence:

<CR><LF>.<CR><LF>

This is a single period at the beginning of a line.

CLOSE_DATA(<c> IN OUT CONNECTION)

ParametersParameters

c

The SMTP connection to be closed.

COMMAND

The COMMAND procedure provides the capability to execute an SMTP command. If you are expecting multiple reply lines, use COMMAND_REPLIES .

<reply> REPLY COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2
 [, <arg> VARCHAR2])

COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2 [, <arg> VARCHAR2])

ParametersParameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 702

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

An argument to the SMTP command. The default is null.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply .

See Reply/Replies for a description of REPLY and REPLIES .

COMMAND_REPLIES

The COMMAND_REPLIES function processes an SMTP command that returns multiple reply lines. Use COMMAND if only a single reply line is expected.

<replies> REPLIES COMMAND(<c> IN OUT CONNECTION, <cmd> VARCHAR2
 [, <arg> VARCHAR2])

ParametersParameters

c

The SMTP connection to which the command is to be sent.

cmd

The SMTP command to be processed.

arg

An argument to the SMTP command. The default is null.

replies

SMTP reply lines to the command. See Reply/Replies for a description of REPLY and REPLIES .

DATA

The DATA procedure provides the capability to specify the body of the e-mail message. The message is terminated with a <CR><LF>.<CR><LF>
sequence.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 703

DATA(<c> IN OUT CONNECTION, <body> VARCHAR2)

ParametersParameters

c

The SMTP connection to which the command is to be sent.

body

Body of the e-mail message to be sent.

EHLO

The EHLO procedure performs initial handshaking with the SMTP server after establishing the connection. The EHLO procedure allows the client to
identify itself to the SMTP server according to RFC 821. RFC 1869 specifies the format of the information returned in the server’s reply. The HELO
procedure performs the equivalent functionality, but returns less information about the server.

EHLO(<c> IN OUT CONNECTION, <domain> VARCHAR2)

ParametersParameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

HELO

The HELO procedure performs initial handshaking with the SMTP server after establishing the connection. The HELO procedure allows the client to
identify itself to the SMTP server according to RFC 821. The EHLO procedure performs the equivalent functionality, but returns more information about
the server.

HELO(<c> IN OUT, <domain> VARCHAR2)

ParametersParameters

c

The connection to the SMTP server over which to perform handshaking.

domain

Domain name of the sending host.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 704

HELP

The HELP function provides the capability to send the HELP command to the SMTP server.

<replies> REPLIES HELP(<c> IN OUT CONNECTION [, <command> VARCHAR2])

ParametersParameters

c

The SMTP connection to which the command is to be sent.

command

Command on which help is requested.

replies

SMTP reply lines to the command. See Reply/Replies for a description of REPLY and REPLIES .

MAIL

The MAIL procedure initiates a mail transaction.

MAIL(<c> IN OUT CONNECTION, <sender> VARCHAR2 [, <parameters> VARCHAR2])

ParametersParameters

c

Connection to SMTP server on which to start a mail transaction.

sender

The sender’s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869.

NOOP

The NOOP function/procedure sends the null command to the SMTP server. The NOOP has no effect upon the server except to obtain a successful
response.

<reply> REPLY NOOP(<c> IN OUT CONNECTION)

NOOP(<c> IN OUT CONNECTION)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 705

ParametersParameters

c

The SMTP connection on which to send the command.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply . See Reply/Replies for a description of REPLY and
REPLIES .

OPEN_CONNECTION

The OPEN_CONNECTION functions open a connection to an SMTP server.

<c> CONNECTION OPEN_CONNECTION(<host> VARCHAR2 [, <port>
PLS_INTEGER [, <tx_timeout> PLS_INTEGER DEFAULT NULL]])

ParametersParameters

host

Name of the SMTP server.

port

Port number on which the SMTP server is listening. The default is 25.

tx_timeout

Time out value in seconds. Do not wait is indicated by specifying 0. Wait indefinitely is indicated by setting timeout to null. The default is null.

c

Connection handle returned by the SMTP server.

OPEN_DATA

The OPEN_DATA procedure sends the DATA command to the SMTP server.

OPEN_DATA(<c> IN OUT CONNECTION)

ParametersParameters

c

SMTP connection on which to send the command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 706

QUIT

The QUIT procedure closes the session with an SMTP server.

QUIT(<c> IN OUT CONNECTION)

ParametersParameters

c

SMTP connection to be terminated.

RCPT

The RCPT procedure provides the e-mail address of the recipient. To schedule multiple recipients, invoke RCPT multiple times.

RCPT(<c> IN OUT CONNECTION, <recipient> VARCHAR2 [, <parameters> VARCHAR2])

ParametersParameters

c

Connection to SMTP server on which to add a recipient.

recipient

The recipient’s e-mail address.

parameters

Mail command parameters in the format, key=value as defined in RFC 1869.

RSET

The RSET procedure provides the capability to terminate the current mail transaction.

RSET(<c> IN OUT CONNECTION)

ParametersParameters

c

SMTP connection on which to cancel the mail transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 707

VRFY

The VRFY function provides the capability to validate and verify the recipient’s e-mail address. If valid, the recipient’s full name and fully qualified mailbox
is returned.

<reply> REPLY VRFY(<c> IN OUT CONNECTION, <recipient> VARCHAR2)

ParametersParameters

c

The SMTP connection on which to verify the e-mail address.

recipient

The recipient’s e-mail address to be verified.

reply

SMTP reply to the command. If SMTP returns multiple replies, only the last one is returned in reply . See Reply/Replies for a description of REPLY and
REPLIES .

WRITE_DATA

The WRITE_DATA procedure provides the capability to add VARCHAR2 data to an e-mail message. The WRITE_DATA procedure may be repetitively
called to add data.

WRITE_DATA(<c> IN OUT CONNECTION, <data> VARCHAR2)

ParametersParameters

c

The SMTP connection on which to add data.

data

Data to be added to the e-mail message. The data must conform to the RFC 822 specification.

Comprehensive Example

The following procedure constructs and sends a text e-mail message using the UTL_SMTP package.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 708

CREATE OR REPLACE PROCEDURE send_mail (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.DATA(v_conn, SUBSTR(
 'Date: ' || TO_CHAR(SYSDATE,
 'Dy, DD Mon YYYY HH24:MI:SS') || v_crlf
 || 'From: ' || p_sender || v_crlf
 || 'To: ' || p_recipient || v_crlf
 || 'Subject: ' || p_subj || v_crlf
 || p_msg
 , 1, 32767));
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

The following example uses the OPEN_DATA, WRITE_DATA , and CLOSE_DATA procedures instead of the DATA procedure.

CREATE OR REPLACE PROCEDURE send_mail_2 (
 p_sender VARCHAR2,
 p_recipient VARCHAR2,
 p_subj VARCHAR2,
 p_msg VARCHAR2,
 p_mailhost VARCHAR2
)
IS
 v_conn UTL_SMTP.CONNECTION;
 v_crlf CONSTANT VARCHAR2(2) := CHR(13) || CHR(10);
 v_port CONSTANT PLS_INTEGER := 25;
BEGIN
 v_conn := UTL_SMTP.OPEN_CONNECTION(p_mailhost,v_port);
 UTL_SMTP.HELO(v_conn,p_mailhost);
 UTL_SMTP.MAIL(v_conn,p_sender);
 UTL_SMTP.RCPT(v_conn,p_recipient);
 UTL_SMTP.OPEN_DATA(v_conn);
 UTL_SMTP.WRITE_DATA(v_conn,'From: ' || p_sender || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'To: ' || p_recipient || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,'Subject: ' || p_subj || v_crlf);
 UTL_SMTP.WRITE_DATA(v_conn,v_crlf || p_msg);
 UTL_SMTP.CLOSE_DATA(v_conn);
 UTL_SMTP.QUIT(v_conn);
END;

EXEC send_mail_2('asmith@enterprisedb.com','pjones@enterprisedb.com','Holiday
Party','Are you planning to attend?','smtp.enterprisedb.com');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 709

13.2.25 UTL_URL

The UTL_URL package provides a way to escape illegal and reserved characters within an URL.

Function/Procedure Return
Type

Description

ESCAPE(url, escape_reserved_chars,
url_charset)

VARCHAR
2

Use the ESCAPE function to escape any illegal and reserved characters
in a URL.

UNESCAPE(url, url_charset) VARCHAR
2

The UNESCAPE function to convert an URL to it's original form.

The UTL_URL package will return the BAD_URL exception if the call to a function includes an incorrectly-formed URL.

ESCAPE

Use the ESCAPE function to escape illegal and reserved characters within an URL. The signature is:

ESCAPE(<url> VARCHAR2, <escape_reserved_chars> BOOLEAN,
<url_charset> VARCHAR2)

Reserved characters are replaced with a percent sign, followed by the two-digit hex code of the ascii value for the escaped character.

ParametersParameters

url

url specifies the Uniform Resource Locator that UTL_URL will escape.

escape_reserved_chars

escape_reserved_chars is a BOOLEAN value that instructs the ESCAPE function to escape reserved characters as well as illegal characters:

If escaped_reserved_chars is FALSE , ESCAPE will escape only the illegal characters in the specified URL.

If escape_reserved_chars is TRUE , ESCAPE will escape both the illegal characters and the reserved characters in the specified URL.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 710

If escape_reserved_chars is TRUE , ESCAPE will escape both the illegal characters and the reserved characters in the specified URL.

By default, escape_reserved_chars is FALSE .

Within an URL, legal characters are:

Uppercase A through Z Lowercase a through z 0 through 9

asterisk (*) exclamation point (!) hyphen (-)

left parenthesis (() period (.) right parenthesis ())

single-quote (') tilde (~) underscore (_)

Some characters are legal in some parts of an URL, while illegal in others; to review comprehensive rules about illegal characters, refer to RFC 2396.
Some examples of characters that are considered illegal in any part of an URL are:

Illegal Character Escape Sequence

a blank space () %20

curly braces ({ or }) %7b and %7d

hash mark (#) %23

The ESCAPE function considers the following characters to be reserved, and will escape them if escape_reserved_chars is set to TRUE :

Reserved Character Escape Sequence

ampersand (&) %5C

at sign (@) %25

colon (:) %3a

comma (,) %2c

dollar sign ($) %24

equal sign (=) %3d

plus sign (+) %2b

question mark (?) %3f

semi-colon (;) %3b

slash (/) %2f

url_charset

url_charset specifies a character set to which a given character will be converted before it is escaped. If url_charset is NULL , the character will
not be converted. The default value of url_charset is ISO-8859-1 .

ExamplesExamples

The following anonymous block uses the ESCAPE function to escape the blank spaces in the URL:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 711

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE
function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting (escaped) URL is:

http://www.example.com/Using%20the%20ESCAPE%20function.html

If you include a value of TRUE for the escape_reserved_chars parameter when invoking the function:

DECLARE
 result varchar2(400);
BEGIN
 result := UTL_URL.ESCAPE('http://www.example.com/Using the ESCAPE
function.html', TRUE);
 DBMS_OUTPUT.PUT_LINE(result);
END;

The ESCAPE function escapes the reserved characters as well as the illegal characters in the URL:

http%3A%2F%2Fwww.example.com%2FUsing%20the%20ESCAPE%20function.html

UNESCAPE

The UNESCAPE function removes escape characters added to an URL by the ESCAPE function, converting the URL to it's original form.

The signature is:

UNESCAPE(<url> VARCHAR2, <url_charset> VARCHAR2)

ParametersParameters

url

url specifies the Uniform Resource Locator that UTL_URL will unescape.

url_charset

After unescaping a character, the character is assumed to be in url_charset encoding, and will be converted from that encoding to database encoding
before being returned. If url_charset is NULL , the character will not be converted. The default value of url_charset is ISO-8859-1 .

ExamplesExamples

The following anonymous block uses the ESCAPE function to escape the blank spaces in the URL:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 712

DECLARE
 result varchar2(400);
BEGIN
 result :=
UTL_URL.UNESCAPE('http://www.example.com/Using%20the%20UNESCAPE%20function.html');
 DBMS_OUTPUT.PUT_LINE(result);
END;

The resulting (unescaped) URL is:

http://www.example.com/Using the UNESCAPE function.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 713

14 Database Compatibility for Oracle Developers Tools and Utilities Guide

The tools and utilities documented in this guide allow a developer that is accustomed to working with Oracle utilities to work with Advanced Server in a
familiar environment.

The sections in this guide describe compatible tools and utilities that are supported by Advanced Server. These include:

EDB*Loader
EDB*Wrap
Dynamic Runtime Instrumentation

The EDB*Plus command line client provides a user interface to Advanced Server that supports SQL*Plus commands; EDB*Plus allows you to:

Query database objects
Execute stored procedures
Format output from SQL commands
Execute batch scripts
Execute OS commands
Record output

For detailed installation and usage information about EDB*Plus, see the EDB*Plus.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 714

https://www.enterprisedb.com/docs/edb_plus/latest/

14.1 EDB*Loader

EDB*Loader is a high-performance bulk data loader that provides an interface compatible with Oracle databases for Advanced Server. The EDB*Loader
command line utility loads data from an input source, typically a file, into one or more tables using a subset of the parameters offered by Oracle
SQL*Loader.

EDB*Loader features include:

Support for the Oracle SQL*Loader data loading methods - conventional path load, direct path load, and parallel direct path load
Syntax for control file directives compatible with Oracle SQL*Loader
Input data with delimiter-separated or fixed-width fields
Bad file for collecting rejected records
Loading of multiple target tables
Discard file for collecting records that do not meet the selection criteria of any target table
Log file for recording the EDB*Loader session and any error messages
Data loading from standard input and remote loading, particularly useful for large data sources on remote hosts

These features are explained in detail in the following sections.

NoteNote

The following are important version compatibility restrictions between the EDB*Loader client and the database server.

When you invoke the EDB*Loader program (called edbldr), you pass in parameters and directive information to the database server. WeWe
strongly recommend that the version 13 EDB*Loader client (the edbldr program supplied with Advanced Server 13) be used to load datastrongly recommend that the version 13 EDB*Loader client (the edbldr program supplied with Advanced Server 13) be used to load data
only into version 13 of the database server. In general, the EDB*Loader client and database server should be the same version.only into version 13 of the database server. In general, the EDB*Loader client and database server should be the same version.

Using EDB*Loader in conjunction with connection poolers such as PgPool-II and PgBouncer is not supported. EDB*Loader must connect
directly to Advanced Server version 13. Alternatively, the following commands are some of the options that can be used for loading data
through connection poolers:

psql \copy
jdbc copyIn
psycopg2 copy_from

Data Loading Methods

As with Oracle SQL*Loader, EDB*Loader supports three data loading methods:

Conventional path load
Direct path load
Parallel direct path load

Conventional path load is the default method used by EDB*Loader. Basic insert processing is used to add rows to the table.

The advantage of a conventional path load over the other methods is that table constraints and database objects defined on the table such as primary keys,
not null constraints, check constraints, unique indexes, foreign key constraints, and triggers are enforced during a conventional path load.

One exception is that the Advanced Server rules defined on the table are not enforced. EDB*Loader can load tables on which rules are defined, but the
rules are not executed. As a consequence, partitioned tables implemented using rules cannot be loaded using EDB*Loader.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 715

NoteNote

Advanced Server rules are created by the CREATE RULE command. Advanced Server rules are not the same database objects as rules and rule
sets used in Oracle.

EDB*Loader also supports direct path loads. A direct path load is faster than a conventional path load, but requires the removal of most types of
constraints and triggers from the table. For more information, see Direct Path Load.

Finally, EDB*Loader supports parallel direct path loads. A parallel direct path load provides even greater performance improvement by permitting multiple
EDB*Loader sessions to run simultaneously to load a single table. For more information, see Parallel Direct Path Load.

General Usage

EDB*Loader can load data files with either delimiter-separated or fixed-width fields, in single-byte or multi-byte character sets. The delimiter can be a string
consisting of one or more single-byte or multi-byte characters. Data file encoding and the database encoding may be different. Character set conversion of
the data file to the database encoding is supported.

Each EDB*Loader session runs as a single, independent transaction. If an error should occur during the EDB*Loader session that aborts the transaction, all
changes made during the session are rolled back.

Generally, formatting errors in the data file do not result in an aborted transaction. Instead, the badly formatted records are written to a text file called the
bad file. The reason for the error is recorded in the log file.

Records causing database integrity errors do result in an aborted transaction and rollback. As with formatting errors, the record causing the error is written
to the bad file and the reason is recorded in the log file.

NoteNote

EDB*Loader differs from Oracle SQL*Loader in that a database integrity error results in a rollback in EDB*Loader. In Oracle SQL*Loader, only the
record causing the error is rejected. Records that were previously inserted into the table are retained and loading continues after the rejected
record.

The following are examples of types of formatting errors that do not abort the transaction:

Attempt to load non-numeric value into a numeric column
Numeric value is too large for a numeric column
Character value is too long for the maximum length of a character column
Attempt to load improperly formatted date value into a date column

The following are examples of types of database errors that abort the transaction and result in the rollback of all changes made in the EDB*Loader session:

Violation of a unique constraint such as a primary key or unique index
Violation of a referential integrity constraint
Violation of a check constraint
Error thrown by a trigger fired as a result of inserting rows

Building the EDB*Loader Control File

When you invoke EDB*Loader, the list of arguments provided must include the name of a control file. The control file includes the instructions that
EDB*Loader uses to load the table (or tables) from the input data file. The control file includes information such as:

The name of the input data file containing the data to be loaded.
The name of the table or tables to be loaded from the data file.
Names of the columns within the table or tables and their corresponding field placement in the data file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 716

Specification of whether the data file uses a delimiter string to separate the fields, or if the fields occupy fixed column positions.
Optional selection criteria to choose which records from the data file to load into a given table.
The name of the file that will collect illegally formatted records.
The name of the discard file that will collect records that do not meet the selection criteria of any table.

The syntax for the EDB*Loader control file is as follows:

[OPTIONS (<param=value> [, <param=value>] ...)]
LOAD DATA
 [CHARACTERSET <charset>]
 [INFILE '{ <data_file> | <stdin> }']
 [BADFILE '<bad_file>']
 [DISCARDFILE '<discard_file>']
 [{ DISCARDMAX | DISCARDS } <max_discard_recs>]
[INSERT | APPEND | REPLACE | TRUNCATE]
[PRESERVE BLANKS]
{ INTO TABLE <target_table>
 [WHEN <field_condition> [AND <field_condition>] ...]
 [FIELDS TERMINATED BY '<termstring>'
 [OPTIONALLY ENCLOSED BY '<enclstring>']]
 [RECORDS DELIMITED BY '<delimstring>']
 [TRAILING NULLCOLS]
 (<field_def> [, <field_def>] ...)
} ...

where field_def defines a field in the specified data_file that describes the location, data format, or value of the data to be inserted into
column_name of the target_table . The syntax of field_def is the following:

<column_name> {
 CONSTANT <val> |
 FILLER [POSITION (<start:end>)] [<fieldtype>] |
 BOUNDFILLER [POSITION (<start:end>)] [<fieldtype>] |
 [POSITION (<start:end>)] [<fieldtype>]
 [NULLIF <field_condition> [AND <field_condition>] ...]
 [PRESERVE BLANKS] ["<expr>"]
}

where fieldtype is one of:

CHAR [(<length>)] | DATE [(<length>)] | TIMESTAMP [(<length>)] ["<datemask>"] |
INTEGER EXTERNAL [(<length>)] |
FLOAT EXTERNAL [(<length>)] | DECIMAL EXTERNAL [(<length>)] |
ZONED EXTERNAL [(<length>)] | ZONED [(<precision> [,<scale>])]

DescriptionDescription

The specification of data_file , bad_file , and discard_file may include the full directory path or a relative directory path to the file name. If
the file name is specified alone or with a relative directory path, the file is then assumed to exist (in the case of data_file), or is created (in the case of
bad_file or discard_file), relative to the current working directory from which edbldr is invoked.

You can include references to environment variables within the EDB*Loader control file when referring to a directory path and/or file name. Environment
variable references are formatted differently on Windows systems than on Linux systems:

On Linux, the format is $ENV_VARIABLE or ${ENV_VARIABLE}
On Windows, the format is %ENV_VARIABLE%

Where ENV_VARIABLE is the environment variable that is set to the directory path and/or file name.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 717

The EDBLDR_ENV_STYLE environment variable instructs Advanced Server to interpret environment variable references as Windows-styled references or
Linux-styled references irregardless of the operating system on which EDB*Loader resides. You can use this environment variable to create portable
control files for EDB*Loader.

On a Windows system, set EDBLDR_ENV_STYLE to linux or unix to instruct Advanced Server to recognize Linux-style references within the
control file.
On a Linux system, set EDBLDR_ENV_STYLE to windows to instruct Advanced Server to recognize Windows-style references within the control
file.

The operating system account enterprisedb must have read permission on the directory and file specified by data_file .

The operating system account enterprisedb must have write permission on the directories where bad_file and discard_file are to be written.

NoteNote

The file names for data_file , bad_file , and discard_file should include extensions of .dat , .bad , and .dsc , respectively. If
the provided file name does not contain an extension, EDB*Loader assumes the actual file name includes the appropriate aforementioned
extension.

If an EDB*Loader session results in data format errors and the BADFILE clause is not specified, nor is the BAD parameter given on the command line
when edbldr is invoked, a bad file is created with the name control_file_base.bad in the current working directory from which edbldr is
invoked. control_file_base is the base name of the control file (that is, the file name without any extension) used in the edbldr session.

If all of the following conditions are true, the discard file is not created even if the EDB*Loader session results in discarded records:

The DISCARDFILE clause for specifying the discard file is not included in the control file.
The DISCARD parameter for specifying the discard file is not included on the command line.
The DISCARDMAX clause for specifying the maximum number of discarded records is not included in the control file.
The DISCARDS clause for specifying the maximum number of discarded records is not included in the control file.
The DISCARDMAX parameter for specifying the maximum number of discarded records is not included on the command line.

If neither the DISCARDFILE clause nor the DISCARD parameter for explicitly specifying the discard file name are specified, but DISCARDMAX or
DISCARDS is specified, then the EDB*Loader session creates a discard file using the data file name with an extension of .dsc .

NoteNote

There is a distinction between keywords DISCARD and DISCARDS . DISCARD is an EDB*Loader command line parameter used to specify the
discard file name (see General Usage). DISCARDS is a clause of the LOAD DATA directive that may only appear in the control file. Keywords
DISCARDS and DISCARDMAX provide the same functionality of specifying the maximum number of discarded records allowed before

terminating the EDB*Loader session. Records loaded into the database before termination of the EDB*Loader session due to exceeding the
DISCARDS or DISCARDMAX settings are kept in the database and are not rolled back.

If one of INSERT , APPEND , REPLACE , or TRUNCATE is specified, it establishes the default action of how rows are to be added to target tables. If
omitted, the default action is as if INSERT had been specified.

If the FIELDS TERMINATED BY clause is specified, then the POSITION (start:end) clause may not be specified for any field_def .
Alternatively if the FIELDS TERMINATED BY clause is not specified, then every field_def must contain either the POSITION (start:end)
clause, the fieldtype(length) clause, or the CONSTANT clause.

ParametersParameters

OPTIONS param=value

Use the OPTIONS clause to specify param=value pairs that represent an EDB*Loader directive. If a parameter is specified in both the OPTIONS
clause and on the command line when edbldr is invoked, the command line setting is used.

Specify one or more of the following parameter/value pairs:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 718

DIRECT= { FALSE | TRUE }

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead of a conventional path load. The default value of DIRECT is FALSE .

You should not set DIRECT=true when loading the data into a replicated table. If you are using EDB*Loader to load data into a replicated table
and set DIRECT=true , indexes may omit rows that are in a table or may potentially contain references to rows that have been deleted.
EnterpriseDB does not support direct inserts to load data into replicated tables.

For information on direct path loads see, Direct Path Load.

ERRORS=error_count

error_count specifies the number of errors permitted before aborting the EDB*Loader session. The default is 50 .

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to indicate that the data should be copied with the rows frozen . A tuple guaranteed to be visible to all current and future
transactions is marked as frozen to prevent transaction ID wrap-around. For more information about frozen tuples, see the PostgreSQL core
documentation at:

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

You must specify a data-loading type of TRUNCATE in the control file when using the FREEZE option. FREEZE is not supported for direct
loading.

By default, FREEZE is FALSE .

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a number of concurrent EDB*Loader sessions participating in a
parallel direct path load. The default value of PARALLEL is FALSE .

When PARALLEL is TRUE , the DIRECT parameter must also be set to TRUE . For more information about parallel direct path loads, see Parallel
Direct Path Load.

ROWS=n

n specifies the number of rows that EDB*Loader will commit before loading the next set of n rows.

If EDB*Loader encounters an invalid row during a load (in which the ROWS parameter is specified), those rows committed prior to encountering the
error will remain in the destination table.

SKIP=skip_count

skip_count specifies the number of records at the beginning of the input data file that should be skipped before loading begins. The default is
0 .

SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 719

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }

If SKIP_INDEX_MAINTENANCE is TRUE , index maintenance is not performed as part of a direct path load, and indexes on the loaded table are
marked as invalid. The default value of SKIP_INDEX_MAINTENANCE is FALSE .

NoteNote

During a parallel direct path load, target table indexes are not updated, and are marked as invalid after the load is complete.

You can use the REINDEX command to rebuild an index. For more information about the REINDEX command, see the PostgreSQL core
documentation availabe at:

https://www.postgresql.org/docs/current/static/sql-reindex.html

charset

Use the CHARACTERSET clause to identify the character set encoding of data_file where charset is the character set name. This clause is
required if the data file encoding differs from the control file encoding. (The control file encoding must always be in the encoding of the client where
edbldr is invoked.)

Examples of charset settings are UTF8 , SQL_ASCII , and SJIS .

For more information about client to database character set conversion, see the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/multibyte.html

data_file

File containing the data to be loaded into target_table . Each record in the data file corresponds to a row to be inserted into target_table .

If an extension is not provided in the file name, EDB*Loader assumes the file has an extension of .dat , for example, mydatafile.dat .

NoteNote: If the DATA parameter is specified on the command line when edbldr is invoked, the file given by the command line DATA parameter is used
instead.

If the INFILE clause is omitted as well as the command line DATA parameter, then the data file name is assumed to be identical to the control file
name, but with an extension of .dat .

stdin

Specify stdin (all lowercase letters) if you want to use standard input to pipe the data to be loaded directly to EDB*Loader. This is useful for data sources
generating a large number of records to be loaded.

bad_file

A file that receives data_file records that cannot be loaded due to errors. The bad file is generated for collecting rejected or bad records.

From Advanced Server version 12 and onwards, a bad file will be generated only if there are any bad or rejected records. However, if there is an existing bad
file with identical name and location, and no bad records are generated after invoking a new version of ebdldr , the existing bad file remains untouched.

If an extension is not provided in the file name, EDB*Loader assumes the file has an extension of .bad , for example, mybadfile.bad .

NoteNote: If the BAD parameter is specified on the command line when edbldr is invoked, the file given by the command line BAD parameter is used
instead.

discard_file

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 720

https://www.postgresql.org/docs/current/static/sql-reindex.html
https://www.postgresql.org/docs/current/static/multibyte.html

discard_file

File that receives input data records that are not loaded into any table because none of the selection criteria are met for tables with the WHEN clause, and
there are no tables without a WHEN clause. (All records meet the selection criteria of a table without a WHEN clause.)

If an extension is not provided in the file name, EDB*Loader assumes the file has an extension of .dsc , for example, mydiscardfile.dsc .

NoteNote: If the DISCARD parameter is specified on the command line when edbldr is invoked, the file given by the command line DISCARD parameter is
used instead.

{ DISCARDMAX | DISCARDS } max_discard_recs

Maximum number of discarded records that may be encountered from the input data records before terminating the EDB*Loader session. (A discarded
record is described in the preceding description of the discard_file parameter.) Either keyword DISCARDMAX or DISCARDS may be used
preceding the integer value specified by max_discard_recs .

For example, if max_discard_recs is 0 , then the EDB*Loader session is terminated if and when a first discarded record is encountered. If
max_discard_recs is 1 , then the EDB*Loader session is terminated if and when a second discarded record is encountered.

When the EDB*Loader session is terminated due to exceeding max_discard_recs , prior input data records that have been loaded into the database
are retained. They are not rolled back.

INSERT | APPEND | REPLACE | TRUNCATE

Specifies how data is to be loaded into the target tables. If one of INSERT , APPEND , REPLACE , or TRUNCATE is specified, it establishes the default
action for all tables, overriding the default of INSERT .

INSERT

Data is to be loaded into an empty table. EDB*Loader throws an exception and does not load any data if the table is not initially empty.

NoteNote

If the table contains rows, the TRUNCATE command must be used to empty the table prior to invoking EDB*Loader. EDB*Loader throws
an exception if the DELETE command is used to empty the table instead of the TRUNCATE command. Oracle SQL*Loader allows the
table to be emptied by using either the DELETE or TRUNCATE command.

APPEND

Data is to be added to any existing rows in the table. The table may be initially empty as well.

REPLACE

The REPLACE keyword and TRUNCATE keywords are functionally identical. The table is truncated by EDB*Loader prior to loading the new data.

NoteNote

Delete triggers on the table are not fired as a result of the REPLACE operation.

TRUNCATE

The table is truncated by EDB*Loader prior to loading the new data. Delete triggers on the table are not fired as a result of the TRUNCATE
operation.

PRESERVE BLANKS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 721

The PRESERVE BLANKS option works only with the OPTIONALLY ENCLOSED BY clause and retains leading and trailing whitespaces for both
delimited and predetermined size fields.

In case of NO PRESERVE BLANKS , if the fields are delimited, then only leading whitespaces are omitted, and if any trailing whitespaces are present,
they are left untouched. In the case of predetermined-sized fields with NO PRESERVE BLANKS , the trailing whitespaces are omitted, and the leading
whitespaces if any, are left untouched.

Note:Note: If neither PRESERVE BLANKS nor NO PRESERVE BLANKS is explicitly provided, then the behavior defaults to NO PRESERVE BLANKS . This
option does not work for ideographic whitespaces.

target_table

Name of the table into which data is to be loaded. The table name may be schema-qualified (for example, enterprisedb.emp). The specified target
must not be a view.

field_condition

Conditional clause taking the following form:

[(] { (start:end) | column_name } { = | != | <> } 'val' [)]

This conditional clause is used for the WHEN clause, which is part of the INTO TABLE target_table clause, and the NULLIF clause, which is part
of the field definition denoted as field_def in the syntax diagram.

start and end are positive integers specifying the column positions in data_file that mark the beginning and end of a field that is to be compared
with the constant val . The first character in each record begins with a start value of 1 .

column_name specifies the name assigned to a field definition of the data file as defined by field_def in the syntax diagram.

Use of either (start : end) or column_name defines the portion of the record in data_file that is to be compared with the value specified by 'val'
to evaluate as either true or false.

All characters used in the field_condition text (particularly in the val string) must be valid in the database encoding. (For performing data
conversion, EDB*Loader first converts the characters in val string to the database encoding and then to the data file encoding.)

In the WHEN field_condition [AND field_condition] clause, if all such conditions evaluate to TRUE for a given record, then
EDB*Loader attempts to insert that record into target_table . If the insert operation fails, the record is written to bad_file .

If for a given record, none of the WHEN clauses evaluate to TRUE for all INTO TABLE clauses, the record is written to discard_file , if a discard
file was specified for the EDB*Loader session.

See the description of the NULLIF clause in this Parameters list for the effect of field_condition on this clause.

termstring

String of one or more characters that separates each field in data_file . The characters may be single-byte or multi-byte as long as they are valid in the
database encoding. Two consecutive appearances of termstring with no intervening character results in the corresponding column set to null.

enclstring

String of one or more characters used to enclose a field value in data_file . The characters may be single-byte or multi-byte as long as they are valid in
the database encoding. Use enclstring on fields where termstring appears as part of the data.

delimstring

String of one or more characters that separates each record in data_file . The characters may be single-byte or multi-byte as long as they are valid in

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 722

String of one or more characters that separates each record in data_file . The characters may be single-byte or multi-byte as long as they are valid in
the database encoding. Two consecutive appearances of delimstring with no intervening character results in no corresponding row loaded into the
table. The last record (in other words, the end of the data file) must also be terminated by the delimstring characters, otherwise the final record is not
loaded into the table.

NoteNote: The RECORDS DELIMITED BY 'delimstring' clause is not compatible with Oracle databases.

TRAILING NULLCOLS

If TRAILING NULLCOLS is specified, then the columns in the column list for which there is no data in data_file for a given record, are set to null
when the row is inserted. This applies only to one or more consecutive columns at the end of the column list.

If fields are omitted at the end of a record and TRAILING NULLCOLS is not specified, EDB*Loader assumes the record contains formatting errors and
writes it to the bad file.

column_name

Name of a column in target_table into which a field value defined by field_def is to be inserted. If the field definition includes the FILLER or
BOUNDFILLER clause, then column_name is not required to be the name of a column in the table. It can be any identifier name since the FILLER

and BOUNDFILLER clauses prevent the loading of the field data into a table column.

CONSTANT val

Specifies a constant that is type-compatible with the column data type to which it is assigned in a field definition. Single or double quotes may enclose
val . If val contains white space, then enclosing quotation marks must be used.

The use of the CONSTANT clause completely determines the value to be assigned to a column in each inserted row. No other clause may appear in the
same field definition.

If the TERMINATED BY clause is used to delimit the fields in data_file , there must be no delimited field in data_file corresponding to any field
definition with a CONSTANT clause. In other words, EDB*Loader assumes there is no field in data_file for any field definition with a CONSTANT
clause.

FILLER

Specifies that the data in the field defined by the field definition is not to be loaded into the associated column if the identifier of the field definition is an
actual column name in the table. In such case, the column is set to null. Use of the FILLER or BOUNDFILLER clause is the only circumstance in which
the field definition does not have to be identified by an actual column name.

Unlike the BOUNDFILLER clause, an identifier defined with the FILLER clause must not be referenced in a SQL expression. See the discussion of the
expr parameter.

BOUNDFILLER

Specifies that the data in the field defined by the field definition is not to be loaded into the associated column if the identifier of the field definition is an
actual column name in the table. In such case, the column is set to null. Use of the FILLER or BOUNDFILLER clause is the only circumstance in which
the field definition does not have to be identified by an actual column name.

Unlike the FILLER clause, an identifier defined with the BOUNDFILLER clause may be referenced in a SQL expression. See the discussion of the expr
parameter.

POSITION (start:end)

Defines the location of the field in a record in a fixed-width field data file. start and end are positive integers. The first character in the record has a
start value of 1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 723

CHAR [(<length>)] | DATE [(<length>)] | TIMESTAMP [(<length>)] ["<datemask>"] |
INTEGER EXTERNAL [(<length>)] |
FLOAT EXTERNAL [(<length>)] | DECIMAL EXTERNAL [(<length>)] |
ZONED EXTERNAL [(<length>)] | ZONED [(<precision>[,<scale>])]

Field type that describes the format of the data field in data_file .

NoteNote: Specification of a field type is optional (for descriptive purposes only) and has no effect on whether or not EDB*Loader successfully inserts the data in
the field into the table column. Successful loading depends upon the compatibility of the column data type and the field value. For example, a column with
data type NUMBER(7,2) successfully accepts a field containing 2600 , but if the field contains a value such as 26XX , the insertion fails and the record
is written to bad_file .

Please note that ZONED data is not human-readable; ZONED data is stored in an internal format where each digit is encoded in a separate
nibble/nybble/4-bit field. In each ZONED value, the last byte contains a single digit (in the high-order 4 bits) and the sign (in the low-order 4 bits).

length

Specifies the length of the value to be loaded into the associated column.

If the POSITION (start : end) clause is specified along with a fieldtype(length) clause, then the ending position of the field is overridden by
the specified length value. That is, the length of the value to be loaded into the column is determined by the length value beginning at the start
position, and not by the end position of the POSITION (start : end) clause. Thus, the value to be loaded into the column may be shorter than the
field defined by POSITION (start : end), or it may go beyond the end position depending upon the specified length size.

If the FIELDS TERMINATED BY 'termstring' clause is specified as part of the INTO TABLE clause, and a field definition contains the
fieldtype(length) clause, then a record is accepted as long as the specified length values are greater than or equal to the field lengths as

determined by the termstring characters enclosing all such fields of the record. If the specified length value is less than a field length as
determined by the enclosing termstring characters for any such field, then the record is rejected.

If the FIELDS TERMINATED BY 'termstring' clause is not specified, and the POSITION (start : end) clause is not included with a field
containing the fieldtype(length) clause, then the starting position of this field begins with the next character following the ending position of the
preceding field. The ending position of the preceding field is either the end of its length value if the preceding field contains the
fieldtype(length) clause, or by its end parameter if the field contains the POSITION (start : end) clause without the
fieldtype(length) clause.

precision

Use precision to specify the length of the ZONED value.

If the precision value specified for ZONED conflicts with the length calculated by the server based on information provided with the POSITION
clause, EDB*Loader will use the value specified for precision .

scale

scale specifies the number of digits to the right of the decimal point in a ZONED value.

datemask

Specifies the ordering and abbreviation of the day, month, and year components of a date field.

NoteNote: If the DATE or TIMESTAMP field type is specified along with a SQL expression for the column, then datemask must be specified
after DATE or TIMESTAMP and before the SQL expression. See the following discussion of the expr parameter.

When using the TIMESTAMP field datatype, if you specify time_stamp timestamp "yyyymmddhh24miss" the datemask is converted to the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 724

When using the TIMESTAMP field datatype, if you specify time_stamp timestamp "yyyymmddhh24miss" the datemask is converted to the
SQL expression. However, in case of time_stamp timestamp "select to_timestamp(:time_stamp, 'yyyymmddhh24miss')" , the
EDB*Loader cannot differentiate between datemask and the SQL expression. It treats the third field (SQL expression in the example) as datemask and
prepares the SQL expression, which will not be valid. Where:

first field specifies the column name
second field specifies the datatype
third field specifies the datemask

If you want to provide an SQL expression, then the simple workaround is to specify the datemask and SQL expression using the TO_CHAR function as:

time_stamp timestamp "yyyymmddhh24miss" "to_char(to_timestamp(:time_stamp, 'yyyymmddhh24miss'),
'yyyymmddhh24miss')"

NULLIF field_condition [AND field_condition] ...

See the description of field_condition previously listed in this Parameters section for the syntax of field_condition .

If all field conditions evaluate to TRUE , then the column identified by column_name in the field definition is set to null. If any field condition evaluates
to FALSE , then the column is set to the appropriate value as would normally occur according to the field definition.

PRESERVE BLANKS

The PRESERVE BLANKS option works only with the OPTIONALLY ENCLOSED BY clause and retains leading and trailing whitespaces for both
delimited and predetermined size fields.

In case of NO PRESERVE BLANKS , if the fields are delimited, then only leading whitespaces are omitted, and if any trailing whitespaces are present,
they are left untouched. In the case of predetermined-sized fields with NO PRESERVE BLANKS , the trailing whitespaces are omitted, and the leading
whitespaces if any, are left untouched.

Note:Note: If neither PRESERVE BLANKS nor NO PRESERVE BLANKS is explicitly provided, then the behavior defaults to NO PRESERVE BLANKS . This
option does not work for ideographic whitespaces.

expr

A SQL expression returning a scalar value that is type-compatible with the column data type to which it is assigned in a field definition. Double quotes must
enclose expr . expr may contain a reference to any column in the field list (except for fields with the FILLER clause) by prefixing the column name by
a colon character (:) .

expr may also consist of a SQL SELECT statement. If a SELECT statement is used then the following rules must apply:

The SELECT statement must be enclosed within parentheses (SELECT ...) .

The select list must consist of exactly one expression following the SELECT keyword.

The result set must not return more than one row. If no rows are returned, then the returned value of the resulting expression is null.

The following is the syntax for use of the SELECT statement:

"(SELECT <expr> [FROM <table_list> [WHERE <condition>]])"

NoteNote

Omitting the FROM table_list clause is not compatible with Oracle databases. If no tables need to be specified, use of the FROM
DUAL clause is compatible with Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 725

EDB Loader Control File Examples

The following are some examples of control files and their corresponding data files.

Delimiter-Separated Field Data FileDelimiter-Separated Field Data File

The following control file uses a delimiter-separated data file that appends rows to the emp table:

LOAD DATA
 INFILE 'emp.dat'
 BADFILE 'emp.bad'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

In the preceding control file, the APPEND clause is used to allow the insertion of additional rows into the emp table.

The following is the corresponding delimiter-separated data file:

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20
9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00
9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00
9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20

The use of the TRAILING NULLCOLS clause allows the last field supplying the comm column to be omitted from the first and last records. The comm
column is set to null for the rows inserted from these records.

The double quotation mark enclosure character surrounds the value JONES, JR. in the last record since the comma delimiter character is part of the
field value.

The following query displays the rows added to the table after the EDB*Loader session:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

Fixed-Width Field Data FileFixed-Width Field Data File

The following example is a control file that loads the same rows into the emp table, but uses a data file containing fixed-width fields:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 726

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno POSITION (47:48),
 comm POSITION (49:56)
)

In the preceding control file, the FIELDS TERMINATED BY and OPTIONALLY ENCLOSED BY clauses are absent. Instead, each field now includes
the POSITION clause.

The following is the corresponding data file containing fixed-width fields:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR.MANAGER 783902-APR-09 7975.0020

Single Physical Record Data File – RECORDS DELIMITED BY ClauseSingle Physical Record Data File – RECORDS DELIMITED BY Clause

The following example is a control file that loads the same rows into the emp table, but uses a data file with one physical record. Each individual record
that is to be loaded as a row in the table is terminated by the semicolon character (;) specified by the RECORDS DELIMITED BY clause.

LOAD DATA
 INFILE 'emp_recdelim.dat'
 BADFILE 'emp_recdelim.bad'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 RECORDS DELIMITED BY ';'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The following is the corresponding data file. The content is a single, physical record in the data file. The record delimiter character is included following the
last record (that is, at the end of the file).

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20,;9102,PETERSON,SALESMAN,7698,20-DEC-10,
2600.00,30,2300.00;9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00;9104,"JONES,
JR.",MANAGER,7839,02-APR-09,7975.00,20,;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 727

FILLER ClauseFILLER Clause

The following control file illustrates the use of the FILLER clause in the data fields for the sal and comm columns. EDB*Loader ignores the values in
these fields and sets the corresponding columns to null.

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal FILLER POSITION (39:46),
 deptno POSITION (47:48),
 comm FILLER POSITION (49:56)
)

Using the same fixed-width data file as in the prior fixed-width field example, the resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00| | | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00| | | 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00| | | 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00| | | 20
(4 rows)

BOUNDFILLER ClauseBOUNDFILLER Clause

The following control file illustrates the use of the BOUNDFILLER clause in the data fields for the job and mgr columns. EDB*Loader ignores the
values in these fields and sets the corresponding columns to null in the same manner as the FILLER clause. However, unlike columns with the FILLER
clause, columns with the BOUNDFILLER clause are permitted to be used in an expression as shown for column jobdesc .

LOAD DATA
 INFILE 'emp.dat'
 BADFILE 'emp.bad'
 APPEND
 INTO TABLE empjob
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job BOUNDFILLER,
 mgr BOUNDFILLER,
 hiredate FILLER,
 sal FILLER,
 deptno FILLER,
 comm FILLER,
 jobdesc ":job || ' for manager ' || :mgr"
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 728

The following is the delimiter-separated data file used in this example.

9101,ROGERS,CLERK,7902,17-DEC-10,1980.00,20
9102,PETERSON,SALESMAN,7698,20-DEC-10,2600.00,30,2300.00
9103,WARREN,SALESMAN,7698,22-DEC-10,5250.00,30,2500.00
9104,"JONES, JR.",MANAGER,7839,02-APR-09,7975.00,20

The following table is loaded using the preceding control file and data file.

CREATE TABLE empjob (
 empno NUMBER(4) NOT NULL CONSTRAINT empjob_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 jobdesc VARCHAR2(25)
);

The resulting rows in the table appear as follows:

SELECT * FROM empjob;

 empno | ename | job | mgr | jobdesc
-------+------------+-----+-----+---------------------------
 9101 | ROGERS | | | CLERK for manager 7902
 9102 | PETERSON | | | SALESMAN for manager 7698
 9103 | WARREN | | | SALESMAN for manager 7698
 9104 | JONES, JR. | | | MANAGER for manager 7839
(4 rows)

Field Types with Length SpecificationField Types with Length Specification

The following example is a control file that contains the field type clauses with the length specification:

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno CHAR(4),
 ename CHAR(10),
 job POSITION (15:23) CHAR(9),
 mgr INTEGER EXTERNAL(4),
 hiredate DATE(11) "DD-MON-YY",
 sal DECIMAL EXTERNAL(8),
 deptno POSITION (47:48),
 comm POSITION (49:56) DECIMAL EXTERNAL(8)
)

NoteNote

The POSITION clause and the fieldtype(length) clause can be used individually or in combination as long as each field definition
contains at least one of the two clauses.

The following is the corresponding data file containing fixed-width fields:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 729

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020

The resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | CLERK |7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALESMAN|7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30
 9103| WARREN | SALESMAN|7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| MANAGER |7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

NULLIF ClauseNULLIF Clause

The following example uses the NULLIF clause on the sal column to set it to null for employees of job MANAGER as well as on the comm column to
set it to null if the employee is not a SALESMAN and is not in department 30 . In other words, a comm value is accepted if the employee is a SALESMAN
or is a member of department 30 .

The following is the control file:

LOAD DATA
 INFILE 'emp_fixed_2.dat'
 BADFILE 'emp_fixed_2.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46) NULLIF job = 'MANAGER',
 deptno POSITION (47:48),
 comm POSITION (49:56) NULLIF job <> 'SALESMAN' AND deptno <> '30'
)

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020
9105ARNOLDS CLERK 778213-SEP-10 3750.0030 800.00
9106JACKSON ANALYST 756603-JAN-11 4500.0040 2000.00
9107MAXWELL SALESMAN 769820-DEC-10 2600.0010 1600.00

The resulting rows in the table appear as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 730

SELECT empno, ename, job, NVL(TO_CHAR(sal),'--null--') "sal",
 NVL(TO_CHAR(comm),'--null--') "comm", deptno FROM emp WHERE empno > 9100;

 empno | ename | job | sal | comm | deptno
-------+------------+----------+----------+----------+-------
 9101 | ROGERS | CLERK | 1980.00 | --null-- | 20
 9102 | PETERSON | SALESMAN | 2600.00 | 2300.00 | 30
 9103 | WARREN | SALESMAN | 5250.00 | 2500.00 | 30
 9104 | JONES, JR. | MANAGER | --null-- | --null-- | 20
 9105 | ARNOLDS | CLERK | 3750.00 | 800.00 | 30
 9106 | JACKSON | ANALYST | 4500.00 | --null-- | 40
 9107 | MAXWELL | SALESMAN | 2600.00 | 1600.00 | 10
(7 rows)

NoteNote

The sal column for employee JONES, JR. is null since the job is MANAGER .

The comm values from the data file for employees PETERSON , WARREN , ARNOLDS , and MAXWELL are all loaded into the comm column of the emp
table since these employees are either SALESMAN or members of department 30 .

The comm value of 2000.00 in the data file for employee JACKSON is ignored and the comm column of the emp table set to null since this employee
is neither a SALESMAN nor is a member of department 30 .

SELECT Statement in a Field ExpressionSELECT Statement in a Field Expression

The following example uses a SELECT statement in the expression of the field definition to return the value to be loaded into the column.

LOAD DATA
 INFILE 'emp_fixed.dat'
 BADFILE 'emp_fixed.bad'
 APPEND
 INTO TABLE emp
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23) "(SELECT dname FROM dept WHERE deptno = :deptno)",
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno POSITION (47:48),
 comm POSITION (49:56)
)

The content of the dept table used in the SELECT statement is the following:

SELECT * FROM dept;

 deptno | dname | loc
---------+------------+---------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 731

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020

The resulting rows in the table appear as follows:

SELECT * FROM emp WHERE empno > 9100;

 empno| ename | job | mgr| hiredate | sal | comm |deptno
------+-----------+---------+----+-------------------+-------+--------+------
 9101| ROGERS | RESEARCH|7902| 17-DEC-10 00:00:00|1980.00| | 20
 9102| PETERSON | SALES |7698| 20-DEC-10 00:00:00|2600.00| 2300.00| 30
 9103| WARREN | SALES |7698| 22-DEC-10 00:00:00|5250.00| 2500.00| 30
 9104| JONES, JR.| RESEARCH|7839| 02-APR-09 00:00:00|7975.00| | 20
(4 rows)

NoteNote

The job column contains the value from the dname column of the dept table returned by the SELECT statement instead of the job name
from the data file.

Multiple INTO TABLE ClausesMultiple INTO TABLE Clauses

The following example illustrates the use of multiple INTO TABLE clauses. For this example, two empty tables are created with the same data definition
as the emp table. The following CREATE TABLE commands create these two empty tables, while inserting no rows from the original emp table:

CREATE TABLE emp_research AS SELECT * FROM emp WHERE deptno = 99;
CREATE TABLE emp_sales AS SELECT * FROM emp WHERE deptno = 99;

The following control file contains two INTO TABLE clauses. Also note that there is no APPEND clause so the default operation of INSERT is used,
which requires that tables emp_research and emp_sales be empty.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 732

LOAD DATA
 INFILE 'emp_multitbl.dat'
 BADFILE 'emp_multitbl.bad'
 DISCARDFILE 'emp_multitbl.dsc'
 INTO TABLE emp_research
 WHEN (47:48) = '20'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '20',
 comm POSITION (49:56)
)
 INTO TABLE emp_sales
 WHEN (47:48) = '30'
 TRAILING NULLCOLS
 (
 empno POSITION (1:4),
 ename POSITION (5:14),
 job POSITION (15:23),
 mgr POSITION (24:27),
 hiredate POSITION (28:38),
 sal POSITION (39:46),
 deptno CONSTANT '30',
 comm POSITION (49:56) "ROUND(:comm + (:sal * .25), 0)"
)

The WHEN clauses specify that when the field designated by columns 47 thru 48 contains 20 , the record is inserted into the emp_research table and
when that same field contains 30 , the record is inserted into the emp_sales table. If neither condition is true, the record is written to the discard file
named emp_multitbl.dsc .

The CONSTANT clause is given for column deptno so the specified constant value is inserted into deptno for each record. When the CONSTANT
clause is used, it must be the only clause in the field definition other than the column name to which the constant value is assigned.

Finally, column comm of the emp_sales table is assigned a SQL expression. Column names may be referenced in the expression by prefixing the
column name with a colon character (:) .

The following is the corresponding data file:

9101ROGERS CLERK 790217-DEC-10 1980.0020
9102PETERSON SALESMAN 769820-DEC-10 2600.0030 2300.00
9103WARREN SALESMAN 769822-DEC-10 5250.0030 2500.00
9104JONES, JR. MANAGER 783902-APR-09 7975.0020
9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

Since the records for employees ARNOLDS and JACKSON contain 10 and 40 in columns 47 thru 48, which do not satisfy any of the WHEN clauses,
EDB*Loader writes these two records to the discard file, emp_multitbl.dsc , whose content is shown by the following:

9105ARNOLDS CLERK 778213-SEP-10 3750.0010
9106JACKSON ANALYST 756603-JAN-11 4500.0040

The following are the rows loaded into the emp_research and emp_sales tables:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 733

SELECT * FROM emp_research;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+------------+---------+------+--------------------+---------+------+-------
 9101 | ROGERS | CLERK | 7902 | 17-DEC-10 00:00:00 | 1980.00 | | 20.00
 9104 | JONES, JR. | MANAGER | 7839 | 02-APR-09 00:00:00 | 7975.00 | | 20.00
(2 rows)

SELECT * FROM emp_sales;

empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+----------+----------+------+--------------------+---------+---------+--------
 9102 | PETERSON | SALESMAN | 7698 | 20-DEC-10 00:00:00 | 2600.00 | 2950.00 | 30.00
 9103 | WARREN | SALESMAN | 7698 | 22-DEC-10 00:00:00 | 5250.00 | 3813.00 | 30.00
(2 rows)

Invoking EDB*Loader

You must have superuser privileges to run EDB*Loader. Use the following command to invoke EDB*Loader from the command line:

edbldr [-d <dbname>] [-p <port>] [-h <host>]
[USERID={ <username/password> | <username>/ | <username> | / }]
[{ -c | connstr= } <CONNECTION_STRING>]
 CONTROL=<control_file>
[DATA=<data_file>]
[BAD=<bad_file>]
[DISCARD=<discard_file>]
[DISCARDMAX=<max_discard_recs>]
[HANDLE_CONFLICTS={ FALSE | TRUE }]
[LOG=<log_file>]
[PARFILE=<param_file>]
[DIRECT={ FALSE | TRUE }]
[FREEZE={ FALSE | TRUE }]
[ERRORS=<error_count>]
[PARALLEL={ FALSE | TRUE }]
[ROWS=<n>]
[SKIP=<skip_count>]
[SKIP_INDEX_MAINTENANCE={ FALSE | TRUE }]
[edb_resource_group=<group_name>]

DescriptionDescription

If the -d option, the -p option, or the -h option are omitted, the defaults for the database, port, and host are determined according to the same rules as
other Advanced Server utility programs such as edb-psql , for example.

Any parameter listed in the preceding syntax diagram except for the -d option, -p option, -h option, and the PARFILE parameter may be specified in
a parameter file. The parameter file is specified on the command line when edbldr is invoked using PARFILE=param_file . Some parameters may be
specified in the OPTIONS clause in the control file. For more information on the control file, see Building the EDB*Loader Control File.

The specification of control_file , data_file , bad_file , discard_file , log_file , and param_file may include the full directory
path or a relative directory path to the file name. If the file name is specified alone or with a relative directory path, the file is assumed to exist (in the case
of control_file , data_file , or param_file), or to be created (in the case of bad_file , discard_file , or log_file) relative to the
current working directory from which edbldr is invoked.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 734

NoteNote

The control file must exist in the character set encoding of the client where edbldr is invoked. If the client is in a different encoding than the
database encoding, then the PGCLIENTENCODING environment variable must be set on the client to the client’s encoding prior to invoking
edbldr . This must be done to ensure character set conversion is properly done between the client and the database server.

The operating system account used to invoke edbldr must have read permission on the directories and files specified by control_file ,
data_file , and param_file .

The operating system account enterprisedb must have write permission on the directories where bad_file , discard_file , and log_file
are to be written.

NoteNote

The file names for control_file , data_file , bad_file , discard_file , and log_file should include extensions of .ctl ,
.dat , .bad , .dsc , and .log , respectively. If the provided file name does not contain an extension, EDB*Loader assumes the actual file

name includes the appropriate aforementioned extension.

ParametersParameters

dbname

Name of the database containing the tables to be loaded.

port

Port number on which the database server is accepting connections.

host

IP address of the host on which the database server is running.

USERID={ username/password | username/ | username | / }

EDB*Loader connects to the database with username . username must be a superuser. password is the password for username .

If the USERID parameter is omitted, EDB*Loader prompts for username and password . If USERID=username/ is specified, then EDB*Loader 1)
uses the password file specified by environment variable PGPASSFILE if PGPASSFILE is set, or 2) uses the .pgpass password file
(pgpass.conf on Windows systems) if PGPASSFILE is not set. If USERID=username is specified, then EDB*Loader prompts for password . If
USERID=/ is specified, the connection is attempted using the operating system account as the user name.

NoteNote: The Advanced Server connection environment variables PGUSER and PGPASSWORD are ignored by EDB*Loader. See the PostgreSQL core
documentation for information on the PGPASSFILE environment variable and the password file.

-c CONNECTION_STRING

connstr=CONNECTION_STRING

The -c or connstr= option allows you to specify all the connection parameters supported by libpq. With this option, SSL connection parameters or
other connection parameters supported by libpq can also be specified. If connection options such as -d , -h , -p or userid=dbuser/dbpass are
provided separately, they may override the values provided via the -c or connstr= option.

CONTROL=control_file

control_file specifies the name of the control file containing EDB*Loader directives. If a file extension is not specified, an extension of .ctl is

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 735

control_file specifies the name of the control file containing EDB*Loader directives. If a file extension is not specified, an extension of .ctl is
assumed.

For more information on the control file, see Building the EDB*Loader Control File.

DATA=data_file

data_file specifies the name of the file containing the data to be loaded into the target table. If a file extension is not specified, an extension of .dat
is assumed. Specifying a data_file on the command line overrides the INFILE clause specified in the control file.

For more information about data_file , see Building the EDB*Loader Control File.

BAD=bad_file

bad_file specifies the name of a file that receives input data records that cannot be loaded due to errors. Specifying a bad_file on the command
line overrides any BADFILE clause specified in the control file.

For more information about bad_file , see Building the EDB*Loader Control File.

DISCARD=discard_file

discard_file is the name of the file that receives input data records that do not meet any table’s selection criteria. Specifying a discard_file on
the command line overrides the DISCARDFILE clause in the control file.

For more information about discard_file , see Building the EDB*Loader Control File.

DISCARDMAX=max_discard_recs

max_discard_recs is the maximum number of discarded records that may be encountered from the input data records before terminating the
EDB*Loader session. Specifying max_discard_recs on the command line overrides the DISCARDMAX or DISCARDS clause in the control file.

For more information about max_discard_recs , see Building the EDB*Loader Control File.

HANDLE_CONFLICTS={ FALSE | TRUE }

If any record insertion fails due to a unique constraint violation, EDB*Loader will abort the entire operation. You can instruct EDB*Loader to instead move
the duplicate record to the BAD file and continue processing by setting HANDLE_CONFLICTS to TRUE . This behavior will only apply if indexes are
present. By default, HANDLE_CONFLICTS is set to FALSE .

HANDLE_CONFLICTS set to TRUE is not supported with direct path loading; if set to TRUE when direct path loading, EDB*Loader will throw an error.

LOG=log_file

log_file specifies the name of the file in which EDB*Loader records the results of the EDB*Loader session.

If the LOG parameter is omitted, EDB*Loader creates a log file with the name control_file_base.log in the directory from which edbldr is
invoked. control_file_base is the base name of the control file used in the EDB*Loader session. The operating system account enterprisedb
must have write permission on the directory where the log file is to be written.

PARFILE=param_file

param_file specifies the name of the file that contains command line parameters for the EDB*Loader session. Any command line parameter listed in
this section except for the -d , -p , and -h options, and the PARFILE parameter itself, can be specified in param_file instead of on the command
line.

Any parameter given in param_file overrides the same parameter supplied on the command line before the PARFILE option. Any parameter given on

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 736

Any parameter given in param_file overrides the same parameter supplied on the command line before the PARFILE option. Any parameter given on
the command line that appears after the PARFILE option overrides the same parameter given in param_file .

NoteNote: Unlike other EDB*Loader files, there is no default file name or extension assumed for param_file , though by Oracle SQL*Loader convention,
.par is typically used, but not required, as an extension.

DIRECT= { FALSE | TRUE }

If DIRECT is set to TRUE EDB*Loader performs a direct path load instead of a conventional path load. The default value of DIRECT is FALSE .

You should not set DIRECT=true when loading the data into a replicated table. If you are using EDB*Loader to load data into a replicated table and set
DIRECT=true , indexes may omit rows that are in a table or may potentially contain references to rows that have been deleted. EnterpriseDB does not

support direct inserts to load data into replicated tables.

For information about direct path loads, see Direct Path Load.

FREEZE= { FALSE | TRUE }

Set FREEZE to TRUE to indicate that the data should be copied with the rows frozen . A tuple guaranteed to be visible to all current and future
transactions is marked as frozen to prevent transaction ID wrap-around. For more information about frozen tuples, see the PostgreSQL core documentation
at:

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

You must specify a data-loading type of TRUNCATE in the control file when using the FREEZE option. FREEZE is not supported for direct loading.

By default, FREEZE is FALSE .

ERRORS=error_count

error_count specifies the number of errors permitted before aborting the EDB*Loader session. The default is 50 .

PARALLEL= { FALSE | TRUE }

Set PARALLEL to TRUE to indicate that this EDB*Loader session is one of a number of concurrent EDB*Loader sessions participating in a parallel direct
path load. The default value of PARALLEL is FALSE .

When PARALLEL is TRUE , the DIRECT parameter must also be set to TRUE .

For more information about parallel direct path loads, see Parallel Direct Path Load.

ROWS=n

n specifies the number of rows that EDB*Loader will commit before loading the next set of n rows.

SKIP=skip_count

Number of records at the beginning of the input data file that should be skipped before loading begins. The default is 0 .

SKIP_INDEX_MAINTENANCE= { FALSE | TRUE }

If set to TRUE , index maintenance is not performed as part of a direct path load, and indexes on the loaded table are marked as invalid. The default value
of SKIP_INDEX_MAINTENANCE is FALSE .

During a parallel direct path load, target table indexes are not updated, and are marked as invalid after the load is complete.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 737

https://www.postgresql.org/docs/current/static/routine-vacuuming.html

You can use the REINDEX command to rebuild an index. For more information about the REINDEX command, see the PostgreSQL core documentation
available at:

https://www.postgresql.org/docs/current/static/sql-reindex.html

edb_resource_group=group_name

group_name specifies the name of an EDB Resource Manager resource group to which the EDB*Loader session is to be assigned.

Any default resource group that may have been assigned to the session (for example, a database user running the EDB*Loader session who had been
assigned a default resource group with the ALTER ROLE ... SET edb_resource_group command) is overridden by the resource group given by
the edb_resource_group parameter specified on the edbldr command line.

ExamplesExamples

In the following example EDB*Loader is invoked using a control file named emp.ctl located in the current working directory to load a table in database
edb :

$ /usr/edb/as13/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

In the following example, EDB*Loader prompts for the user name and password since they are omitted from the command line. In addition, the files for the
bad file and log file are specified with the BAD and LOG command line parameters.

$ /usr/edb/as13/bin/edbldr -d edb CONTROL=emp.ctl BAD=/tmp/emp.bad
LOG=/tmp/emp.log
Enter the user name : enterprisedb
Enter the password :
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

The following example runs EDB*Loader with the same parameters as shown in the preceding example, but using a parameter file located in the current
working directory. The SKIP and ERRORS parameters are altered from their defaults in the parameter file as well. The parameter file, emp.par ,
contains the following:

CONTROL=emp.ctl
BAD=/tmp/emp.bad
LOG=/tmp/emp.log
SKIP=1
ERRORS=10

EDB*Loader is invoked with the parameter file as shown by the following:

$ /usr/edb/as13/bin/edbldr -d edb PARFILE=emp.par
Enter the user name : enterprisedb
Enter the password :
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (3) records

In the following example EDB*Loader is invoked using a connstr= option using emp.ctl control file located in the current working directory to load a
table in a database named edb :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 738

https://www.postgresql.org/docs/current/static/sql-reindex.html

$ /usr/edb/as13/bin/edbldr connstr=\"sslmode=verify-ca sslcompression=0
host=127.0.0.1 dbname=edb port=5444 user=enterprisedb\" CONTROL=emp.ctl
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

Exit Codes

When EDB*Loader exits, it will return one of the following codes:

Exit
Code

Description

0 Indicates that all rows loaded successfully.

1 Indicates that EDB*Loader encountered command line or syntax errors, or aborted the load operation due to an unrecoverable error.

2 Indicates that the load completed, but some (or all) rows were rejected or discarded.

3 Indicates that EDB*Loader encountered fatal errors (such as OS errors). This class of errors is equivalent to the FATAL or PANIC severity
levels of PostgreSQL errors.

Direct Path Load

During a direct path load, EDB*Loader writes the data directly to the database pages, which is then synchronized to disk. The insert processing associated
with a conventional path load is bypassed, thereby resulting in a performance improvement.

Bypassing insert processing reduces the types of constraints that may exist on the target table. The following types of constraints are permitted on the
target table of a direct path load:

Primary key
Not null constraints
Indexes (unique or non-unique)

The restrictions on the target table of a direct path load are the following:

Triggers are not permitted
Check constraints are not permitted
Foreign key constraints on the target table referencing another table are not permitted
Foreign key constraints on other tables referencing the target table are not permitted
The table must not be partitioned
Rules may exist on the target table, but they are not executed

NoteNote

Currently, a direct path load in EDB*Loader is more restrictive than in Oracle SQL*Loader. The preceding restrictions do not apply to Oracle
SQL*Loader in most cases. The following restrictions apply to a control file used in a direct path load:

Multiple table loads are not supported. That is, only one INTO TABLE clause may be specified in the control file.
SQL expressions may not be used in the data field definitions of the INTO TABLE clause.
The FREEZE option is not supported for direct path loading.

To run a direct path load, add the DIRECT=TRUE option as shown by the following example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 739

$ /usr/edb/as13/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp.ctl DIRECT=TRUE
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

Successfully loaded (4) records

Parallel Direct Path Load

The performance of a direct path load can be further improved by distributing the loading process over two or more sessions running concurrently. Each
session runs a direct path load into the same table.

Since the same table is loaded from multiple sessions, the input records to be loaded into the table must be divided amongst several data files so that each
EDB*Loader session uses its own data file and the same record is not loaded more than once into the table.

The target table of a parallel direct path load is under the same restrictions as a direct path load run in a single session.

The restrictions on the target table of a direct path load are the following:

Triggers are not permitted
Check constraints are not permitted
Foreign key constraints on the target table referencing another table are not permitted
Foreign key constraints on other tables referencing the target table are not permitted
The table must not be partitioned
Rules may exist on the target table, but they are not executed

In addition, the APPEND clause must be specified in the control file used by each EDB*Loader session.

To run a parallel direct path load, run EDB*Loader in a separate session for each participant of the parallel direct path load. Invocation of each such
EDB*Loader session must include the DIRECT=TRUE and PARALLEL=TRUE parameters.

Each EDB*Loader session runs as an independent transaction so if one of the parallel sessions aborts and rolls back its changes, the loading done by the
other parallel sessions are not affected.

NoteNote

In a parallel direct path load, each EDB*Loader session reserves a fixed number of blocks in the target table in a round-robin fashion. Some of the
blocks in the last allocated chunk may not be used,and those blocks remain uninitialized. A subsequent use of the VACUUM command on the
target table may show warnings regarding these uninitialized blocks such as the following:

WARNING: relation "emp" page 98264 is uninitialized --- fixing

WARNING: relation "emp" page 98265 is uninitialized --- fixing

WARNING: relation "emp" page 98266 is uninitialized --- fixing

This is an expected behavior and does not indicate data corruption.

Indexes on the target table are not updated during a parallel direct path load and are therefore marked as invalid after the load is complete. You must use
the REINDEX command to rebuild the indexes.

The following example shows the use of a parallel direct path load on the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 740

NoteNote

If you attempt a parallel direct path load on the sample emp table provided with Advanced Server, you must first remove the triggers and
constraints referencing the emp table. In addition the primary key column, empno , was expanded from NUMBER(4) to NUMBER in this
example to allow for the insertion of a larger number of rows.

The following is the control file used in the first session:

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_1.dat'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The APPEND clause must be specified in the control file for a parallel direct path load.

The following shows the invocation of EDB*Loader in the first session. The DIRECT=TRUE and PARALLEL=TRUE parameters must be specified.

$ /usr/edb/as13/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_1.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

The control file used for the second session appears as follows. Note that it is the same as the one used in the first session, but uses a different data file.

LOAD DATA
 INFILE '/home/user/loader/emp_parallel_2.dat'
 APPEND
 INTO TABLE emp
 FIELDS TERMINATED BY ',' OPTIONALLY ENCLOSED BY '"'
 TRAILING NULLCOLS
 (
 empno,
 ename,
 job,
 mgr,
 hiredate,
 sal,
 deptno,
 comm
)

The preceding control file is used in a second session as shown by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 741

$ /usr/edb/as13/bin/edbldr -d edb USERID=enterprisedb/password
CONTROL=emp_parallel_2.ctl DIRECT=TRUE PARALLEL=TRUE
WARNING: index maintenance will be skipped with PARALLEL load
EDB*Loader: Copyright (c) 2007-2021, EnterpriseDB Corporation.

EDB*Loader displays the following message in each session when its respective load operation completes:

Successfully loaded (10000) records

The following query shows that the index on the emp table has been marked as INVALID :

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
-------------+---------
 EMP_PK | INVALID
 (1 row)

NoteNote

user_indexes is the view of indexes compatible with Oracle databases owned by the current user.

Queries on the emp table will not utilize the index unless it is rebuilt using the REINDEX command as shown by the following:

REINDEX INDEX emp_pk;

A subsequent query on user_indexes shows that the index is now marked as VALID :

SELECT index_name, status FROM user_indexes WHERE table_name = 'EMP';

 index_name | status
-------------+--------
 EMP_PK | VALID
 (1 row)

Remote Loading

EDB*Loader supports a feature called remote loading. In remote loading, the database containing the table to be loaded is running on a database server on
a different host than from where EDB*Loader is invoked with the input data source.

This feature is useful if you have a large amount of data to be loaded, and you do not want to create a large data file on the host running the database
server.

In addition, you can use the standard input feature to pipe the data from the data source such as another program or script, directly to EDB*Loader, which
then loads the table in the remote database. This bypasses the process of having to create a data file on disk for EDB*Loader.

Performing remote loading along with using standard input requires the following:

The edbldr program must be installed on the client host on which it is to be invoked with the data source for the EDB*Loader session.
The control file must contain the clause INFILE 'stdin' so you can pipe the data directly into EDB*Loader’s standard input. For more
information, see Building the EDB*Loader Control File for information on the INFILE clause and the EDB*Loader control file.
All files used by EDB*Loader such as the control file, bad file, discard file, and log file must reside on, or are created on, the client host on which
edbldr is invoked.

When invoking EDB*Loader, use the -h option to specify the IP address of the remote database server. For more information, see Invoking

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 742

When invoking EDB*Loader, use the -h option to specify the IP address of the remote database server. For more information, see Invoking
EDB*Loader for information on invoking EDB*Loader.
Use the operating system pipe operator (|) or input redirection operator (<) to supply the input data to EDB*Loader.

The following example loads a database running on a database server at 192.168.1.14 using data piped from a source named datasource .

datasource | ./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl

The following is another example of how standard input can be used:

./edbldr -d edb -h 192.168.1.14 USERID=enterprisedb/password
CONTROL=remote.ctl < datasource

Updating a Table with a Conventional Path Load

You can use EDB*Loader with a conventional path load to update the rows within a table, merging new data with the existing data. When you invoke
EDB*Loader to perform an update, the server searches the table for an existing row with a matching primary key:

If the server locates a row with a matching key, it replaces the existing row with the new row.
If the server does not locate a row with a matching key, it adds the new row to the table.

To use EDB*Loader to update a table, the table must have a primary key. Please note that you cannot use EDB*Loader to UPDATE a partitioned table.

To perform an UPDATE , use the same steps as when performing a conventional path load:

1. Create a data file that contains the rows you wish to UPDATE or INSERT .
2. Define a control file that uses the INFILE keyword to specify the name of the data file. For information about building the EDB*Loader control file,

see Building the EDB*Loader Control File.
3. Invoke EDB*Loader, specifying the database name, connection information, and the name of the control file. For information about invoking

EDB*Loader, see Invoking EDB*Loader.

The following example uses the emp table that is distributed with the Advanced Server sample data. By default, the table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+--------- +-------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 |300.00 | 30
7521 |WARD |SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 |500.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 |1400.00| 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

The following control file (emp_update.ctl) specifies the fields in the table in a comma-delimited list. The control file performs an UPDATE on the
emp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 743

LOAD DATA
 INFILE 'emp_update.dat'
 BADFILE 'emp_update.bad'
 DISCARDFILE 'emp_update.dsc'
UPDATE INTO TABLE emp
FIELDS TERMINATED BY ","
(empno, ename, job, mgr, hiredate, sal, comm, deptno)

The data that is being updated or inserted is saved in the emp_update.dat file. emp_update.dat contains:

7521,WARD,MANAGER,7839,22-FEB-81 00:00:00,3000.00,0.00,30
7566,JONES,MANAGER,7839,02-APR-81 00:00:00,3500.00,0.00,20
7903,BAKER,SALESMAN,7521,10-JUN-13 00:00:00,1800.00,500.00,20
7904,MILLS,SALESMAN,7839,13-JUN-13 00:00:00,1800.00,500.00,20
7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1500.00,400.00,30

Invoke EDB*Loader, specifying the name of the database (edb), the name of a database superuser (and their associated password) and the name of the
control file (emp_update.ctl):

edbldr -d edb userid=user_name/password control=emp_update.ctl

After performing the update, the emp table contains:

edb=# select * from emp;
empno|ename | job | mgr | hiredate | sal | comm | deptno
-----+------+---------+------+--------------------+---------+--------+--------
7369 |SMITH |CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
7499 |ALLEN |SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
7521 |WARD |MANAGER | 7839 | 22-FEB-81 00:00:00 | 3000.00 | 0.00 | 30
7566 |JONES |MANAGER | 7839 | 02-APR-81 00:00:00 | 3500.00 | 0.00 | 20
7654 |MARTIN|SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1500.00 | 400.00 | 30
7698 |BLAKE |MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
7782 |CLARK |MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
7788 |SCOTT |ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
7839 |KING |PRESIDENT| | 17-NOV-81 00:00:00 | 5000.00 | | 10
7844 |TURNER|SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
7876 |ADAMS |CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
7900 |JAMES |CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
7902 |FORD |ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
7903 |BAKER |SALESMAN | 7521 | 10-JUN-13 00:00:00 | 1800.00 | 500.00 | 20
7904 |MILLS |SALESMAN | 7839 | 13-JUN-13 00:00:00 | 1800.00 | 500.00 | 20
7934 |MILLER|CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(16 rows)

The rows containing information for the three employees that are currently in the emp table are updated, while rows are added for the new employees
(BAKER and MILLS)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 744

14.2 EDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored procedures, triggers, and packages) from unauthorized scrutiny.
The EDB*Wrap program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into a file that contains the same code in a form that is
nearly impossible to read. Once you have the obfuscated form of the code, you can send that code to the PostgreSQL server and the server will store those
programs in obfuscated form. While EDB*Wrap does obscure code, table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the package body source, as well as the prototypes contained in the
package header and the functions and procedures contained in the package body are stored in obfuscated form.

If you wrap a CREATE PACKAGE statement, you hide the package API from other developers. You may want to wrap the package body, but not the
package header so users can see the package prototypes and other public variables that are defined in the package body. To allow users to see what
prototypes the package contains, use EDBWrap to obfuscate only the CREATE PACKAGE BODY statement in the edbwrap input file, omitting the
CREATE PACKAGE statement. The package header source will be stored plaintext, while the package body source and package functions and procedures

will be stored obfuscated.

Once wrapped, source code and programs cannot be unwrapped or debugged. Reverse engineering is possible, but would be very difficult.

The entire source file is wrapped into one unit. Any psql meta-commands included in the wrapped file will not be recognized when the file is executed;
executing an obfuscated file that contains a psql meta-command will cause a syntax error. edbwrap does not validate SQL source code -if the plaintext
form contains a syntax error, edbwrap will not complain. Instead, the server will report an error and abort the entire file when you try to execute the
obfuscated form.

Using EDB*Wrap to Obfuscate Source Code

EDB*Wrap is a command line utility; it accepts a single input source file, obfuscates the contents and returns a single output file. When you invoke the
edbwrap utility, you must provide the name of the file that contains the source code to obfuscate. You may also specify the name of the file where
edbwrap will write the obfuscated form of the code. edbwrap offers three different command-line styles. The first style is compatible with Oracle's
wrap utility:

edbwrap iname=<input_file> [oname=<output_file>]

The iname=input_file argument specifies the name of the input file; if input_file does not contain an extension, edbwrap will search for a
file named input_file.sql

The oname=output_file argument (which is optional) specifies the name of the output file; if output_file does not contain an extension,
edbwrap will append .plb to the name.

If you do not specify an output file name, edbwrap writes to a file whose name is derived from the input file name: edbwrap strips the suffix (typically
.sql) from the input file name and adds .plb .

edbwrap offers two other command-line styles that may feel more familiar:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 745

edbwrap --iname <input_file> [--oname <output_file>]
edbwrap -i <input_file> [-o <output_file>]

You may mix command-line styles; the rules for deriving input and output file names are identical regardless of which style you use.

Once edbwrap has produced a file that contains obfuscated code, you typically feed that file into the PostgreSQL server using a client application such
as edb-psql . The server executes the obfuscated code line by line and stores the source code for SPL and PL/pgSQL programs in wrapped form.

In summary, to obfuscate code with EDB*Wrap, you:

1. Create the source code file.
2. Invoke EDB*Wrap to obfuscate the code.
3. Import the file as if it were in plaintext form.

The following sequence demonstrates edbwrap functionality.

First, create the source code for the list_emp procedure (in plaintext form):

[bash] cat listemp.sql
CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;
/

You can import the list_emp procedure with a client application such as edb-psql :

[bash] edb-psql edb
Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit
edb=# \i listemp.sql
CREATE PROCEDURE

You can view the plaintext source code (stored in the server) by examining the pg_proc system table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 746

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--

 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
 END
(1 row)

edb=# quit

Next, obfuscate the plaintext file with EDB*Wrap:

[bash] edbwrap -i listemp.sql
EDB*Wrap Utility: Release 8.4.3.2

Copyright (c) 2004-2021 EnterpriseDB Corporation. All Rights Reserved.

Using encoding UTF8 for input
Processing listemp.sql to listemp.plb

Examining the contents of the output file (listemp.plb) file reveals
that the code is obfuscated:

[bash] cat listemp.plb
$__EDBwrapped__$
UTF8
d+6DL30RVaGjYMIzkuoSzAQgtBw7MhYFuAFkBsfYfhdJ0rjwBv+bHr1FCyH6j9SgH
movU+bYI+jR+hR2jbzq3sovHKEyZIp9y3/GckbQgualRhIlGpyWfE0dltDUpkYRLN
/OUXmk0/P4H6EI98sAHevGDhOWI+58DjJ44qhZ+l5NNEVxbWDztpb/s5sdx4660qQ
Ozx3/gh8VkqS2JbcxYMpjmrwVr6fAXfb68Ml9mW2Hl7fNtxcb5kjSzXvfWR2XYzJf
KFNrEhbL1DTVlSEC5wE6lGlwhYvXOf22m1R2IFns0MtF9fwcnBWAs1YqjR00j6+fc
er/f/efAFh4=
$__EDBwrapped__$

You may notice that the second line of the wrapped file contains an encoding name (in this case, the encoding is UTF8). When you obfuscate a file, edbwrap
infers the encoding of the input file by examining the locale. For example, if you are running edbwrap while your locale is set to en_US.utf8, edbwrap
assumes that the input file is encoded in UTF8. Be sure to examine the output file after running edbwrap; if the locale contained in the wrapped file does
not match the encoding of the input file, you should change your locale and rewrap the input file.

You can import the obfuscated code into the PostgreSQL server using the same tools that work with plaintext code:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 747

[bash] edb-psql edb
Welcome to edb-psql 8.4.3.2, the EnterpriseDB interactive terminal.
Type: \copyright for distribution terms
 \h for help with SQL commands
 \? for help with edb-psql commands
 \g or terminate with semicolon to execute query
 \q to quit

edb=# \i listemp.plb
CREATE PROCEDURE

Now, the pg_proc system table contains the obfuscated code:

edb=# SELECT prosrc FROM pg_proc WHERE proname = 'list_emp';
 prosrc
--
 $__EDBwrapped__$
 UTF8
 dw4B9Tz69J3WOsy0GgYJQa+G2sLZ3IOyxS8pDyuOTFuiYe/EXiEatwwG3h3tdJk
 ea+AIp35dS/4idbN8wpegM3s994dQ3R97NgNHfvTQnO2vtd4wQtsQ/Zc4v4Lhfj
 nlV+A4UpHI5oQEnXeAch2LcRD87hkU0uo1ESeQV8IrXaj9BsZr+ueROnwhGs/Ec
 pva/tRV4m9RusFn0wyr38u4Z8w4dfnPW184Y3o6It4b3aH07WxTkWrMLmOZW1jJ
 Nu6u4o+ezO64G9QKPazgehslv4JB9NQnuocActfDSPMY7R7anmgw
 $__EDBwrapped__$
(1 row)

Invoke the obfuscated code in the same way that you would invoke the plaintext form:

edb=# exec list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB-SPL Procedure successfully completed
edb=# quit

When you use pg_dump to back up a database, wrapped programs remain obfuscated in the archive file.

Be aware that audit logs produced by the Postgres server will show wrapped programs in plaintext form. Source code is also displayed in plaintext in SQL
error messages generated during the execution of a program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 748

NoteNote

At this time, the bodies of the objects created by the following statements will not be stored in obfuscated form:

CREATE [OR REPLACE] TYPE type_name AS OBJECT
CREATE [OR REPLACE] TYPE type_name UNDER type_name
CREATE [OR REPLACE] TYPE BODY type_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 749

14.3 Dynamic Runtime Instrumentation Tools Architecture (DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to query catalog views to determine the wait events that affect the
performance of individual sessions or the system as a whole. DRITA records the number of times each event occurs as well as the time spent waiting; you
can use this information to diagnose performance problems. DRITA offers this functionality, while consuming minimal system resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a saved set of system performance data at a given point in time. Each
snapshot is identified by a unique ID number; you can use snapshot ID numbers with DRITA reporting functions to return system performance statistics.

Configuring and Using DRITA

Advanced Server's postgresql.conf file includes a configuration parameter named timed_statistics that controls the collection of timing
data. The valid parameter values are TRUE or FALSE ; the default value is FALSE .

This is a dynamic parameter which can be modified in the postgresql.conf file, or while a session is in progress. To enable DRITA, you must either:

Modify the postgresql.conf file, setting the timed_statistics parameter to TRUE .

or

Connect to the server with the EDB-PSQL client, and invoke the command:

SET timed_statistics = TRUE

After modifying the timed_statistics parameter, take a starting snapshot. A snapshot captures the current state of each timer and event counter.
The server will compare the starting snapshot to a later snapshot to gauge system performance.

Use the edbsnap() function to take the beginning snapshot:

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

Then, run the workload that you would like to evaluate; when the workload has completed (or at a strategic point during the workload), take another
snapshot:

edb=# SELECT * FROM edbsnap();
 edbsnap

 Statement processed.
(1 row)

You can capture multiple snapshots during a session. Then, use the DRITA functions and reports to manage and compare the snapshots to evaluate
performance information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 750

DRITA Functions

You can use DRITA functions to gather wait information and manage snapshots. DRITA functions are fully supported by Advanced Server 13 whether your
installation is made compatible with Oracle databases or is made in PostgreSQL-compatible mode.

get_snaps()

The get_snaps() function returns a list of the current snapshots. The signature is:

get_snaps()

The following example demonstrates using the get_snaps() function to display a list of snapshots:

SELECT * FROM get_snaps();
 get_snaps

 1 25-JUL-18 09:49:04.224597
 2 25-JUL-18 09:49:09.310395
 3 25-JUL-18 09:49:14.378728
 4 25-JUL-18 09:49:19.448875
 5 25-JUL-18 09:49:24.52103
 6 25-JUL-18 09:49:29.586889
 7 25-JUL-18 09:49:34.65529
 8 25-JUL-18 09:49:39.723095
 9 25-JUL-18 09:49:44.788392
 10 25-JUL-18 09:49:49.855821
 11 25-JUL-18 09:49:54.919954
 12 25-JUL-18 09:49:59.987707
(12 rows)

The first column in the result list displays the snapshot identifier; the second column displays the date and time that the snapshot was captured.

sys_rpt()

The sys_rpt() function returns system wait information. The signature is:

sys_rpt(<beginning_id>, <ending_id>, <top_n>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 751

This example demonstrates a call to the sys_rpt() function:

SELECT * FROM sys_rpt(9, 10, 10);
 sys_rpt

WAIT NAME COUNT WAIT TIME % WAIT

wal flush 8359 1.357593 30.62
wal write 8358 1.349153 30.43
wal file sync 8358 1.286437 29.02
query plan 33439 0.439324 9.91
db file extend 54 0.000585 0.01
db file read 31 0.000307 0.01
other lwlock acquire 0 0.000000 0.00
ProcArrayLock 0 0.000000 0.00
CLogControlLock 0 0.000000 0.00
(11 rows)

The information displayed in the result set includes:

Column Name Description

WAIT NAME The name of the wait.

COUNT The number of times that the wait event occurred.

WAIT TIME The time of the wait event in seconds.

% WAIT The percentage of the total wait time used by this wait for this session.

sess_rpt()

The sess_rpt() function returns session wait information. The signature is:

sess_rpt(<beginning_id>, <ending_id>, <top_n>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

The following example demonstrates a call to the sess_rpt() function:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 752

SELECT * FROM sess_rpt(8, 9, 10);

 sess_rpt

ID USER WAIT NAME COUNT TIME % WAIT SES % WAIT ALL

3501 enterprise wal flush 8354 1.354958 30.61 30.61
3501 enterprise wal write 8354 1.348192 30.46 30.46
3501 enterprise wal file sync 8354 1.285607 29.04 29.04
3501 enterprise query plan 33413 0.436901 9.87 9.87
3501 enterprise db file extend 54 0.000578 0.01 0.01
3501 enterprise db file read 56 0.000541 0.01 0.01
3501 enterprise ProcArrayLock 0 0.000000 0.00 0.00
3501 enterprise CLogControlLock 0 0.000000 0.00 0.00
(10 rows)

The information displayed in the result set includes:

Column Name Description

ID The processID of the session.

USER The name of the user incurring the wait.

WAIT NAME The name of the wait event.

COUNT The number of times that the wait event occurred.

TIME The length of the wait event in seconds.

% WAIT
SES

The percentage of the total wait time used by this wait for this session.

% WAIT
ALL

The percentage of the total wait time used by this wait (for all sessions).

sessid_rpt()

The sessid_rpt() function returns session ID information for a specified backend. The signature is:

sessid_rpt(<beginning_id>, <ending_id>, <backend_id>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

backend_id

backend_id is an integer value that represents the backend identifier.

The following code sample demonstrates a call to sessid_rpt() :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 753

SELECT * FROM sessid_rpt(8, 9, 3501);

 sessid_rpt

ID USER WAIT NAME COUNT TIME % WAIT SES % WAIT ALL

3501 enterprise CLogControlLock 0 0.000000 0.00 0.00
3501 enterprise ProcArrayLock 0 0.000000 0.00 0.00
3501 enterprise db file read 56 0.000541 0.01 0.01
3501 enterprise db file extend 54 0.000578 0.01 0.01
3501 enterprise query plan 33413 0.436901 9.87 9.87
3501 enterprise wal file sync 8354 1.285607 29.04 29.04
3501 enterprise wal write 8354 1.348192 30.46 30.46
3501 enterprise wal flush 8354 1.354958 30.61 30.61
(10 rows)

The information displayed in the result set includes:

Column Name Description

ID The process ID of the wait.

USER The name of the user that owns the session.

WAIT NAME The name of the wait event.

COUNT The number of times that the wait event occurred.

TIME The length of the wait in seconds.

% WAIT
SES

The percentage of the total wait time used by this wait for this session.

% WAIT
ALL

The percentage of the total wait time used by this wait (for all sessions).

sesshist_rpt()

The sesshist_rpt() function returns session wait information for a specified backend. The signature is:

sesshist_rpt(<snapshot_id>, <session_id>)

ParametersParameters

snapshot_id

snapshot_id is an integer value that identifies the snapshot.

session_id

session_id is an integer value that represents the session.

The following example demonstrates a call to the sesshist_rpt() function:

NoteNote

The following example has been shortened; over 1300 rows were actually generated.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 754

SELECT * FROM sesshist_rpt (9, 3501);
 sesshist_rpt

 ID USER SEQ WAIT NAME ELAPSED File Name #
 of Blk Sum of Blks

 3501 enterprise 1 query plan 13 0 N/A
0 0
 3501 enterprise 1 query plan 13 0 edb_password_history
0 0
 3501 enterprise 1 query plan 13 0 edb_password_history
0 0
 3501 enterprise 1 query plan 13 0 edb_password_history
0 0
 3501 enterprise 1 query plan 13 0 edb_profile
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_name_ind
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_oid_inde
0 0
 3501 enterprise 1 query plan 13 0 edb_profile_password
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group_n
0 0
 3501 enterprise 1 query plan 13 0 edb_resource_group_o
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute_relid_a
0 0
 3501 enterprise 1 query plan 13 0 pg_attribute_relid_a
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members_memb
0 0
 3501 enterprise 1 query plan 13 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 2 wal flush 149 0 N/A
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_password_history
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_name_ind
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_oid_inde
0 0
 3501 enterprise 2 wal flush 149 0 edb_profile_password
0 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 755

 3501 enterprise 2 wal flush 149 0 edb_resource_group
0 0
 3501 enterprise 2 wal flush 149 0 edb_resource_group_n
0 0
 3501 enterprise 2 wal flush 149 0 edb_resource_group_o
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute_relid_a
0 0
 3501 enterprise 2 wal flush 149 0 pg_attribute_relid_a
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members_memb
0 0
 3501 enterprise 2 wal flush 149 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 3 wal write 148 0 N/A
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_password_history
0 0
 3501 enterprise 3 wal write 148 0 edb_profile
0 0
 3501 enterprise 3 wal write 148 0 edb_profile_name_ind
0 0
 3501 enterprise 3 wal write 148 0 edb_profile_oid_inde
0 0
 3501 enterprise 3 wal write 148 0 edb_profile_password
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group_n
0 0
 3501 enterprise 3 wal write 148 0 edb_resource_group_o
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute_relid_a
0 0
 3501 enterprise 3 wal write 148 0 pg_attribute_relid_a
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members_memb
0 0
 3501 enterprise 3 wal write 148 0 pg_auth_members_role
0 0
 .
 .
 .
 3501 enterprise 24 wal write 130 0 pg_toast_1255
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_1255_index

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 756

0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2396
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2396_index
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2964
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_2964_index
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_3592
0 0
 3501 enterprise 24 wal write 130 0 pg_toast_3592_index
0 0
 3501 enterprise 24 wal write 130 0 pg_type
0 0
 3501 enterprise 24 wal write 130 0 pg_type_oid_index
0 0
 3501 enterprise 24 wal write 130 0 pg_type_typname_nsp_
0 0
(1304 rows)

The information displayed in the result set includes:

Column Name Description

ID The system-assigned identifier of the wait.

USER The name of the user that incurred the wait.

SEQ The sequence number of the wait event.

WAIT NAME The name of the wait event.

ELAPSED The length of the wait event in microseconds.

File The relfilenode number of the file.

Name If available, the name of the file name related to the wait event.

of Blk The block number read or written for a specific instance of the event
.

Sum of Blks The number of blocks read.

purgesnap()

The purgesnap() function purges a range of snapshots from the snapshot tables. The signature is:

purgesnap(<beginning_id>, <ending_id>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

purgesnap() removes all snapshots between beginning_id and ending_id (inclusive):

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 757

purgesnap() removes all snapshots between beginning_id and ending_id (inclusive):

SELECT * FROM purgesnap(6, 9);

 purgesnap

 Snapshots in range 6 to 9 deleted.
(1 row)

A call to the get_snaps() function after executing the example shows that snapshots 6 through 9 have been purged from the snapshot tables:

SELECT * FROM get_snaps();
 get_snaps

 1 25-JUL-18 09:49:04.224597
 2 25-JUL-18 09:49:09.310395
 3 25-JUL-18 09:49:14.378728
 4 25-JUL-18 09:49:19.448875
 5 25-JUL-18 09:49:24.52103
 10 25-JUL-18 09:49:49.855821
 11 25-JUL-18 09:49:54.919954
 12 25-JUL-18 09:49:59.987707
(8 rows)

truncsnap()

Use the truncsnap() function to delete all records from the snapshot table. The signature is:

truncsnap()

For example:

SELECT * FROM truncsnap();

 truncsnap

 Snapshots truncated.
(1 row)

A call to the get_snaps() function after calling the truncsnap() function shows that all records have been removed from the snapshot tables:

SELECT * FROM get_snaps();
 get_snaps

(0 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 758

Simulating Statspack AWR Reports

The functions described in this section return information comparable to the information contained in an Oracle Statspack/AWR (Automatic Workload
Repository) report. When taking a snapshot, performance data from system catalog tables is saved into history tables. The reporting functions listed below
report on the differences between two given snapshots.

stat_db_rpt()
stat_tables_rpt()
statio_tables_rpt()
stat_indexes_rpt()
statio_indexes_rpt()

The reporting functions can be executed individually or you can execute all five functions by calling the edbreport() function.

edbreport()

The edbreport() function includes data from the other reporting functions, plus additional system information. The signature is:

edbreport(<beginning_id>, <ending_id>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The call to the edbreport() function returns a composite report that contains system information and the reports returned by the other statspack
functions.

SELECT * FROM edbreport(9, 10);
 edbreport
--
 EnterpriseDB Report for database acctg 25-JUL-18
 Version: PostgreSQL 13.0 (EnterpriseDB Advanced Server 13.0.0)on x86_64-pc-linux-gnu,
compiled by gcc (GCC) 4.4.7 20120313 (Red Hat 4.4.7-18), 64-bit

 Begin snapshot: 9 at 25-JUL-18 09:49:44.788392

 End snapshot: 10 at 25-JUL-18 09:49:49.855821

Size of database acctg is 173 MB
 Tablespace: pg_default Size: 231 MB Owner: enterprisedb
 Tablespace: pg_global Size: 719 kB Owner: enterprisedb

Schema: pg_toast_temp_1 Size: 0 bytes Owner: enterprisedb
Schema: public Size: 158 MB Owner: enterprisedb

The information displayed in the report introduction includes the database name and version, the current date, the beginning and ending snapshot date and
times, database and tablespace details and schema information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 759

 Top 10 Relations by pages

TABLE RELPAGES

pgbench_accounts 16394
pgbench_history 391
pg_proc 145
pg_attribute 92
pg_depend 81
pg_collation 60
edb$stat_all_indexes 46
edb$statio_all_indexes 46
pg_description 44
edb$stat_all_tables 29

The information displayed in the Top 10 Relations by pages section includes:

Column Name Description

TABLE The name of the table.

RELPAGES The number of pages in the table.

 Top 10 Indexes by pages

INDEX RELPAGES

pgbench_accounts_pkey 2745
pg_depend_reference_index 68
pg_depend_depender_index 63
pg_proc_proname_args_nsp_index 53
pg_attribute_relid_attnam_index 25
pg_description_o_c_o_index 24
pg_attribute_relid_attnum_index 17
pg_proc_oid_index 14
pg_collation_name_enc_nsp_index 12
edb$stat_idx_pk 10

The information displayed in the Top 10 Indexes by pages section includes:

Column Name Description

INDEX The name of the index.

RELPAGES The number of pages in the index.

 Top 10 Relations by DML

SCHEMA RELATION UPDATES DELETES INSERTS
--
public pgbench_accounts 117209 0 1000000
public pgbench_tellers 117209 0 100
public pgbench_branches 117209 0 10
public pgbench_history 0 0 117209

The information displayed in the Top 10 Relations by DML section includes:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 760

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

UPDATES The number of UPDATES performed on the table.

DELETES The number of DELETES performed on the table.

INSERTS The number of INSERTS performed on the table.

 DATA from pg_stat_database

DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

acctg 0 8261 0 117 127985 99.91

The information displayed in the DATA from pg_stat_database section of the report includes:

Column
Name

Description

DATABAS
E

The name of the database.

NUMBACK
ENDS

Number of backends currently connected to this database. This is the only column in this view that returns a value reflecting current
state; all other columns return the accumulated values since the last reset.

XACT
COMMIT

Number of transactions in this database that have been committed.

XACT
ROLLBACK

Number of transactions in this database that have been rolled back.

BLKS
READ

Number of disk blocks read in this database.

BLKS
HIT

Number of times disk blocks were found already in the buffer cache (when a read was not necessary).

HIT
RATIO

The percentage of times that a block was found in the shared buffer cache.

 DATA from pg_buffercache

RELATION BUFFERS

pgbench_accounts 16665
pgbench_accounts_pkey 2745
pgbench_history 751
edb$statio_all_indexes 94
edb$stat_all_indexes 94
edb$stat_all_tables 60
edb$statio_all_tables 56
edb$session_wait_history 34
edb$statio_idx_pk 17
pg_depend 17

The information displayed in the DATA from pg_buffercache section of the report includes:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 761

Column Name Description

RELATION The name of the table.

BUFFERS The number of shared buffers used by the relation.

NoteNote

In order to obtain the report for DATA from pg_buffercache , the pg_buffercache module must have been installed in the
database.Perform the installation with the CREATE EXTENSION command.

For more information on the CREATE EXTENSION command, see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/sql-createextension.html

 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

 public pgbench_branches 8258 82580 0
0 0 8258 0
 public pgbench_tellers 8258 825800 0
0 0 8258 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_database 2 12 7
7 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by seq scan section includes:

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

SEQ SCAN The number of sequential scans initiated on this table.

REL TUP
READ

The number of tuples read in the table.

IDX SCAN The number of index scans initiated on the table.

IDX TUP
READ

The number of index tuples read.

INS The number of rows inserted.

UPD The number of rows updated.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 762

https://www.postgresql.org/docs/current/static/sql-createextension.html

DEL The number of rows deleted.

Column Name Description

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

--
 public pgbench_tellers 8258 825800 0
0 0 8258 0
 public pgbench_branches 8258 82580 0
0 0 8258 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_database 2 12 7
7 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by rel tup read section includes:

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

SEQ SCAN The number of sequential scans performed on the table.

REL TUP
READ

The number of tuples read from the table.

IDX SCAN The number of index scans performed on the table.

IDX TUP
READ

The number of index tuples read.

INS The number of rows inserted.

UPD The number of rows updated.

DEL The number of rows deleted.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 763

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP IDX IDX
TOAST TOAST TIDX TIDX
 READ HIT READ HIT
READ HIT READ HIT
--

 public pgbench_accounts 32 25016 0 49913
0 0 0 0
 public pgbench_tellers 0 24774 0 0
0 0 0 0
 public pgbench_branches 0 16516 0 0
0 0 0 0
 public pgbench_history 53 8364 0 0
0 0 0 0
 pg_catalog pg_class 0 199 0 187
0 0 0 0
 pg_catalog pg_attribute 0 198 0 395
0 0 0 0
 pg_catalog pg_proc 0 75 0 153
0 0 0 0
 pg_catalog pg_index 0 56 0 33
0 0 0 0
 pg_catalog pg_amop 0 48 0 56
0 0 0 0
 pg_catalog pg_namespace 0 28 0 7
0 0 0 0

The information displayed in the DATA from pg_statio_all_tables section includes:

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

HEAP READ The number of heap blocks read.

HEAP HIT The number of heap blocks hit.

IDX READ The number of index blocks read.

IDX HIT The number of index blocks hit.

TOAST READ The number of toast blocks read.

TOAST HIT The number of toast blocks hit.

TIDX READ The number of toast index blocks read.

TIDX HIT The number of toast index blocks hit.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 764

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
IDX SCAN IDX TUP READ IDX TUP FETCH
--

 public pgbench_accounts pgbench_accounts_pkey
16516 16679 16516
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 196 402 402
 pg_catalog pg_proc pg_proc_oid_index
70 70 70
 pg_catalog pg_class pg_class_oid_index
61 61 61
 pg_catalog pg_class pg_class_relname_nsp_index
31 19 19
 pg_catalog pg_type pg_type_oid_index
22 22 22
 pg_catalog edb_policy edb_policy_object_name_index
21 0 0
 pg_catalog pg_amop pg_amop_fam_strat_index
16 16 16
 pg_catalog pg_index pg_index_indexrelid_index
16 16 16
 pg_catalog pg_index pg_index_indrelid_index
15 22 22

The information displayed in the DATA from pg_stat_all_indexes section includes:

Column Name Description

SCHEMA The name of the schema in which the index resides.

RELATION The name of the table on which the index is defined.

INDEX The name of the index.

IDX SCAN The number of indexes scans initiated on this index.

IDX TUP READ Number of index entries returned by scans on this index

IDX TUP
FETCH

Number of live table rows fetched by simple index scans using this index.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 765

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
IDX BLKS READ IDX BLKS HIT
--
--
 public pgbench_accounts pgbench_accounts_pkey
0 49913
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 0 395
 sys edb$stat_all_indexes edb$stat_idx_pk
1 382
 sys edb$statio_all_indexes edb$statio_idx_pk
1 382
 sys edb$statio_all_tables edb$statio_tab_pk
2 262
 sys edb$stat_all_tables edb$stat_tab_pk
0 259
 sys edb$session_wait_history session_waits_hist_pk
0 251
 pg_catalog pg_proc pg_proc_oid_index
0 142
 pg_catalog pg_class pg_class_oid_index
0 123
 pg_catalog pg_class pg_class_relname_nsp_index
0 63

The information displayed in the DATA from pg_statio_all_indexes section includes:

Column Name Description

SCHEMA The name of the schema in which the index resides.

RELATION The name of the table on which the index is defined.

INDEX The name of the index.

IDX BLKS READ The number of index blocks read.

IDX BLKS HIT The number of index blocks hit.

 System Wait Information

WAIT NAME COUNT WAIT TIME % WAIT

wal flush 8359 1.357593 30.62
wal write 8358 1.349153 30.43
wal file sync 8358 1.286437 29.02
query plan 33439 0.439324 9.91
db file extend 54 0.000585 0.01
db file read 31 0.000307 0.01
other lwlock acquire 0 0.000000 0.00
ProcArrayLock 0 0.000000 0.00
CLogControlLock 0 0.000000 0.00

The information displayed in the System Wait Information section includes:

Column Name Description

WAIT NAME The name of the wait.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 766

COUNT The number of times that the wait event occurred.

WAIT TIME The length of the wait time in seconds.

% WAIT The percentage of the total wait time used by this wait for this session.

Column Name Description

 Database Parameters from postgresql.conf

 PARAMETER SETTING
CONTEXT MINVAL MAXVAL
--

 allow_system_table_mods off
postmaster
 application_name psql.bin
user
 archive_command (disabled)
sighup
 archive_mode off
postmaster
 archive_timeout 0
sighup 0 1073741823
 array_nulls on
user
 authentication_timeout 60
sighup 1 600
 autovacuum on
sighup
 autovacuum_analyze_scale_factor 0.1
sighup 0 100
 autovacuum_analyze_threshold 50
sighup 0 2147483647
 autovacuum_freeze_max_age 200000000
postmaster 100000 2000000000
 autovacuum_max_workers 3
postmaster 1 262143
 autovacuum_multixact_freeze_max_age 400000000
postmaster 10000 2000000000
 autovacuum_naptime 60
sighup 1 2147483
 autovacuum_vacuum_cost_delay 20
sighup -1 100
 .
 .
 .

The information displayed in the Database Parameters from postgresql.conf section includes:

Column Name Description

PARAMETER The name of the parameter.

SETTING The current value assigned to the parameter.

CONTEXT The context required to set the parameter value.

MINVAL The minimum value allowed for the parameter.

MAXVAL The maximum value allowed for the parameter.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 767

stat_db_rpt()

The signature is:

stat_db_rpt(<beginning_id>, <ending_id>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

The following example demonstrates the stat_db_rpt() function:

SELECT * FROM stat_db_rpt(9, 10);

 stat_db_rpt

 DATA from pg_stat_database

DATABASE NUMBACKENDS XACT COMMIT XACT ROLLBACK BLKS READ BLKS HIT HIT RATIO

acctg 0 8261 0 117 127985 99.91
(5 rows)

The information displayed in the DATA from pg_stat_database section of the report includes:

Column
Name

Description

DATABAS
E

The name of the database.

NUMBACK
ENDS

Number of backends currently connected to this database. This is the only column in this view that returns a value reflecting current
state; all other columns return the accumulated values since the last reset.

XACT
COMMIT

The number of transactions in this database that have been committed.

XACT
ROLLBACK

The number of transactions in this database that have been rolled back.

BLKS
READ

The number of blocks read.

BLKS
HIT

The number of blocks hit.

HIT
RATIO

The percentage of times that a block was found in the shared buffer cache.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 768

stat_tables_rpt()

The signature is:

function_name(<beginning_id>, <ending_id>, <top_n>, <scope>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS , USER or ALL :

SYS indicates that the function should return information about system defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog , information_schema , or sys .
USER indicates that the function should return information about user-defined tables.
ALL specifies that the function should return information about all tables.

The stat_tables_rpt() function returns a two-part report. The first portion of the report contains:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 769

SELECT * FROM stat_tables_rpt(8, 9, 10, 'ALL');

 stat_tables_rpt
--
 DATA from pg_stat_all_tables ordered by seq scan

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL

 public pgbench_branches 8249 82490 0
0 0 8249 0
 public pgbench_tellers 8249 824900 0
0 0 8249 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_database 1 6 3
3 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0

The information displayed in the DATA from pg_stat_all_tables ordered by seq scan section includes:

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

SEQ SCAN The number of sequential scans on the table.

REL TUP
READ

The number of tuples read from the table.

IDX SCAN The number of index scans performed on the table.

IDX TUP
READ

The number of index tuples read from the table.

INS The number of rows inserted.

UPD The number of rows updated.

DEL The number of rows deleted.

The second portion of the report contains:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 770

 DATA from pg_stat_all_tables ordered by rel tup read

 SCHEMA RELATION SEQ SCAN REL TUP READ IDX SCAN
IDX TUP READ INS UPD DEL
--

 public pgbench_tellers 8249 824900 0
0 0 8249 0
 public pgbench_branches 8249 82490 0
0 0 8249 0
 pg_catalog pg_class 7 3969 92
80 0 0 0
 pg_catalog pg_index 5 950 31
38 0 0 0
 pg_catalog pg_namespace 4 144 5
4 0 0 0
 pg_catalog pg_authid 1 10 2
2 0 0 0
 pg_catalog pg_database 1 6 3
3 0 0 0
 pg_catalog pg_am 1 1 0
0 0 0 0
 sys callback_queue_table 0 0 0
0 0 0 0
 sys edb$session_wait_history 0 0 0
0 125 0 0
(29 rows)

The information displayed in the DATA from pg_stat_all_tables ordered by rel tup read section includes:

Column Name Description

SCHEMA The name of the schema in which the table resides.

RELATION The name of the table.

SEQ SCAN The number of sequential scans performed on the table.

REL TUP
READ

The number of tuples read from the table.

IDX SCAN The number of index scans performed on the table.

IDX TUP
READ

The number of live rows fetched by index scans.

INS The number of rows inserted.

UPD The number of rows updated.

DEL The number of rows deleted.

statio_tables_rpt()

The signature is:

statio_tables_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

ParametersParameters

beginning_id

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 771

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS , USER or ALL :

SYS indicates that the function should return information about system defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog , information_schema , or sys .
USER indicates that the function should return information about user-defined tables.
ALL specifies that the function should return information about all tables.

The statio_tables_rpt() function returns a report that contains:

SELECT * FROM statio_tables_rpt(9, 10, 10, 'SYS');

 statio_tables_rpt
--

 DATA from pg_statio_all_tables

 SCHEMA RELATION HEAP HEAP IDX IDX TOAST
TOAST TIDX TIDX
 READ HIT READ HIT READ

HIT READ HIT

 sys edb$stat_all_indexes 8 18 1 382 0
0 0 0
 sys edb$statio_all_index 8 18 1 382 0
0 0 0
 sys edb$statio_all_table 5 12 2 262 0
0 0 0
 sys edb$stat_all_tables 4 10 0 259 0
0 0 0
 sys edb$session_wait_his 2 6 0 251 0
0 0 0
 sys edb$session_waits 1 4 0 12 0
0 0 0
 sys callback_queue_table 0 0 0 0 0
0 0 0
 sys dual 0 0 0 0 0
0 0 0
 sys edb$snap 0 1 0 2 0
0 0 0
 sys edb$stat_database 0 2 0 7 0
0 0 0
(15 rows)

The information displayed in the DATA from pg_statio_all_tables section includes:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 772

Column Name Description

SCHEMA The name of the schema in which the relation resides.

RELATION The name of the relation.

HEAP READ The number of heap blocks read.

HEAP HIT The number of heap blocks hit.

IDX READ The number of index blocks read.

IDX HIT The number of index blocks hit.

TOAST READ The number of toast blocks read.

TOAST HIT The number of toast blocks hit.

TIDX READ The number of toast index blocks read.

TIDX HIT The number of toast index blocks hit.

stat_indexes_rpt()

The signature is:

stat_indexes_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

ParametersParameters

beginning_id

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS , USER or ALL :

SYS indicates that the function should return information about system defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog, information_schema , or sys .
USER indicates that the function should return information about user-defined tables.
ALL specifies that the function should return information about all tables.

The stat_indexes_rpt() function returns a report that contains:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 773

edb=# SELECT * FROM stat_indexes_rpt(9, 10, 10, 'ALL');

 stat_indexes_rpt

 DATA from pg_stat_all_indexes

 SCHEMA RELATION INDEX
IDX SCAN IDX TUP READ IDX TUP FETCH

--
 public pgbench_accounts pgbench_accounts_pkey
16516 16679 16516
 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 196 402 402
 pg_catalog pg_proc pg_proc_oid_index
70 70 70
 pg_catalog pg_class pg_class_oid_index
61 61 61
 pg_catalog pg_class pg_class_relname_nsp_index
31 19 19
 pg_catalog pg_type pg_type_oid_index
22 22 22
 pg_catalog edb_policy edb_policy_object_name_index
21 0 0
 pg_catalog pg_amop pg_amop_fam_strat_index
16 16 16
 pg_catalog pg_index pg_index_indexrelid_index
16 16 16
 pg_catalog pg_index pg_index_indrelid_index
15 22 22
(14 rows)

The information displayed in the DATA from pg_stat_all_indexes section includes:

Column Name Description

SCHEMA The name of the schema in which the relation resides.

RELATION The name of the relation.

INDEX The name of the index.

IDX SCAN The number of indexes scanned.

IDX TUP READ The number of index tuples read.

IDX TUP
FETCH

The number of index tuples fetched.

statio_indexes_rpt()

The signature is:

statio_indexes_rpt(<beginning_id>, <ending_id>, <top_n>, <scope>)

ParametersParameters

beginning_id

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 774

beginning_id is an integer value that represents the beginning session identifier.

ending_id

ending_id is an integer value that represents the ending session identifier.

top_n

top_n represents the number of rows to return

scope

scope determines which tables the function returns statistics about. Specify SYS , USER or ALL :

SYS indicates that the function should return information about system defined tables. A table is considered a system table if it is stored in one of
the following schemas: pg_catalog , information_schema , or sys .
USER indicates that the function should return information about user-defined tables.
ALL specifies that the function should return information about all tables.

The statio_indexes_rpt() function returns a report that contains:

edb=# SELECT * FROM statio_indexes_rpt(9, 10, 10, 'SYS');

 statio_indexes_rpt
--

 DATA from pg_statio_all_indexes

 SCHEMA RELATION INDEX
IDX BLKS READ IDX BLKS HIT
--

 pg_catalog pg_attribute
pg_attribute_relid_attnum_index 0 395
 sys edb$stat_all_indexes edb$stat_idx_pk
1 382
 sys edb$statio_all_indexes edb$statio_idx_pk
1 382
 sys edb$statio_all_tables edb$statio_tab_pk
2 262
 sys edb$stat_all_tables edb$stat_tab_pk
0 259
 sys edb$session_wait_history session_waits_hist_pk
0 251
 pg_catalog pg_proc pg_proc_oid_index
0 142
 pg_catalog pg_class pg_class_oid_index
0 123
 pg_catalog pg_class pg_class_relname_nsp_index
0 63
 pg_catalog pg_type pg_type_oid_index
0 45
(14 rows)

The information displayed in the DATA from pg_statio_all_indexes report includes:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 775

Column Name Description

SCHEMA The name of the schema in which the relation resides.

RELATION The name of the table on which the index is defined.

INDEX The name of the index.

IDX BLKS READ The number of index blocks read.

IDX BLKS HIT The number of index blocks hit.

Performance Tuning Recommendations

To use DRITA reports for performance tuning, review the top five events in a given report, looking for any event that takes a disproportionately large
percentage of resources. In a streamlined system, user I/O will probably make up the largest number of waits. Waits should be evaluated in the context of
CPU usage and total time; an event may not be significant if it takes 2 minutes out of a total measurement interval of 2 hours, if the rest of the time is
consumed by CPU time. The component of response time (CPU "work" time or other "wait" time) that consumes the highest percentage of overall time
should be evaluated.

When evaluating events, watch for:

Event type Description

Checkpoint waits
Checkpoint waits may indicate that checkpoint parameters need to be adjusted, (checkpoint_segments and
checkpoint_timeout).

WAL-related waits WAL-related waits may indicate wal_buffers are under-sized.

SQL Parse waits If the number of waits is high, try to use prepared statements.

db file random reads If high, check that appropriate indexes and statistics exist.

db file random writes If high, may need to decrease bgwriter_delay .

btree random lock
acquires

May indicate indexes are being rebuilt. Schedule index builds during less active time.

Performance reviews should also include careful scrutiny of the hardware, the operating system, the network and the application SQL statements.

Event Descriptions

The following table lists the basic wait events that are displayed by DRITA.

Event Name Description

add in shmem lock
acquire

Obsolete/unused

bgwriter
communication lock
acquire

The bgwriter (background writer) process has waited for the short-term lock that synchronizes messages between the
bgwriter and a backend process.

btree vacuum lock
acquire

The server has waited for the short-term lock that synchronizes access to the next available vacuum cycle ID.

buffer free list
lock acquire

The server has waited for the short-term lock that synchronizes access to the list of free buffers (in shared memory).

checkpoint lock
acquire

A server process has waited for the short-term lock that prevents simultaneous checkpoints.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 776

checkpoint start
lock acquire

The server has waited for the short-term lock that synchronizes access to the bgwriter checkpoint schedule.

clog control lock
acquire

The server has waited for the short-term lock that synchronizes access to the commit log.

control file lock
acquire

The server has waited for the short-term lock that synchronizes write access to the control file (this should usually be a
low number).

db file extend A server process has waited for the operating system while adding a new page to the end of a file.

db file read A server process has waited for the completion of a read (from disk).

db file write A server process has waited for the completion of a write (to disk).

db file sync A server process has waited for the operating system to flush all changes to disk.

first buf mapping
lock acquire

The server has waited for a short-term lock that synchronizes access to the shared-buffer mapping table.

freespace lock
acquire

The server has waited for the short-term lock that synchronizes access to the freespace map.

lwlock acquire The server has waited for a short-term lock that has not been described elsewhere in this section.

multi xact gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the next available multi-transaction ID (when
a SELECT...FOR SHARE statement executes).

multi xact member
lock acquire

The server has waited for the short-term lock that synchronizes access to the multi-transaction member file (when a
SELECT...FOR SHARE statement executes).

multi xact offset
lock acquire

The server has waited for the short-term lock that synchronizes access to the multi-transaction offset file (when a
SELECT...FOR SHARE statement executes).

oid gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the next available OID (object ID).

query plan The server has computed the execution plan for a SQL statement.

rel cache init lock
acquire

The server has waited for the short-term lock that prevents simultaneous relation-cache loads/unloads.

shmem index lock
acquire

The server has waited for the short-term lock that synchronizes access to the shared-memory map.

sinval lock
acquire

The server has waited for the short-term lock that synchronizes access to the cache invalidation state.

sql parse The server has parsed a SQL statement.

subtrans control
lock acquire

The server has waited for the short-term lock that synchronizes access to the subtransaction log.

tablespace create
lock acquire

The server has waited for the short-term lock that prevents simultaneous CREATE TABLESPACE or DROP
TABLESPACE commands.

two phase state
lock acquire

The server has waited for the short-term lock that synchronizes access to the list of prepared transactions.

wal insert lock
acquire

The server has waited for the short-term lock that synchronizes write access to the write-ahead log. A high number may
indicate that WAL buffers are sized too small.

wal write lock
acquire

The server has waited for the short-term lock that synchronizes write-ahead log flushes.

wal file sync The server has waited for the write-ahead log to sync to disk (related to the wal_sync_method parameter which, by
default, is 'fsync' - better performance can be gained by changing this parameter to open_sync).

wal flush The server has waited for the write-ahead log to flush to disk.

wal write The server has waited for a write to the write-ahead log buffer (expect this value to be high).

xid gen lock
acquire

The server has waited for the short-term lock that synchronizes access to the next available transaction ID.

Event Name Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 777

When wait events occur for lightweight locks, they are displayed by DRITA as well. A lightweight lock is used to protect a particular data structure in shared
memory.

Certain wait events can be due to the server process waiting for one of a group of related lightweight locks, which is referred to as a lightweight lock
tranche. Individual lightweight lock tranches are not displayed by DRITA, but their summation is displayed by a single event named other lwlock
acquire .

For a list and description of lightweight locks displayed by DRITA, see Section 28.2, The Statistics Collector in the PostgreSQL core
documentation available at:

https://www.postgresql.org/docs/current/static/monitoring-stats.html

Under Section 28.2.2. Viewing Statistics , the lightweight locks are listed in Table 28-4 wait_event Description where the Wait Event
Type column designates LWLock .

The following example displays lightweight locks ProcArrayLock , CLogControlLock , WALBufMappingLock , and XidGenLock .

postgres=# select * from sys_rpt(40,70,20);
 sys_rpt
--
 WAIT NAME COUNT WAIT TIME % WAIT
--
 wal flush 56107 44.456494 47.65
 db file read 66123 19.543968 20.95
 wal write 32886 12.780866 13.70
 wal file sync 32933 11.792972 12.64
 query plan 223576 4.539186 4.87
 db file extend 2339 0.087038 0.09
 other lwlock acquire 402 0.066591 0.07
 ProcArrayLock 135 0.012942 0.01
 CLogControlLock 212 0.010333 0.01
 WALBufMappingLock 47 0.006068 0.01
 XidGenLock 53 0.005296 0.01
(13 rows)

DRITA also displays wait events that occur that are related to certain Advanced Server product features.

These Advanced Server feature specific wait events and the other lwlock acquire event are listed in the following table.

Event Name Description

BulkLoadLock The server has waited for access related to EDB*Loader.

EDBResoureManagerLock The server has waited for access related to EDB Resource Manager.

other lwlock acquire Summation of waits for lightweight lock tranches.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 778

https://www.postgresql.org/docs/current/static/monitoring-stats.html

15 Database Compatibility for Oracle Developers Catalog Views Guide

The Oracle Catalog Views provide information about database objects in a manner compatible with the Oracle data dictionary views.

For detailed information about Advanced Server's compatibility features and extended functionality, see the complete library of Advanced Server
documentation, available at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 779

https://www.enterprisedb.com/docs

15.1 ALL_ALL_TABLES

The ALL_ALL_TABLES view provides information about the tables accessible by the current user.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT The name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING (5)

Included for compatibility only; always set to VALID .

temporary TEXT Y if the table is temporary; N if the table is permanent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 780

15.2 ALL_CONS_COLUMNS

The ALL_CONS_COLUMNS view provides information about the columns specified in constraints placed on tables accessible by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object
definition.

constraint_def TEXT The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 781

15.3 ALL_CONSTRAINTS

The ALL_CONSTRAINTS view provides information about the constraints placed on tables accessible by the current user.

Name Type Description

owner TE
XT

User name of the constraint’s owner.

schema_n
ame

TE
XT

Name of the schema in which the constraint belongs.

constrai
nt_name

TE
XT

The name of the constraint.

constrai
nt_type

TE
XT

The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U –
unique key constraint; R – referential integrity constraint; V – constraint on a view; O – with read-only, on a view

table_na
me

TE
XT

Name of the table to which the constraint belongs.

search_c
ondition

TE
XT

Search condition that applies to a check constraint.

r_owner TE
XT

Owner of a table referenced by a referential constraint.

r_constr
aint_nam
e

TE
XT Name of the constraint definition for a referenced table.

delete_r
ule

TE
XT

The delete rule for a referential constraint. Possible values are: C – cascade; R – restrict; N – no action

deferrab
le

BO
OLE
AN

Specified if the constraint is deferrable (T or F).

deferre
d

BO
OLE
AN

Specifies if the constraint has been deferred (T or F).

index_ow
ner

TE
XT

User name of the index owner.

index_na
me

TE
XT

The name of the index.

constrai
nt_def

TE
XT

The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 782

15.4 ALL_COL_PRIVS

The ALL_COL_PRIVS view provides the following types of privileges:

Column object privileges for which a current user is either an object owner, grantor, or grantee.
Column object privileges for which PUBLIC is the grantee.

Name Type Description

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

tabl
e_sch
ema

CHARACTER
VARYING(12
8)

Name of the user who owns the object.

sche
ma_na
me

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_nam
e

CHARACTER
VARYING(12
8)

Object name.

colu
mn_na
me

CHARACTER
VARYING(12
8)

Column name.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege on the column.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 783

15.5 ALL_DB_LINKS

The ALL_DB_LINKS view provides information about the database links accessible by the current user.

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT The name of the database link.

type CHARACTER VARYING Type of remote server. Value will be either REDWOOD or
EDB .

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 784

15.6 ALL_DEPENDENCIES

The ALL_DEPENDENCIES view provides information about the dependencies between database objects that the current user can access (except for
synonyms).

Name Type Description

owner CHARACTER VARYING(128) Owner of dependent object.

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included for compatibility only. Always NULL .

dependency_type CHARACTER VARYING(4) Included for compatibility only. Always set to HARD .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 785

15.7 ALL_DIRECTORIES

The ALL_DIRECTORIES view provides information about all directories created with the CREATE DIRECTORY command.

Name Type Description

owner CHARACTER VARYING(30) User name of the directory’s owner.

directory_name CHARACTER VARYING(30) The alias name assigned to the directory.

directory_path CHARACTER VARYING(4000) The path to the directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 786

15.8 ALL_IND_COLUMNS

The ALL_IND_COLUMNS view provides information about columns included in indexes on the tables accessible by the current user.

Name Type Description

index_owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

table_owner TEXT User name of the table owner.

table_name TEXT The name of the table to which the index belongs.

column_name TEXT The name of the column.

column_position SMALLINT The position of the column within the index.

column_length SMALLINT The length of the column (in bytes).

char_length NUMERIC The length of the column (in characters).

descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 787

15.9 ALL_INDEXES

The ALL_INDEXES view provides information about the indexes on tables that may be accessed by the current user.

Name Type Description

owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE . Included for compatibility only.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Always set to N (not compressed). Included for compatibility only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than the default tablespace.

degree CHARACTER
VARYING(10)

Number of threads per instance to scan the index.

logging TEXT Always set to LOGGING . Included for compatibility only.

status TEXT Included for compatibility only; always set to VALID .

partitioned CHARACTER(3) Indicates that the index is partitioned. Currently, always set to NO .

temporary CHARACTER(1) Indicates that an index is on a temporary table. Always set to N ; included for compatibility
only.

secondary CHARACTER(1) Included for compatibility only. Always set to N .

join_index CHARACTER(3) Included for compatibility only. Always set to NO .

dropped CHARACTER(3) Included for compatibility only. Always set to NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 788

15.10 ALL_JOBS

The ALL_JOBS view provides information about all jobs that reside in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user . Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date .

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT If Y , no attempt will be made to run this job. If N , this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since it’s last successful
execution.

what TEXT The job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided for compatibility only.

misc_env BYTEA Always NULL . Provided for compatibility only.

instance NUMERIC Always 0 . Provided for compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 789

15.11 ALL_OBJECTS

The ALL_OBJECTS view provides information about all objects that reside in the database.

Name Type Description

owner TEXT User name of the object’s owner.

schema
_name

TEXT Name of the schema in which the object belongs.

object
_name

TEXT Name of the object.

object
_type

TEXT Type of the object – possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE ,
SEQUENCE , SYNONYM , TABLE , TRIGGER , and VIEW

status CHARACTER
VARYING

Whether or not the state of the object is valid. Currently, Included for compatibility only; always set to VALID .

tempor
ary

TEXT Y if a temporary object; N if this is a permanent object.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 790

15.12 ALL_PART_KEY_COLUMNS

The ALL_PART_KEY_COLUMNS view provides information about the key columns of the partitioned tables that reside in the database.

Name Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema in which the table resides.

name TEXT The name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only; always TABLE .

column_name TEXT The name of the column on which the key is defined.

column_position INTEGER 1 for the first column; 2 for the second column, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 791

15.13 ALL_PART_TABLES

The ALL_PART_TABLES view provides information about all of the partitioned tables that reside in the database.

Name Type Description

owner TEXT The owner of the partitioned table.

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

partitioning_type TEXT The partitioning type used to define table partitions.

subpartitioning_type TEXT The subpartitioning type used to define table subpartitions.

partition_count BIGINT The number of partitions in the table.

def_subpartition_count INTEGER The number of subpartitions in the table.

partitioning_key_count INTEGER The number of partitioning keys specified.

subpartitioning_key_count INTEGER The number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided for compatibility only. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

def_pct_free NUMERIC Provided for compatibility only. Always NULL .

def_pct_used NUMERIC Provided for compatibility only. Always NULL .

def_ini_trans NUMERIC Provided for compatibility only. Always NULL .

def_max_trans NUMERIC Provided for compatibility only. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_next_extent CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_freelists NUMERIC Provided for compatibility only. Always NULL .

def_freelist_groups NUMERIC Provided for compatibility only. Always NULL .

def_logging CHARACTER VARYING(7) Provided for compatibility only. Always YES .

def_compression CHARACTER VARYING(8) Provided for compatibility only. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided for compatibility only. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

interval CHARACTER VARYING(1000) Provided for compatibility only. Always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 792

15.14 ALL_POLICIES

The ALL_POLICIES view provides information on all policies in the database. This view is accessible only to superusers.

Name Type Description

object_owner TEX
T

Name of the owner of the object.

schema_name TEX
T

Name of the schema in which the object belongs.

object_name TEX
T

Name of the object on which the policy applies.

policy_group TEX
T

Included for compatibility only; always set to an empty string.

policy_name TEX
T

Name of the policy.

pf_owner TEX
T

Name of the schema containing the policy function, or the schema containing the package that contains the policy
function.

package TEX
T

Name of the package containing the policy function (if the function belongs to a package).

function TEX
T

Name of the policy function.

sel TEX
T

Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEX
T

Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEX
T

Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEX
T

Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEX
T

Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEX
T

Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEX
T

Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEX
T

Included for compatibility only; always set to NO .

policy_type TEX
T

Included for compatibility only; always set to UNKNOWN .

long_predicat
e

TEX
T

Included for compatibility only; always set to YES .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 793

15.15 ALL_QUEUES

The ALL_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER
VARYING

The queue type; may be EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or
NORMAL_QUEUE .

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled CHARACTER
VARYING

YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled CHARACTER
VARYING

YES if the queue allows dequeuing; NO if the queue does not.

retention CHARACTER
VARYING

The number of seconds that a processed message is retained in the queue.

user_comment CHARACTER
VARYING

A user-specified comment.

network_name CHARACTER
VARYING

The name of the network on which the queue resides.

sharded CHARACTER
VARYING

YES if the queue resides on a sharded network; NO if the queue does not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 794

15.16 ALL_QUEUE_TABLES

The ALL_QUEUE_TABLES view provides information about all of the queue tables in the database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT The user-specified name of the queue table.

type CHARACTER
VARYING

The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order CHARACTER
VARYING

The order in which the queue table is sorted.

recipients CHARACTER
VARYING

Always SINGLE .

message_grouping CHARACTER
VARYING

Always NONE .

compatible CHARACTER
VARYING

The release number of the Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC The instance number of the instance that owns the queue table.

user_comment CHARACTER
VARYING

The user comment provided when the table was created.

secure CHARACTER
VARYING

YES indicates that the queue table is secure; NO indicates that it is not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 795

15.17 ALL_SEQUENCES

The ALL_SEQUENCES view provides information about all user-defined sequences on which the user has SELECT , or UPDATE privileges.

Name Type Description

sequence_owner TEXT User name of the sequence's owner.

schema_name TEXT Name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies if the sequence should wrap when it reaches min_value or max_value .

order_flag CHARACTER VARYING Will always return Y .

cache_size NUMERIC The number of pre-allocated sequence numbers stored in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 796

15.18 ALL_SOURCE

The ALL_SOURCE view provides a source code listing of the following program types: functions, procedures, triggers, package specifications, and
package bodies.

Name Type Description

owner TEXT User name of the program’s owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program – possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 797

15.19 ALL_SUBPART_KEY_COLUMNS

The ALL_SUBPART_KEY_COLUMNS view provides information about the key columns of those partitioned tables which are subpartitioned that reside in
the database.

Name Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema in which the table resides.

name TEXT The name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only; always TABLE .

column_name TEXT The name of the column on which the key is defined.

column_position INTEGER 1 for the first column; 2 for the second column, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 798

15.20 ALL_SYNONYMS

The ALL_SYNONYMS view provides information on all synonyms that may be referenced by the current user.

Name Type Description

owner TEXT User name of the synonym’s owner.

schema_name TEXT The name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the object’s owner.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the object that the synonym refers to.

db_link TEXT The name of any associated database link.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 799

15.21 ALL_TAB_COLUMNS

The ALL_TAB_COLUMNS view provides information on all columns in all user-defined tables and views.

Name Type Description

owner CHARACTER
VARYING

User name of the owner of the table or view in which the column resides.

schema_name CHARACTER
VARYING

Name of the schema in which the table or view resides.

table_name CHARACTER
VARYING

Name of the table or view.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable. Possible values are: Y – column is nullable; N – column does
not allow null.

column_id NUMERIC Relative position of the column within the table or view.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 800

15.22 ALL_TAB_PARTITIONS

The ALL_TAB_PARTITIONS view provides information about all of the partitions that reside in the database.

Name Type Description

table_owner TEXT The owner of the table in which the partition resides.

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

composite TEXT YES if the table is subpartitioned; NO if the table is not subpartitioned.

partition_na
me

TEXT The name of the partition.

subpartition
_count

BIGINT The number of subpartitions in the partition.

high_value TEXT The high partitioning value specified in the CREATE TABLE statement.

high_value_l
ength

INTEGER The length of high partitioning value.

partition_po
sition

INTEGER The ordinal position of this partition.

tablespace_n
ame

TEXT The name of the tablespace in which the partition resides. If the tablespace name is not specified,
then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_exte
nt

NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL .

freelist_gro
ups

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 801

last_analyze
d

TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_tabl
e

REGCLASS Name of the partition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 802

15.23 ALL_TAB_SUBPARTITIONS

The ALL_TAB_SUBPARTITIONS view provides information about all of the subpartitions that reside in the database.

Name Type Description

table_owner TEXT The owner of the table in which the subpartition resides.

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_n
ame

TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value specified in the CREATE TABLE statement.

high_value_len
gth

INTEGER The length of high partitioning value.

subpartition_p
osition

INTEGER The ordinal position of this subpartition.

tablespace_nam
e

TEXT The name of the tablespace in which the subpartition resides. If the tablespace name is not
specified, then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_extent NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL .

freelist_group
s

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

last_analyzed TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 803

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_table REGCLASS Name of the subpartition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 804

15.24 ALL_TAB_PRIVS

The ALL_TAB_PRIVS view provides the following types of privileges:

Object privileges for which a current user is either an object owner, grantor, or grantee.
Object privileges for which the PUBLIC is the grantee.

Name Type Description

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

tabl
e_sch
ema

CHARACTER
VARYING(12
8)

Name of the user who owns the object.

sche
ma_na
me

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_nam
e

CHARACTER
VARYING(12
8)

Object name.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege name.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

hier
arch
y

CHARACTER
VARYING(3) The value can be YES or NO . The value may be YES if the privilege is SELECT else NO .

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

type
CHARACTER
VARYING(24
)

Type of object.

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 805

15.25 ALL_TABLES

The ALL_TABLES view provides information on all user-defined tables.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING(5)

Whether or not the state of the table is valid. Currently, Included for compatibility only; always set to
VALID .

temporary CHARACTER(1) Y if this is a temporary table; N if this is not a temporary table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 806

15.26 ALL_TRIGGERS

The ALL_TRIGGERS view provides information about the triggers on tables that may be accessed by the current user.

Name Type Description

owner TEX
T

User name of the trigger’s owner.

schema_name TEX
T

The name of the schema in which the trigger resides.

trigger_name TEX
T

The name of the trigger.

trigger_type TEX
T

The type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT

triggering_even
t

TEX
T

The event that fires the trigger.

table_owner TEX
T

The user name of the owner of the table on which the trigger is defined.

base_object_typ
e

TEX
T

Included for compatibility only. Value will always be TABLE .

table_name TEX
T

The name of the table on which the trigger is defined.

referencing_nam
e

TEX
T

Included for compatibility only. Value will always be REFERENCING NEW AS NEW OLD AS OLD .

status TEX
T

Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID) .

description TEX
T

Included for compatibility only.

trigger_body TEX
T

The body of the trigger.

action_statemen
t

TEX
T

The SQL command that executes when the trigger fires.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 807

15.27 ALL_TYPES

The ALL_TYPES view provides information about the object types available to the current user.

Name Type Description

owner TEXT The owner of the object type.

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER

attributes INTEGER The number of attributes in the type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 808

15.28 ALL_USERS

The ALL_USERS view provides information on all user names.

Name Type Description

username TEXT Name of the user.

user_id OID Numeric user id assigned to the user.

created TIMESTAMP WITHOUT TIME ZONE Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 809

15.29 ALL_VIEW_COLUMNS

The ALL_VIEW_COLUMNS view provides information on all columns in all user-defined views.

Name Type Description

owner CHARACTER
VARYING

User name of the view’s owner.

schema_name CHARACTER
VARYING

Name of the schema in which the view belongs.

view_name CHARACTER
VARYING

Name of the view.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y – column is nullable; N – column does
not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 810

15.30 ALL_VIEWS

The ALL_VIEWS view provides information about all user-defined views.

Name Type Description

owner TEXT User name of the view’s owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 811

15.31 DBA_ALL_TABLES

The DBA_ALL_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING(5)

Included for compatibility only; always set to VALID .

temporary TEXT Y if the table is temporary; N if the table is permanent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 812

15.32 DBA_CONS_COLUMNS

The DBA_CONS_COLUMNS view provides information about all columns that are included in constraints that are specified in on all tables in the database.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object
definition.

constraint_def TEXT The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 813

15.33 DBA_CONSTRAINTS

The DBA_CONSTRAINTS view provides information about all constraints on tables in the database.

Name Type Description

owner TE
XT

User name of the constraint’s owner.

schema_n
ame

TE
XT

Name of the schema in which the constraint belongs.

constrai
nt_name

TE
XT

The name of the constraint.

constrai
nt_type

TE
XT

The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U –
unique key constraint; R – referential integrity constraint; V – constraint on a view; O – with read-only, on a view

table_na
me

TE
XT

Name of the table to which the constraint belongs.

search_c
ondition

TE
XT

Search condition that applies to a check constraint.

r_owner TE
XT

Owner of a table referenced by a referential constraint.

r_constr
aint_nam
e

TE
XT Name of the constraint definition for a referenced table.

delete_r
ule

TE
XT

The delete rule for a referential constraint. Possible values are: C – cascade; R - restrict; N – no action

deferrab
le

BO
OLE
AN

Specified if the constraint is deferrable (T or F).

deferre
d

BO
OLE
AN

Specifies if the constraint has been deferred (T or F).

index_ow
ner

TE
XT

User name of the index owner.

index_na
me

TE
XT

The name of the index.

constrai
nt_def

TE
XT

The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 814

15.34 DBA_COL_PRIVS

The DBA_COL_PRIVS view provides a listing of the object privileges granted on columns for all the database users.

Name Type Description

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

owne
r

CHARACTER
VARYING(12
8)

Object owner.

sche
ma_n
ame

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_na
me

CHARACTER
VARYING(12
8)

Object name.

colu
mn_n
ame

CHARACTER
VARYING(12
8)

Column name.

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege on the column.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 815

15.35 DBA_DB_LINKS

The DBA_DB_LINKS view provides information about all database links in the database.

Name Type Description

owner TEXT User name of the database link’s owner.

db_link TEXT The name of the database link.

type CHARACTER VARYING Type of remote server. Value will be either REDWOOD or
EDB .

username TEXT User name of the user logging in.

host TEXT Name or IP address of the remote server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 816

15.36 DBA_DIRECTORIES

The DBA_DIRECTORIES view provides information about all directories created with the CREATE DIRECTORY command.

Name Type Description

owner CHARACTER VARYING(30) User name of the directory’s owner.

directory_name CHARACTER VARYING(30) The alias name assigned to the directory.

directory_path CHARACTER VARYING(4000) The path to the directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 817

15.37 DBA_DEPENDENCIES

The DBA_DEPENDENCIES view provides information about the dependencies between all objects in the database (except for synonyms).

Name Type Description

owner CHARACTER VARYING(128) Owner of the dependent object.

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included for compatibility only. Always NULL .

dependency_type CHARACTER VARYING(4) Included for compatibility only. Always set to HARD .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 818

15.38 DBA_IND_COLUMNS

The DBA_IND_COLUMNS view provides information about all columns included in indexes, on all tables in the database.

Name Type Description

index_owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT Name of the index.

table_owner TEXT User name of the table’s owner.

table_name TEXT Name of the table in which the index belongs.

column_name TEXT Name of column or attribute of object column.

column_position SMALLINT The position of the column in the index.

column_length SMALLINT The length of the column (in bytes).

char_length NUMERIC The length of the column (in characters).

descend CHARACTER(1) Always set to Y (descending); included for compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 819

15.39 DBA_INDEXES

The DBA_INDEXES view provides information about all indexes in the database.

Name Type Description

owner TEXT User name of the index’s owner.

schema_name TEXT Name of the schema in which the index resides.

index_name TEXT The name of the index.

index_type TEXT The index type is always BTREE . Included for compatibility only.

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Always set to N (not compressed). Included for compatibility only.

tablespace_name TEXT Name of the tablespace in which the table resides if other than the default tablespace.

degree CHARACTER
VARYING(10)

Number of threads per instance to scan the index.

logging TEXT Included for compatibility only. Always set to LOGGING .

status TEXT Whether or not the state of the object is valid. (VALID or INVALID).

partitioned CHARACTER(3) Indicates that the index is partitioned. Always set to NO .

temporary CHARACTER(1) Indicates that an index is on a temporary table. Always set to N .

secondary CHARACTER(1) Included for compatibility only. Always set to N .

join_index CHARACTER(3) Included for compatibility only. Always set to NO .

dropped CHARACTER(3) Included for compatibility only. Always set to NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 820

15.40 DBA_JOBS

The DBA_JOBS view provides information about all jobs in the database.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user . Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date .

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT If Y , no attempt will be made to run this job. If N , this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since it’s last successful
execution.

what TEXT The job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided for compatibility only.

misc_env BYTEA Always NULL . Provided for compatibility only.

instance NUMERIC Always 0 . Provided for compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 821

15.41 DBA_OBJECTS

The DBA_OBJECTS view provides information about all objects in the database.

Name Type Description

owner TEXT User name of the object’s owner.

schema
_name

TEXT Name of the schema in which the object belongs.

object
_name

TEXT Name of the object.

object
_type

TEXT Type of the object – possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE ,
SEQUENCE , SYNONYM , TABLE , TRIGGER , and VIEW

status CHARACTER
VARYING

Included for compatibility only; always set to VALID .

tempor
ary

TEXT Y if the table is temporary; N if the table is permanent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 822

15.42 DBA_PART_KEY_COLUMNS

The DBA_PART_KEY_COLUMNS view provides information about the key columns of the partitioned tables that reside in the database.

Name Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema in which the table resides.

name TEXT The name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only; always TABLE .

column_name TEXT The name of the column on which the key is defined.

column_position INTEGER 1 for the first column; 2 for the second column, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 823

15.43 DBA_PART_TABLES

The DBA_PART_TABLES view provides information about all of the partitioned tables in the database.

Name Type Description

owner TEXT The owner of the partitioned table.

schema_name TEXT The schema in which the table resides.

table_name TEXT The name of the table.

partitioning_type TEXT The type used to define table partitions.

subpartitioning_type TEXT The subpartitioning type used to define table subpartitions.

partition_count BIGINT The number of partitions in the table.

def_subpartition_count INTEGER The number of subpartitions in the table.

partitioning_key_count INTEGER The number of partitioning keys specified.

subpartitioning_key_count INTEGER The number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided for compatibility only. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

def_pct_free NUMERIC Provided for compatibility only. Always NULL .

def_pct_used NUMERIC Provided for compatibility only. Always NULL .

def_ini_trans NUMERIC Provided for compatibility only. Always NULL .

def_max_trans NUMERIC Provided for compatibility only. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_next_extent CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_freelists NUMERIC Provided for compatibility only. Always NULL .

def_freelist_groups NUMERIC Provided for compatibility only. Always NULL .

def_logging CHARACTER VARYING(7) Provided for compatibility only. Always YES .

def_compression CHARACTER VARYING(8) Provided for compatibility only. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided for compatibility only. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

interval CHARACTER VARYING(1000) Provided for compatibility only. Always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 824

15.44 DBA_POLICIES

The DBA_POLICIES view provides information on all policies in the database. This view is accessible only to superusers.

Name Type Description

object_owner TEX
T

Name of the owner of the object.

schema_name TEX
T

The name of the schema in which the object resides.

object_name TEX
T

Name of the object to which the policy applies.

policy_group TEX
T

Name of the policy group. Included for compatibility only; always set to an empty string.

policy_name TEX
T

Name of the policy.

pf_owner TEX
T

Name of the schema containing the policy function, or the schema containing the package that contains the policy
function.

package TEX
T

Name of the package containing the policy function (if the function belongs to a package).

function TEX
T

Name of the policy function.

sel TEX
T

Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEX
T

Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEX
T

Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEX
T

Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEX
T

Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEX
T

Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEX
T

Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEX
T

Included for compatibility only; always set to NO .

policy_type TEX
T

Included for compatibility only; always set to UNKNOWN .

long_predicat
e

TEX
T

Included for compatibility only; always set to YES .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 825

15.45 DBA_PROFILES

The DBA_PROFILES view provides information about existing profiles. The table includes a row for each profile/resource combination.

Name Type Description

profile CHARACTER
VARYING(128)

The name of the profile.

resource_name CHARACTER VARYING(32) The name of the resource associated with the profile.

resource_type CHARACTER VARYING(8) The type of resource governed by the profile; currently PASSWORD for all supported
resources.

limit CHARACTER
VARYING(128)

The limit values of the resource.

common CHARACTER VARYING(3) YES for a user-created profile; NO for a system-defined profile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 826

15.46 DBA_QUEUES

The DBA_QUEUES view provides information about any currently defined queues.

Name Type Description

owner TEXT User name of the queue owner.

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER
VARYING

The queue type; may be EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or
NORMAL_QUEUE .

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled CHARACTER
VARYING

YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled CHARACTER
VARYING

YES if the queue allows dequeuing; NO if the queue does not.

retention CHARACTER
VARYING

The number of seconds that a processed message is retained in the queue.

user_comment CHARACTER
VARYING

A user-specified comment.

network_name CHARACTER
VARYING

The name of the network on which the queue resides.

sharded CHARACTER
VARYING

YES if the queue resides on a sharded network; NO if the queue does not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 827

15.47 DBA_QUEUE_TABLES

The DBA_QUEUE_TABLES view provides information about all of the queue tables in the database.

Name Type Description

owner TEXT Role name of the owner of the queue table.

queue_table TEXT The user-specified name of the queue table.

type CHARACTER
VARYING

The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order CHARACTER
VARYING

The order in which the queue table is sorted.

recipients CHARACTER
VARYING

Always SINGLE .

message_grouping CHARACTER
VARYING

Always NONE .

compatible CHARACTER
VARYING

The release number of the Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC The instance number of the instance that owns the queue table.

user_comment CHARACTER
VARYING

The user comment provided when the table was created.

secure CHARACTER
VARYING

YES indicates that the queue table is secure; NO indicates that it is not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 828

15.48 DBA_ROLE_PRIVS

The DBA_ROLE_PRIVS view provides information on all roles that have been granted to users. A row is created for each role to which a user has been
granted.

Name Type Description

grantee TEXT User name to whom the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option TEXT YES if the role was granted with the admin option, NO otherwise.

default_role TEXT YES if the role is enabled when the grantee creates a session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 829

15.49 DBA_ROLES

The DBA_ROLES view provides information on all roles with the NOLOGIN attribute (groups).

Name Type Description

role TEXT Name of a role having the NOLOGIN attribute – i.e., a group.

password_required TEXT Included for compatibility only; always N .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 830

15.50 DBA_SEQUENCES

The DBA_SEQUENCES view provides information about all user-defined sequences.

Name Type Description

sequence_owner TEXT User name of the sequence's owner.

schema_name TEXT The name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies if the sequence should wrap when it reaches min_value or max_value .

order_flag CHARACTER VARYING Will always return Y .

cache_size NUMERIC The number of pre-allocated sequence numbers stored in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 831

15.51 DBA_SOURCE

The DBA_SOURCE view provides the source code listing of all objects in the database.

Name Type Description

owner TEXT User name of the program’s owner.

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program – possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 832

15.52 DBA_SUBPART_KEY_COLUMNS

The DBA_SUBPART_KEY_COLUMNS view provides information about the key columns of those partitioned tables which are subpartitioned that reside in
the database.

Name Type Description

owner TEXT The owner of the table.

schema_name TEXT The name of the schema in which the table resides.

name TEXT The name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only; always TABLE .

column_name TEXT The name of the column on which the key is defined.

column_position INTEGER 1 for the first column; 2 for the second column, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 833

15.53 DBA_SYNONYMS

The DBA_SYNONYM view provides information about all synonyms in the database.

Name Type Description

owner TEXT User name of the synonym’s owner.

schema_name TEXT Name of the schema in which the synonym belongs.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the table’s owner on which the synonym is defined.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 834

15.54 DBA_TAB_COLUMNS

The DBA_TAB_COLUMNS view provides information about all columns in the database.

Name Type Description

owner CHARACTER
VARYING

User name of the owner of the table or view in which the column resides.

schema_name CHARACTER
VARYING

Name of the schema in which the table or view resides.

table_name CHARACTER
VARYING

Name of the table or view in which the column resides.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y – column is nullable; N – column does
not allow null

column_id NUMERIC Relative position of the column within the table or view.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 835

15.55 DBA_TAB_PARTITIONS

The DBA_TAB_PARTITIONS view provides information about all of the partitions that reside in the database.

Name Type Description

table_owner TEXT The owner of the table in which the partition resides.

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

composite TEXT YES if the table is subpartitioned; NO if the table is not subpartitioned.

partition_na
me

TEXT The name of the partition.

subpartition
_count

BIGINT The number of subpartitions in the partition.

high_value TEXT The high partitioning value specified in the CREATE TABLE statement.

high_value_l
ength

INTEGER The length of high partitioning value.

partition_po
sition

INTEGER The ordinal position of this partition.

tablespace_n
ame

TEXT The name of the tablespace in which the partition resides. If the tablespace name is not specified,
then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_exte
nt

NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL

freelist_gro
ups

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 836

last_analyze
d

TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_tabl
e

REGCLASS Name of the partition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 837

15.56 DBA_TAB_SUBPARTITIONS

The DBA_TAB_SUBPARTITIONS view provides information about all of the subpartitions that reside in the database.

Name Type Description

table_owner TEXT The owner of the table in which the subpartition resides.

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_n
ame

TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value specified in the CREATE TABLE statement.

high_value_len
gth

INTEGER The length of high partitioning value.

subpartition_p
osition

INTEGER The ordinal position of this subpartition.

tablespace_nam
e

TEXT The name of the tablespace in which the subpartition resides. If the tablespace name is not
specified, then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_extent NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL .

freelist_group
s

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

last_analyzed TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 838

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_table REGCLASS Name of the subpartition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 839

15.57 DBA_TAB_PRIVS

The DBA_TAB_PRIVS view provides a listing of the access privileges granted to database users and to PUBLIC .

Name Type Description

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

owne
r

CHARACTER
VARYING(12
8)

Object owner.

sche
ma_n
ame

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_na
me

CHARACTER
VARYING(12
8)

Object name.

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege name.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

hier
arch
y

CHARACTER
VARYING(3) The value can be YES or NO . The value may be YES if the privilege is SELECT else NO .

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

typ
e

CHARACTER
VARYING(24
)

Type of object.

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 840

15.58 DBA_TABLES

The DBA_TABLES view provides information about all tables in the database.

Name Type Description

owner TEXT User name of the table’s owner.

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING(5)

Included for compatibility only; always set to VALID .

temporary CHARACTER(1) Y if the table is temporary; N if the table is permanent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 841

15.59 DBA_TRIGGERS

The DBA_TRIGGERS view provides information about all triggers in the database.

Name Type Description

owner TEX
T

User name of the trigger’s owner.

schema_name TEX
T

The name of the schema in which the trigger resides.

trigger_name TEX
T

The name of the trigger.

trigger_type TEX
T

The type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT

triggering_event TEX
T

The event that fires the trigger.

table_owner TEX
T

The user name of the owner of the table on which the trigger is defined.

base_object_type TEX
T

Included for compatibility only. Value will always be TABLE .

table_name TEX
T

The name of the table on which the trigger is defined.

referencing_name
s

TEX
T

Included for compatibility only. Value will always be REFERENCING NEW AS NEW OLD AS OLD .

status TEX
T

Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID) .

description TEX
T

Included for compatibility only.

trigger_body TEX
T

The body of the trigger.

action_statement TEX
T

The SQL command that executes when the trigger fires.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 842

15.60 DBA_TYPES

The DBA_TYPES view provides information about all object types in the database.

Name Type Description

owner TEXT The owner of the object type.

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER

attributes INTEGER The number of attributes in the type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 843

15.61 DBA_USERS

The DBA_USERS view provides information about all users of the database.

Name Type Description

usernam
e

TEXT User name of the user.

user_id OID ID number of the user.

passwor
d

CHARACT
ER
VARYING
(30)

The password (encrypted) of the user.

account
_status

CHARACT
ER
VARYING
(32)

The current status of the account. Possible values are: OPEN , EXPIRED , EXPIRED(GRACE) , EXPIRED &
LOCKED , EXPIRED & LOCKED(TIMED) , EXPIRED(GRACE) & LOCKED , EXPIRED(GRACE) &
LOCKED(TIMED) , LOCKED , LOCKED(TIMED) . Use the edb_get_role_status(role_id) function to get the
current status of the account.

lock_da
te

TIMESTA
MP
WITHOUT
TIME
ZONE

If the account status is LOCKED , lock_date displays the date and time the account was locked.

expiry_
date

TIMESTA
MP
WITHOUT
TIME
ZONE

The expiration date of the password. Use the edb_get_password_expiry_date(role_id) function to get the
current password expiration date.

default
_tables
pace

TEXT The default tablespace associated with the account.

tempora
ry_tabl
espace

CHARACT
ER
VARYING
(30)

Included for compatibility only. The value will always be '' (an empty string).

created

TIMESTA
MP
WITHOUT
TIME
ZONE

Included for compatibility only. The value is always NULL .

profile

CHARACT
ER
VARYING
(30)

The profile associated with the user.

initial
_rsrc_c
onsumer
_group

CHARACT
ER
VARYING
(30)

Included for compatibility only. The value is always NULL .

externa
l_name

CHARACT
ER
VARYING
(4000)

Included for compatibility only. The value is always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 844

15.62 DBA_VIEW_COLUMNS

The DBA_VIEW_COLUMNS view provides information on all columns in the database.

Name Type Description

owner CHARACTER
VARYING

User name of the view’s owner.

schema_name CHARACTER
VARYING

Name of the schema in which the view belongs.

view_name CHARACTER
VARYING

Name of the view.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y – column is nullable; N – column does
not allow null

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 845

15.63 DBA_VIEWS

The DBA_VIEWS view provides information about all views in the database.

Name Type Description

owner TEXT User name of the view’s owner.

schema_name TEXT Name of the schema in which the view belongs.

view_name TEXT Name of the view.

text TEXT The text of the SELECT statement that defines the view.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 846

15.64 USER_ALL_TABLES

The USER_ALL_TABLES view provides information about all tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING(5)

Included for compatibility only; always set to VALID .

temporary TEXT Y if the table is temporary; N if the table is permanent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 847

15.65 USER_CONS_COLUMNS

The USER_CONS_COLUMNS view provides information about all columns that are included in constraints in tables that are owned by the current user.

Name Type Description

owner TEXT User name of the constraint’s owner.

schema_name TEXT Name of the schema in which the constraint belongs.

constraint_name TEXT The name of the constraint.

table_name TEXT The name of the table to which the constraint belongs.

column_name TEXT The name of the column referenced in the constraint.

position SMALLINT The position of the column within the object
definition.

constraint_def TEXT The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 848

15.66 USER_CONSTRAINTS

The USER_CONSTRAINTS view provides information about all constraints placed on tables that are owned by the current user.

Name Type Description

owner TE
XT

The name of the owner of the constraint.

schema_n
ame

TE
XT

Name of the schema in which the constraint belongs.

constrai
nt_name

TE
XT

The name of the constraint.

constrai
nt_type

TE
XT

The constraint type. Possible values are: C – check constraint; F – foreign key constraint; P – primary key constraint; U –
unique key constraint; R – referential integrity constraint; V – constraint on a view; O – with read-only, on a view

table_na
me

TE
XT

Name of the table to which the constraint belongs.

search_c
ondition

TE
XT

Search condition that applies to a check constraint.

r_owner TE
XT

Owner of a table referenced by a referential constraint.

r_constr
aint_nam
e

TE
XT Name of the constraint definition for a referenced table.

delete_r
ule

TE
XT

The delete rule for a referential constraint. Possible values are: C – cascade; R - restrict; N – no action

deferrab
le

BO
OLE
AN

Specified if the constraint is deferrable (T or F).

deferre
d

BO
OLE
AN

Specifies if the constraint has been deferred (T or F).

index_ow
ner

TE
XT

User name of the index owner.

index_na
me

TE
XT

The name of the index.

constrai
nt_def

TE
XT

The definition of the constraint.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 849

15.67 USER_COL_PRIVS

The USER_COL_PRIVS view provides a listing of the object privileges granted on a column for which a current user is either an object owner, grantor, or
grantee.

Name Type Description

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

owne
r

CHARACTER
VARYING(12
8)

Object owner.

sche
ma_n
ame

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_na
me

CHARACTER
VARYING(12
8)

Object name.

colu
mn_n
ame

CHARACTER
VARYING(12
8)

Column name.

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege on the column.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 850

15.68 USER_DB_LINKS

The USER_DB_LINKS view provides information about all database links that are owned by the current user.

Name Type Description

db_link TEXT The name of the database link.

type CHARACTER VARYING Type of remote server. Value will be either REDWOOD or
EDB .

username TEXT User name of the user logging in.

password TEXT Password used to authenticate on the remote server.

host TEXT Name or IP address of the remote server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 851

15.69 USER_DEPENDENCIES

The USER_DEPENDENCIES view provides information about dependencies between objects owned by a current user (with the except of synonyms).

Name Type Description

schema_name CHARACTER VARYING(128) Name of the schema in which the dependent object resides.

name CHARACTER VARYING(128) Name of the dependent object.

type CHARACTER VARYING(18) Type of the dependent object.

referenced_owner CHARACTER VARYING(128) Owner of the referenced object.

referenced_schema_name CHARACTER VARYING(128) Name of the schema in which the referenced object resides.

referenced_name CHARACTER VARYING(128) Name of the referenced object.

referenced_type CHARACTER VARYING(18) Type of the referenced object.

referenced_link_name CHARACTER VARYING(128) Included for compatibility only. Always NULL .

schemaid NUMERIC ID of the current schema.

dependency_type CHARACTER VARYING(4) Included for compatibility only. Always set to HARD .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 852

15.70 USER_INDEXES

The USER_INDEXES view provides information about all indexes on tables that are owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the index belongs.

index_name TEXT The name of the index.

index_type TEXT Included for compatibility only. The index type is always BTREE .

table_owner TEXT User name of the owner of the indexed table.

table_name TEXT The name of the indexed table.

table_type TEXT Included for compatibility only. Always set to TABLE .

uniqueness TEXT Indicates if the index is UNIQUE or NONUNIQUE .

compression CHARACTER(1) Included for compatibility only. Always set to N (not compressed).

tablespace_name TEXT Name of the tablespace in which the table resides if other than the default tablespace.

degree CHARACTER
VARYING(10)

Number of threads per instance to scan the index.

logging TEXT Included for compatibility only. Always set to LOGGING .

status TEXT Whether or not the state of the object is valid. (VALID or INVALID).

partitioned CHARACTER(3) Included for compatibility only. Always set to NO .

temporary CHARACTER(1) Included for compatibility only. Always set to N .

secondary CHARACTER(1) Included for compatibility only. Always set to N .

join_index CHARACTER(3) Included for compatibility only. Always set to NO .

dropped CHARACTER(3) Included for compatibility only. Always set to NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 853

15.71 USER_JOBS

The USER_JOBS view provides information about all jobs owned by the current user.

Name Type Description

job INTEGER The identifier of the job (Job ID).

log_user TEXT The name of the user that submitted the job.

priv_user TEXT Same as log_user . Included for compatibility only.

schema_user TEXT The name of the schema used to parse the job.

last_date TIMESTAMP WITH TIME ZONE The last date that this job executed successfully.

last_sec TEXT Same as last_date .

this_date TIMESTAMP WITH TIME ZONE The date that the job began executing.

this_sec TEXT Same as this_date .

next_date TIMESTAMP WITH TIME ZONE The next date that this job will be executed.

next_sec TEXT Same as next_date .

total_time INTERVAL The execution time of this job (in seconds).

broken TEXT If Y , no attempt will be made to run this job. If N , this job will attempt to execute.

interval TEXT Determines how often the job will repeat.

failures BIGINT The number of times that the job has failed to complete since it’s last successful
execution.

what TEXT The job definition (PL/SQL code block) that runs when the job executes.

nls_env CHARACTER VARYING(4000) Always NULL . Provided for compatibility only.

misc_env BYTEA Always NULL . Provided for compatibility only.

instance NUMERIC Always 0 . Provided for compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 854

15.72 USER_OBJECTS

The USER_OBJECTS view provides information about all objects that are owned by the current user.

Name Type Description

schema
_name

TEXT Name of the schema in which the object belongs.

object
_name

TEXT Name of the object.

object
_type

TEXT Type of the object – possible values are: INDEX , FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE ,
SEQUENCE , SYNONYM , TABLE , TRIGGER , and VIEW

status CHARACTER
VARYING

Included for compatibility only; always set to VALID .

tempor
ary

TEXT Y if the object is temporary; N if the object is not temporary.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 855

15.73 USER_PART_TABLES

The USER_PART_TABLES view provides information about all of the partitioned tables in the database that are owned by the current user.

Name Type Description

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

partitioning_type TEXT The partitioning type used to define table partitions.

subpartitioning_type TEXT The subpartitioning type used to define table subpartitions.

partition_count BIGINT The number of partitions in the table.

def_subpartition_count INTEGER The number of subpartitions in the table.

partitioning_key_count INTEGER The number of partitioning keys specified.

subpartitioning_key_count INTEGER The number of subpartitioning keys specified.

status CHARACTER VARYING(8) Provided for compatibility only. Always VALID .

def_tablespace_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

def_pct_free NUMERIC Provided for compatibility only. Always NULL .

def_pct_used NUMERIC Provided for compatibility only. Always NULL .

def_ini_trans NUMERIC Provided for compatibility only. Always NULL .

def_max_trans NUMERIC Provided for compatibility only. Always NULL .

def_initial_extent CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_min_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_max_extents CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_pct_increase CHARACTER VARYING(40) Provided for compatibility only. Always NULL .

def_freelists NUMERIC Provided for compatibility only. Always NULL .

def_freelist_groups NUMERIC Provided for compatibility only. Always NULL .

def_logging CHARACTER VARYING(7) Provided for compatibility only. Always YES .

def_compression CHARACTER VARYING(8) Provided for compatibility only. Always NONE .

def_buffer_pool CHARACTER VARYING(7) Provided for compatibility only. Always DEFAULT .

ref_ptn_constraint_name CHARACTER VARYING(30) Provided for compatibility only. Always NULL .

interval CHARACTER VARYING(1000) Provided for compatibility only. Always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 856

15.74 USER_POLICIES

The USER_POLICIES view provides information on policies where the schema containing the object on which the policy applies has the same name as
the current session user. This view is accessible only to superusers.

Name Type Description

schema_name TEX
T

The name of the schema in which the object resides.

object_name TEX
T

Name of the object on which the policy applies.

policy_group TEX
T

Name of the policy group. Included for compatibility only; always set to an empty string.

policy_name TEX
T

Name of the policy.

pf_owner TEX
T

Name of the schema containing the policy function, or the schema containing the package that contains the policy
function.

package TEX
T

Name of the package containing the policy function (if the function belongs to a package).

function TEX
T

Name of the policy function.

sel TEX
T

Whether or not the policy applies to SELECT commands. Possible values are YES or NO .

ins TEX
T

Whether or not the policy applies to INSERT commands. Possible values are YES or NO .

upd TEX
T

Whether or not the policy applies to UPDATE commands. Possible values are YES or NO .

del TEX
T

Whether or not the policy applies to DELETE commands. Possible values are YES or NO .

idx TEX
T

Whether or not the policy applies to index maintenance. Possible values are YES or NO .

chk_option TEX
T

Whether or not the check option is in force for INSERT and UPDATE commands. Possible values are YES or NO .

enable TEX
T

Whether or not the policy is enabled on the object. Possible values are YES or NO .

static_policy TEX
T

Whether or not the policy is static. Included for compatibility only; always set to NO .

policy_type TEX
T

Policy type. Included for compatibility only; always set to UNKNOWN .

long_predicat
e

TEX
T

Included for compatibility only; always set to YES .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 857

15.75 USER_QUEUES

The USER_QUEUES view provides information about any queue on which the current user has usage privileges.

Name Type Description

name TEXT The name of the queue.

queue_table TEXT The name of the queue table in which the queue resides.

qid OID The system-assigned object ID of the queue.

queue_type CHARACTER
VARYING

The queue type; may be EXCEPTION_QUEUE , NON_PERSISTENT_QUEUE , or
NORMAL_QUEUE .

max_retries NUMERIC The maximum number of dequeue attempts.

retrydelay NUMERIC The maximum time allowed between retries.

enqueue_enabled CHARACTER
VARYING

YES if the queue allows enqueuing; NO if the queue does not.

dequeue_enabled CHARACTER
VARYING

YES if the queue allows dequeuing; NO if the queue does not.

retention CHARACTER
VARYING

The number of seconds that a processed message is retained in the queue.

user_comment CHARACTER
VARYING

A user-specified comment.

network_name CHARACTER
VARYING

The name of the network on which the queue resides.

sharded CHARACTER
VARYING

YES if the queue resides on a sharded network; NO if the queue does not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 858

15.76 USER_QUEUE_TABLES

The USER_QUEUE_TABLES view provides information about all of the queue tables accessible by the current user.

Name Type Description

queue_table TEXT The user-specified name of the queue table.

type CHARACTER
VARYING

The type of data stored in the queue table.

object_type TEXT The user-defined payload type.

sort_order CHARACTER
VARYING

The order in which the queue table is sorted.

recipients CHARACTER
VARYING

Always SINGLE .

message_grouping CHARACTER
VARYING

Always NONE .

compatible CHARACTER
VARYING

The release number of the Advanced Server release with which this queue table is
compatible.

primary_instance NUMERIC Always 0 .

secondary_instance NUMERIC Always 0 .

owner_instance NUMERIC The instance number of the instance that owns the queue table.

user_comment CHARACTER
VARYING

The user comment provided when the table was created.

secure CHARACTER
VARYING

YES indicates that the queue table is secure; NO indicates that it is not.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 859

15.77 USER_ROLE_PRIVS

The USER_ROLE_PRIVS view provides information about the privileges that have been granted to the current user. A row is created for each role to
which a user has been granted.

Name Type Description

username TEXT The name of the user to which the role was granted.

granted_role TEXT Name of the role granted to the grantee.

admin_option TEXT YES if the role was granted with the admin option, NO otherwise.

default_role TEXT YES if the role is enabled when the grantee creates a session.

os_granted CHARACTER VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 860

15.78 USER_SEQUENCES

The USER_SEQUENCES view provides information about all user-defined sequences that belong to the current user.

Name Type Description

schema_name TEXT The name of the schema in which the sequence resides.

sequence_name TEXT Name of the sequence.

min_value NUMERIC The lowest value that the server will assign to the sequence.

max_value NUMERIC The highest value that the server will assign to the sequence.

increment_by NUMERIC The value added to the current sequence number to create the next sequent number.

cycle_flag CHARACTER VARYING Specifies if the sequence should wrap when it reaches min_value or max_value .

order_flag CHARACTER VARYING Included for compatibility only; always Y .

cache_size NUMERIC The number of pre-allocated sequence numbers in memory.

last_number NUMERIC The value of the last sequence number saved to disk.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 861

15.79 USER_SOURCE

The USER_SOURCE view provides information about all programs owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the program belongs.

name TEXT Name of the program.

type TEXT Type of program – possible values are: FUNCTION , PACKAGE , PACKAGE BODY , PROCEDURE , and TRIGGER

line INTEGER Source code line number relative to a given program.

text TEXT Line of source code text.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 862

15.80 USER_SUBPART_KEY_COLUMNS

The USER_SUBPART_KEY_COLUMNS view provides information about the key columns of those partitioned tables which are subpartitioned that belong
to the current user.

Name Type Description

schema_name TEXT The name of the schema in which the table resides.

name TEXT The name of the table in which the column resides.

object_type CHARACTER(5) For compatibility only; always TABLE .

column_name TEXT The name of the column on which the key is defined.

column_position INTEGER 1 for the first column; 2 for the second column, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 863

15.81 USER_SYNONYMS

The USER_SYNONYMS view provides information about all synonyms owned by the current user.

Name Type Description

schema_name TEXT The name of the schema in which the synonym resides.

synonym_name TEXT Name of the synonym.

table_owner TEXT User name of the table’s owner on which the synonym is defined.

table_schema_name TEXT The name of the schema in which the table resides.

table_name TEXT Name of the table on which the synonym is defined.

db_link TEXT Name of any associated database link.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 864

15.82 USER_TAB_COLUMNS

The USER_TAB_COLUMNS view displays information about all columns in tables and views owned by the current user.

Name Type Description

schema_name CHARACTER
VARYING

Name of the schema in which the table or view resides.

table_name CHARACTER
VARYING

Name of the table or view in which the column resides.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y – column is nullable; N – column does
not allow null.

column_id NUMERIC Relative position of the column within the table.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 865

15.83 USER_TAB_PARTITIONS

The USER_TAB_PARTITIONS view provides information about all of the partitions that are owned by the current user.

Name Type Description

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

composite TEXT YES if the table is subpartitioned; NO if the table is not subpartitioned.

partition_na
me

TEXT The name of the partition.

subpartition
_count

BIGINT The number of subpartitions in the partition.

high_value TEXT The high partitioning value specified in the CREATE TABLE statement.

high_value_l
ength

INTEGER The length of high partitioning value.

partition_po
sition

INTEGER The ordinal position of this partition.

tablespace_n
ame

TEXT The name of the tablespace in which the partition resides. If the tablespace name is not specified,
then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_exte
nt

NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL .

freelist_gro
ups

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

last_analyze
d

TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 866

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_tabl
e

REGCLASS Name of the partition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 867

15.84 USER_TAB_SUBPARTITIONS

The USER_TAB_SUBPARTITIONS view provides information about all of the subpartitions owned by the current user.

Name Type Description

schema_name TEXT The name of the schema in which the table resides.

table_name TEXT The name of the table.

partition_name TEXT The name of the partition.

subpartition_n
ame

TEXT The name of the subpartition.

high_value TEXT The high subpartitioning value specified in the CREATE TABLE statement.

high_value_len
gth

INTEGER The length of high partitioning value.

subpartition_p
osition

INTEGER The ordinal position of this subpartition.

tablespace_nam
e

TEXT The name of the tablespace in which the subpartition resides. If the tablespace name is not
specified, then default tablespace PG_DEFAULT .

pct_free NUMERIC Included for compatibility only; always 0 .

pct_used NUMERIC Included for compatibility only; always 0 .

ini_trans NUMERIC Included for compatibility only; always 0 .

max_trans NUMERIC Included for compatibility only; always 0 .

initial_extent NUMERIC Included for compatibility only; always NULL .

next_extent NUMERIC Included for compatibility only; always NULL .

min_extent NUMERIC Included for compatibility only; always 0 .

max_extent NUMERIC Included for compatibility only; always 0 .

pct_increase NUMERIC Included for compatibility only; always 0 .

freelists NUMERIC Included for compatibility only; always NULL .

freelist_group
s

NUMERIC Included for compatibility only; always NULL .

logging CHARACTER
VARYING(7)

Included for compatibility only; always YES .

compression CHARACTER
VARYING(8)

Included for compatibility only; always NONE .

num_rows NUMERIC Same as pg_class.reltuples .

blocks INTEGER Same as pg_class.relpages .

empty_blocks NUMERIC Included for compatibility only; always NULL .

avg_space NUMERIC Included for compatibility only; always NULL .

chain_cnt NUMERIC Included for compatibility only; always NULL .

avg_row_len NUMERIC Included for compatibility only; always NULL .

sample_size NUMERIC Included for compatibility only; always NULL .

last_analyzed TIMESTAMP WITHOUT
TIME ZONE

Included for compatibility only; always NULL .

buffer_pool CHARACTER
VARYING(7)

Included for compatibility only; always NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 868

global_stats CHARACTER
VARYING(3)

Included for compatibility only; always YES .

user_stats CHARACTER
VARYING(3)

Included for compatibility only; always NO .

backing_table REGCLASS Name of the partition backing table.

Name Type Description

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 869

15.85 USER_TAB_PRIVS

The USER_TAB_PRIVS view provides a listing of the object privileges for which a current user is either an object owner, grantor, or grantee.

Name Type Description

gran
tee

CHARACTER
VARYING(12
8)

Name of the user with the privilege.

owne
r

CHARACTER
VARYING(12
8)

Object owner.

sche
ma_n
ame

CHARACTER
VARYING(12
8)

Name of the schema in which the object resides.

tabl
e_na
me

CHARACTER
VARYING(12
8)

Object name.

gran
tor

CHARACTER
VARYING(12
8)

Name of the user who granted the privilege.

priv
ileg
e

CHARACTER
VARYING(40
)

Privilege name.

gran
tabl
e

CHARACTER
VARYING(3)

Indicates whether the privilege was granted with the grant option YES or NO . YES indicates that the GRANTEE
(recipient of the privilege) can in turn grant the privilege to others. The value may be YES if the grantee has the
administrator privileges.

hier
arch
y

CHARACTER
VARYING(3) The value can be YES or NO . The value may be YES if the privilege is SELECT else NO .

comm
on

CHARACTER
VARYING(3)

Included for compatibility only; always NO .

typ
e

CHARACTER
VARYING(24
)

Type of object.

inhe
rite
d

CHARACTER
VARYING(3) Included for compatibility only; always NO .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 870

15.86 USER_TABLES

The USER_TABLES view displays information about all tables owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the table belongs.

table_name TEXT Name of the table.

tablespace_
name

TEXT Name of the tablespace in which the table resides. If the tablespace name is not specified, then default
tablespace PG_DEFAULT .

degree CHARACTER
VARYING(10)

Number of threads per instance to scan a table, or DEFAULT .

status CHARACTER
VARYING(5)

Included for compatibility only; always set to VALID .

temporary CHARACTER(1) Y if the table is temporary; N if the table is not temporary.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 871

15.87 USER_TRIGGERS

The USER_TRIGGERS view displays information about all triggers on tables owned by the current user.

Name Type Description

schema_name TEX
T

The name of the schema in which the trigger resides.

trigger_name TEX
T

The name of the trigger.

trigger_type TEX
T

The type of the trigger. Possible values are: BEFORE ROW , BEFORE STATEMENT , AFTER ROW , AFTER
STATEMENT

triggering_event TEX
T

The event that fires the trigger.

table_owner TEX
T

The user name of the owner of the table on which the trigger is defined.

base_object_type TEX
T

Included for compatibility only. Value will always be TABLE .

table_name TEX
T

The name of the table on which the trigger is defined.

referencing_name
s

TEX
T

Included for compatibility only. Value will always be REFERENCING NEW AS NEW OLD AS OLD .

status TEX
T

Status indicates if the trigger is enabled (VALID) or disabled (NOTVALID) .

description TEX
T

Included for compatibility only.

trigger_body TEX
T

The body of the trigger.

action_statement TEX
T

The SQL command that executes when the trigger fires.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 872

15.88 USER_TYPES

The USER_TYPES view provides information about all object types owned by the current user.

Name Type Description

schema_name TEXT The name of the schema in which the type is defined.

type_name TEXT The name of the type.

type_oid OID The object identifier (OID) of the type.

typecode TEXT The typecode of the type. Possible values are: OBJECT , COLLECTION , OTHER

attributes INTEGER The number of attributes in the type.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 873

15.89 USER_USERS

The USER_USERS view provides information about the current user.

Name Type Description

usernam
e

TEXT User name of the user.

user_id OID ID number of the user.

account
_status

CHARACT
ER
VARYING
(32)

The current status of the account. Possible values are: OPEN , EXPIRED , EXPIRED(GRACE) , EXPIRED &
LOCKED , EXPIRED & LOCKED(TIMED) , EXPIRED(GRACE) & LOCKED , EXPIRED(GRACE) &
LOCKED(TIMED) , LOCKED , LOCKED(TIMED) . Use the edb_get_role_status(role_id) function to get the
current status of the account.

lock_da
te

TIMESTA
MP
WITHOUT
TIME
ZONE

If the account status is LOCKED , lock_date displays the date and time the account was locked.

expiry_
date

TIMESTA
MP
WITHOUT
TIME
ZONE

The expiration date of the account.

default
_tables
pace

TEXT The default tablespace associated with the account.

tempora
ry_tabl
espace

CHARACT
ER
VARYING
(30)

Included for compatibility only. The value will always be '' (an empty string).

created

TIMESTA
MP
WITHOUT
TIME
ZONE

Included for compatibility only. The value will always be NULL .

initial
_rsrc_c
onsumer
_group

CHARACT
ER
VARYING
(30)

Included for compatibility only. The value will always be NULL .

externa
l_name

CHARACT
ER
VARYING
(4000)

Included for compatibility only; always set to NULL .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 874

15.90 USER_VIEW_COLUMNS

The USER_VIEW_COLUMNS view provides information about all columns in views owned by the current user.

Name Type Description

schema_name CHARACTER
VARYING

Name of the schema in which the view belongs.

view_name CHARACTER
VARYING

Name of the view.

column_name CHARACTER
VARYING

Name of the column.

data_type CHARACTER
VARYING

Data type of the column.

data_length NUMERIC Length of text columns.

data_precisi
on

NUMERIC Precision (number of digits) for NUMBER columns.

data_scale NUMERIC Scale of NUMBER columns.

nullable CHARACTER(1) Whether or not the column is nullable – possible values are: Y – column is nullable; N – column does
not allow null.

column_id NUMERIC Relative position of the column within the view.

data_default CHARACTER
VARYING

Default value assigned to the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 875

15.91 USER_VIEWS

The USER_VIEWS view provides information about all views owned by the current user.

Name Type Description

schema_name TEXT Name of the schema in which the view resides.

view_name TEXT Name of the view.

text TEXT The SELECT statement that defines the view.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 876

15.92 V$VERSION

The V$VERSION view provides information about product compatibility.

Name Type Description

banner TEXT Displays product compatibility information.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 877

15.93 PRODUCT_COMPONENT_VERSION

The PRODUCT_COMPONENT_VERSION view provides version information about product version compatibility.

Name Type Description

product CHARACTER
VARYING(74)

The name of the product.

version CHARACTER
VARYING(74)

The version number of the product.

status CHARACTER
VARYING(74)

Included for compatibility; always Available .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 878

16 Database Compatibility Stored Procedural Language Guide

Advanced Server's stored procedural language (SPL) is a highly productive, procedural programming language for writing custom procedures, functions,
triggers, and packages for Advanced Server that provides:

full procedural programming functionality to complement the SQL language
a single, common language to create stored procedures, functions, triggers, and packages for the Advanced Server database
a seamless development and testing environment
the use of reusable code
ease of use

This guide describes the basic elements of an SPL program, before providing an overview of the organization of an SPL program and how it is used to create
a procedure or a function. Guides about the other compatibility features (such as triggers or built-in functions) that might be used in conjunction with the
SPL language are available at the EDB website.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 879

16.1 Basic SPL Elements

This section discusses the basic programming elements of an SPL program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 880

16.1.1 Case Sensitivity

Keywords and user-defined identifiers that are used in an SPL program are case insensitive. So for example, the statement
DBMS_OUTPUT.PUT_LINE('Hello World'); is interpreted to mean the same thing as dbms_output.put_line('Hello World'); or
Dbms_Output.Put_Line('Hello World'); or DBMS_output.Put_line('Hello World'); .

Character and string constants, however, are case sensitive as well as any data retrieved from the Advanced Server database or data obtained from other
external sources. The statement DBMS_OUTPUT.PUT_LINE('Hello World!'); produces the following output:

Hello World!

However the statement DBMS_OUTPUT.PUT_LINE('HELLO WORLD!'); produces the output:

HELLO WORLD!

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 881

16.1.2 Identifiers

Identifiers are user-defined names that are used to identify various elements of an SPL program including variables, cursors, labels, programs, and
parameters. The syntax rules for valid identifiers are the same as for identifiers in the SQL language.

An identifier must not be the same as an SPL keyword or a keyword of the SQL language. The following are some examples of valid identifiers:

x
last___name
a_$_Sign
Many$$$$$$$$signs_____
THIS_IS_AN_EXTREMELY_LONG_NAME
A1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 882

16.1.3 Qualifiers

A qualifier is a name that specifies the owner or context of an entity that is the object of the qualification. A qualified object is specified as the qualifier
name followed by a dot with no intervening white space, followed by the name of the object being qualified with no intervening white space. This syntax is
called dot notation.

The following is the syntax of a qualified object.

<qualifier>. [<qualifier>.]... <object>

qualifier is the name of the owner of the object. object is the name of the entity belonging to qualifier . It is possible to have a chain of
qualifications where the preceding qualifier owns the entity identified by the subsequent qualifier(s) and object.

Almost any identifier can be qualified. What an identifier is qualified by depends upon what the identifier represents and the context of its usage.

Some examples of qualification follow:

Procedure and function names qualified by the schema to which they belong - e.g., schema_name.procedure_name(...)
Trigger names qualified by the schema to which they belong - e.g., schema_name.trigger_name
Column names qualified by the table to which they belong - e.g., emp.empno
Table names qualified by the schema to which they belong - e.g., public.emp
Column names qualified by table and schema - e.g., public.emp.empno

As a general rule, wherever a name appears in the syntax of an SPL statement, its qualified name can be used as well. Typically a qualified name would only
be used if there is some ambiguity associated with the name. For example, if two procedures with the same name belonging to two different schemas are
invoked from within a program or if the same name is used for a table column and SPL variable within the same program.

You should avoid using qualified names if at all possible. In this chapter, the following conventions are adopted to avoid naming conflicts:

All variables declared in the declaration section of an SPL program are prefixed by v_ . E.g., v_empno
All formal parameters declared in a procedure or function definition are prefixed by p_ . E.g., p_empno
Column names and table names do not have any special prefix conventions. E.g., column empno in table emp

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 883

16.1.4 Constants

Constants or literals are fixed values that can be used in SPL programs to represent values of various types - e.g., numbers, strings, dates, etc. Constants
come in the following types:

Numeric (Integer and Real)
Character and String
Date/time

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 884

16.1.5 User-Defined PL/SQL Subtypes

Advanced Server supports user-defined PL/SQL subtypes and (subtype) aliases. A subtype is a data type with an optional set of constraints that restrict the
values that can be stored in a column of that type. The rules that apply to the type on which the subtype is based are still enforced, but you can use
additional constraints to place limits on the precision or scale of values stored in the type.

You can define a subtype in the declaration of a PL function, procedure, anonymous block or package. The syntax is:

SUBTYPE <subtype_name> IS <type_name>[(<constraint>)] [NOT NULL]

Where constraint is:

{<precision> [, <scale>]} | <length>

Where:

subtype_name

subtype_name specifies the name of the subtype.

type_name

type_name specifies the name of the original type on which the subtype is based. type_name may be:

The name of any of the type supported by Advanced Server.
The name of any composite type.
A column anchored by a %TYPE operator.
The name of another subtype.

Include the constraint clause to define restrictions for types that support precision or scale.

precision

precision specifies the total number of digits permitted in a value of the subtype.

scale

scale specifies the number of fractional digits permitted in a value of the subtype.

length

length specifies the total length permitted in a value of CHARACTER, VARCHAR , or TEXT base types.

Include the NOT NULL clause to specify that NULL values may not be stored in a column of the specified subtype.

Note that a subtype that is based on a column will inherit the column size constraints, but the subtype will not inherit NOT NULL or CHECK constraints.

Unconstrained SubtypesUnconstrained Subtypes

To create an unconstrained subtype, use the SUBTYPE command to specify the new subtype name and the name of the type on which the subtype is
based. For example, the following command creates a subtype named address that has all of the attributes of the type, CHAR:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 885

SUBTYPE address IS CHAR;

You can also create a subtype (constrained or unconstrained) that is a subtype of another subtype:

SUBTYPE cust_address IS address NOT NULL;

This command creates a subtype named cust_address that shares all of the attributes of the address subtype. Include the NOT NULL clause to
specify that a value of the cust_address may not be NULL .

Constrained SubtypesConstrained Subtypes

Include a length value when creating a subtype that is based on a character type to define the maximum length of the subtype. For example:

SUBTYPE acct_name IS VARCHAR (15);

This example creates a subtype named acct_name that is based on a VARCHAR data type, but is limited to 15 characters in length.

Include values for precision (to specify the maximum number of digits in a value of the subtype) and optionally, scale (to specify the number of
digits to the right of the decimal point) when constraining a numeric base type. For example:

SUBTYPE acct_balance IS NUMBER (5, 2);

This example creates a subtype named acct_balance that shares all of the attributes of a NUMBER type, but that may not exceed 3 digits to the left of
the decimal point and 2 digits to the right of the decimal.

An argument declaration (in a function or procedure header) is a formal argument. The value passed to a function or procedure is an actual argument.
When invoking a function or procedure, the caller provides (0 or more) actual arguments. Each actual argument is assigned to a formal argument that holds
the value within the body of the function or procedure.

If a formal argument is declared as a constrained subtype:

Advanced Server does not enforce subtype constraints when assigning an actual argument to a formal argument when invoking a function.
Advanced Server enforces subtype constraints when assigning an actual argument to a formal argument when invoking a procedure.

Using the %TYPE OperatorUsing the %TYPE Operator

You can use %TYPE notation to declare a subtype anchored to a column. For example:

SUBTYPE emp_type IS emp.empno%TYPE

This command creates a subtype named emp_type whose base type matches the type of the empno column in the emp table. A subtype that is based
on a column will share the column size constraints; NOT NULL and CHECK constraints are not inherited.

Subtype ConversionSubtype Conversion

Unconstrained subtypes are aliases for the type on which they are based. Any variable of type subtype (unconstrained) is interchangeable with a variable of
the base type without conversion, and vice versa.

A variable of a constrained subtype may be interchanged with a variable of the base type without conversion, but a variable of the base type may only be
interchanged with a constrained subtype if it complies with the constraints of the subtype. A variable of a constrained subtype may be implicitly converted
to another subtype if it is based on the same subtype, and the constraint values are within the values of the subtype to which it is being converted.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 886

16.1.6 Character Set

SPL programs are written using the following set of characters:

Uppercase letters A thru Z and lowercase letters a thru z
Digits 0 thru 9
Symbols () + - * / < > = ! ~ ^ ; : . ' @ % , " # $ & _ | { } ? []
White space characters tabs, spaces, and carriage returns

Identifiers, expressions, statements, control structures, etc. that comprise the SPL language are written using these characters.

NoteNote

The data that can be manipulated by an SPL program is determined by the character set supported by the database encoding.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 887

16.2 SPL Programs

SPL is a procedural, block-structured language. There are four different types of programs that can be created using SPL, namely procedures, functions,
triggers, and packages.

In addition, SPL is used to create subprograms. A subprogram refers to a subprocedure or a subfunction, which are nearly identical in appearance to
procedures and functions, but differ in that procedures and functions are standalone programs, which are individually stored in the database and can be
invoked by other SPL programs or from PSQL. Subprograms can only be invoked from within the standalone program within which they have been created.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 888

16.2.1 SPL Block Structure

Regardless of whether the program is a procedure, function, subprogram, or trigger, an SPL program has the same block structure. A block consists of up to
three sections - an optional declaration section, a mandatory executable section, and an optional exception section. Minimally, a block has an executable
section that consists of one or more SPL statements within the keywords, BEGIN and END .

The optional declaration section is used to declare variables, cursors, types, and subprograms that are used by the statements within the executable and
exception sections. Declarations appear just prior to the BEGIN keyword of the executable section. Depending upon the context of where the block is
used, the declaration section may begin with the keyword DECLARE .

You can include an exception section within the BEGIN - END block. The exception section begins with the keyword, EXCEPTION , and continues until
the end of the block in which it appears. If an exception is thrown by a statement within the block, program control goes to the exception section where the
thrown exception may or may not be handled depending upon the exception and the contents of the exception section.

The following is the general structure of a block:

[[DECLARE]
 <pragmas>
 <declarations>]
 BEGIN
 <statements>
 [EXCEPTION
 WHEN <exception_condition> THEN
 <statements> [, ...]]
 END;

pragmas are the directives (AUTONOMOUS_TRANSACTION is the currently supported pragma). declarations are one or more variable, cursor,
type, or subprogram declarations that are local to the block. If subprogram declarations are included, they must be declared after all other variable, cursor,
and type declarations. Each declaration must be terminated by a semicolon. The use of the keyword DECLARE depends upon the context in which the
block appears.

statements are one or more SPL statements. Each statement must be terminated by a semicolon. The end of the block denoted by the keyword END
must also be terminated by a semicolon.

If present, the keyword EXCEPTION marks the beginning of the exception section. exception_condition is a conditional expression testing for one
or more types of exceptions. If an exception matches one of the exceptions in exception_condition , the statements following the WHEN
exception_condition clause are executed. There may be one or more WHEN exception_condition clauses, each followed by statements .

NoteNote

A BEGIN/END block in itself, is considered a statement; thus, blocks may be nested. The exception section may also contain nested blocks.

The following is the simplest possible block consisting of the NULL statement within the executable section. The NULL statement is an executable
statement that does nothing.

BEGIN
 NULL;
END;

The following block contains a declaration section as well as the executable section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 889

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 14;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
END;

In this example, three numeric variables are declared of data type NUMBER . Values are assigned to two of the variables, and one number is divided by the
other, storing the results in a third variable which is then displayed. If executed, the output would be:

75 divided by 14 is 5.36

The following block consists of a declaration, an executable, and an exception:

DECLARE
 v_numerator NUMBER(2);
 v_denominator NUMBER(2);
 v_result NUMBER(5,2);
BEGIN
 v_numerator := 75;
 v_denominator := 0;
 v_result := v_numerator / v_denominator;
 DBMS_OUTPUT.PUT_LINE(v_numerator || ' divided by ' || v_denominator ||
 ' is ' || v_result);
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('An exception occurred');
END;

The following output shows that the statement within the exception section is executed as a result of the division by zero.

An exception occurred

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 890

16.2.2 Anonymous Blocks

Blocks are typically written as part of a procedure, function, subprogram, or trigger. Procedure, function, and trigger programs are named and stored in the
database for re-use. For quick (one-time) execution (such as testing), you can simply enter the block without providing a name or storing it in the database.

A block of this type is called an anonymous block. An anonymous block is unnamed and is not stored in the database. Once the block has been executed and
erased from the application buffer, it cannot be re-executed unless the block code is re-entered into the application.

Typically, the same block of code will be re-executed many times. In order to run a block of code repeatedly without the necessity of re-entering the code
each time, with some simple modifications, an anonymous block can be turned into a procedure or function. The following sections discuss how to create a
procedure or function that can be stored in the database and invoked repeatedly by another procedure, function, or application program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 891

16.2.3 Procedures Overview

Procedures are standalone SPL programs that are invoked or called as an individual SPL program statement. When called, procedures may optionally
receive values from the caller in the form of input parameters and optionally return values to the caller in the form of output parameters.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 892

16.2.3.1 Creating a Procedure

The CREATE PROCEDURE command defines and names a standalone procedure that will be stored in the database.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is created in the current schema. The name of the new
procedure must not match any existing procedure with the same input argument types in the same schema. However, procedures of different input
argument types may share a name (this is called overloading). (Overloading of procedures is an Advanced Server feature - overloading of stored,
standalone procedures is not compatible with Oracle databases.)

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE . It is not possible to change the name or argument types of a
procedure this way (if you tried, you would actually be creating a new, distinct procedure). When using OUT parameters, you cannot change the types of
any OUT parameters except by dropping the procedure.

CREATE [OR REPLACE] PROCEDURE <name> [(<parameters>)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:Where:

name

name is the identifier of the procedure.

parameters

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 893

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure; you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure cannot modify the database and always reaches the same result when given the same argument values; it
does not do database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the
procedure with all-constant arguments can be immediately replaced with the procedure value.

STABLE indicates that the procedure cannot modify the database, and that within a single table scan, it will consistently return the same result for
the same argument values, but that its result could change across SQL statements. This is the appropriate selection for procedures that depend on
database lookups, parameter variables (such as the current time zone), etc.

VOLATILE indicates that the procedure value can change even within a single table scan, so no optimizations can be made. Please note that any
function that has side-effects must be classified volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the procedure with all-constant arguments can be immediately replaced with the procedure value.

[NOT] LEAKPROOF

A LEAKPROOF procedure has no side effects, and reveals no information about the values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally when some of its arguments are NULL . It is the
author's responsibility to check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL whenever any of its arguments are NULL . If
these clauses are specified, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges of the user that created it; this is the default. The key word
EXTERNAL is allowed for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the privileges of the user that calls it. The key word EXTERNAL is
allowed for SQL conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 894

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If the AUTHID clause is omitted or if AUTHID
DEFINER is specified, the rights of the procedure owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If AUTHID CURRENT_USER is specified, the
rights of the current user executing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the procedure cannot be executed in parallel mode. The presence of such a procedure forces a serial execution plan. This is
the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the procedure can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the procedure can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the procedure, in units of cpu_operator_cost . If the procedure
returns a set, this is the cost per returned row. Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner should expect the procedure to return. This is only allowed
when the procedure is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the procedure is entered, and then restored to its prior
value when the procedure exits. SET FROM CURRENT saves the session's current value of the parameter as the value to be applied when the procedure
is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside the procedure for the same variable are restricted
to the procedure; the configuration parameter's prior value is restored at procedure exit. An ordinary SET command (without LOCAL) overrides the SET
clause, much as it would do for a previous SET LOCAL command, with the effects of such a command persisting after procedure exit, unless the current
transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

NoteNote

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended functionality for Advanced Server and
are not supported by Oracle.

By default, stored procedures are created as SECURITY DEFINERS , but when written in plpgsql, the stored procedures are created as
SECURITY INVOKERS .

ExampleExample

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 895

The following is an example of a simple procedure that takes no parameters.

CREATE OR REPLACE PROCEDURE simple_procedure
IS
BEGIN
 DBMS_OUTPUT.PUT_LINE('That''s all folks!');
END simple_procedure;

The procedure is stored in the database by entering the procedure code in Advanced Server.

The following example demonstrates using the AUTHID DEFINER and SET clauses in a procedure declaration. The update_salary procedure
conveys the privileges of the role that defined the procedure to the role that is calling the procedure (while the procedure executes):

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the procedure's search path to public and the work memory to 1MB . Other procedures, functions and objects will not be
affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that might otherwise not be allowed to execute the statements
within the procedure. To instruct the server to use the privileges associated with the role invoking the procedure, replace the AUTHID DEFINER clause
with the AUTHID CURRENT_USER clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 896

16.2.3.2 Calling a Procedure

A procedure can be invoked from another SPL program by simply specifying the procedure name followed by its parameters, if any, followed by a semicolon.

<name> [([<parameters>])];

Where:Where:

name is the identifier of the procedure.

parameters is a list of actual parameters.

NoteNote

If there are no actual parameters to be passed, the procedure may be called with an empty parameter list, or the opening and closing
parenthesis may be omitted entirely.

The syntax for calling a procedure is the same as in the preceding syntax diagram when executing it with the EXEC command in PSQL or
EDB*Plus. See the Database Compatibility for Oracle Developers SQL Guide for information about the EXEC command.

The following is an example of calling the procedure from an anonymous block:

BEGIN
 simple_procedure;
END;

That's all folks!

NoteNote

Each application has its own unique way to call a procedure. For example, in a Java application, the application programming interface, JDBC, is
used.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 897

16.2.3.3 Deleting a Procedure

A procedure can be deleted from the database using the DROP PROCEDURE command.

DROP PROCEDURE [IF EXISTS] <name> [(<parameters>)]
 [CASCADE | RESTRICT];

Where name is the name of the procedure to be dropped.

NoteNote

The specification of the parameter list is required in Advanced Server under certain circumstances such as if this is an overloaded
procedure. Oracle requires that the parameter list always be omitted.

Usage of IF EXISTS, CASCADE , or RESTRICT is not compatible with Oracle databases. See the DROP PROCEDURE command in
the Database Compatibility for Oracle Developers SQL Guide for information on these options.

The previously created procedure is dropped in this example:

DROP PROCEDURE simple_procedure;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 898

16.2.4 Functions Overview

Functions are standalone SPL programs that are invoked as expressions. When evaluated, a function returns a value that is substituted in the expression in
which the function is embedded. Functions may optionally take values from the calling program in the form of input parameters. In addition to the fact that
the function, itself, returns a value, a function may optionally return additional values to the caller in the form of output parameters. The use of output
parameters in functions, however, is not an encouraged programming practice.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 899

16.2.4.1 Creating a Function

The CREATE FUNCTION command defines and names a standalone function that will be stored in the database.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created in the current schema. The name of the new
function must not match any existing function with the same input argument types in the same schema. However, functions of different input argument
types may share a name (this is called overloading). (Overloading of functions is an Advanced Server feature - overloading of stored, standalone functions
is not compatible with Oracle databases).

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION . It is not possible to change the name or argument types of a
function this way (if you tried, you would actually be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change
the return type of an existing function. To do that, you must drop and recreate the function. Also when using OUT parameters, you cannot change the
types of any OUT parameters except by dropping the function.

CREATE [OR REPLACE] FUNCTION <name> [(<parameters>)]
 RETURN <data_type>
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:Where:

name

name is the identifier of the function.

parameters

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the function’s RETURN statement.

declarations

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 900

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function; you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the function cannot modify the database and always reaches the same result when given the same argument values; it
does not do database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the
function with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan, it will consistently return the same result for
the same argument values, but that its result could change across SQL statements. This is the appropriate selection for function that depend on
database lookups, parameter variables (such as the current time zone), etc.

VOLATILE indicates that the function value can change even within a single table scan, so no optimizations can be made. Please note that any
function that has side-effects must be classified volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the function with all-constant arguments can be immediately replaced with the function value.

[NOT] LEAKPROOF

A LEAKPROOF function has no side effects, and reveals no information about the values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally when some of its arguments are NULL . It is the
author's responsibility to check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL whenever any of its arguments are NULL . If
these clauses are specified, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with the privileges of the user that created it; this is the default. The key word EXTERNAL
is allowed for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 901

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the privileges of the user that calls it. The key word EXTERNAL is allowed
for SQL conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If the AUTHID clause is omitted or if AUTHID
DEFINER is specified, the rights of the function owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If AUTHID CURRENT_USER is specified, the
rights of the current user executing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the function cannot be executed in parallel mode. The presence of such a function in a SQL statement forces a serial
execution plan. This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the function can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the function can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns
a set, this is the cost per returned row. Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner should expect the function to return. This is only allowed when
the function is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the function is entered, and then restored to its prior
value when the function exits. SET FROM CURRENT saves the session's current value of the parameter as the value to be applied when the function is
entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside the function for the same variable are restricted to
the function; the configuration parameter's prior value is restored at function exit. An ordinary SET command (without LOCAL) overrides the SET
clause, much as it would do for a previous SET LOCAL command, with the effects of such a command persisting after procedure exit, unless the current
transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 902

NoteNote

The STRICT, LEAKPROOF, PARALLEL, COST, ROWS and SET keywords provide extended functionality for Advanced Server and are
not supported by Oracle.

ExamplesExamples

The following is an example of a simple function that takes no parameters.

CREATE OR REPLACE FUNCTION simple_function
 RETURN VARCHAR2
IS
BEGIN
 RETURN 'That''s All Folks!';
END simple_function;

The following function takes two input parameters. Parameters are discussed in more detail in subsequent sections.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

The following example demonstrates using the AUTHID CURRENT_USER clause and STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter passed is NULL ; if a NULL value is passed, the function will
not execute.

The dept_salaries function executes with the privileges of the role that is calling the function. If the current user does not have sufficient privileges to
perform the SELECT statement querying the emp table (to display employee salaries), the function will report an error. To instruct the server to use the
privileges associated with the role that defined the function, replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 903

16.2.4.2 Calling a Function

A function can be used anywhere an expression can appear within an SPL statement. A function is invoked by simply specifying its name followed by its
parameters enclosed in parenthesis, if any.

<name> [([<parameters>])]

name is the name of the function.

parameters is a list of actual parameters.

NoteNote

If there are no actual parameters to be passed, the function may be called with an empty parameter list, or the opening and closing parenthesis
may be omitted entirely.

The following shows how the function can be called from another SPL program.

BEGIN
 DBMS_OUTPUT.PUT_LINE(simple_function);
END;

That's All Folks!

A function is typically used within a SQL statement as shown in the following.

SELECT empno "EMPNO", ename "ENAME", sal "SAL", comm "COMM",
 emp_comp(sal, comm) "YEARLY COMPENSATION" FROM emp;

 EMPNO | ENAME | SAL | COMM | YEARLY COMPENSATION
-------+--------+---------+---------+---------------------
 7369 | SMITH | 800.00 | | 19200.00
 7499 | ALLEN | 1600.00 | 300.00 | 45600.00
 7521 | WARD | 1250.00 | 500.00 | 42000.00
 7566 | JONES | 2975.00 | | 71400.00
 7654 | MARTIN | 1250.00 | 1400.00 | 63600.00
 7698 | BLAKE | 2850.00 | | 68400.00
 7782 | CLARK | 2450.00 | | 58800.00
 7788 | SCOTT | 3000.00 | | 72000.00
 7839 | KING | 5000.00 | | 120000.00
 7844 | TURNER | 1500.00 | 0.00 | 36000.00
 7876 | ADAMS | 1100.00 | | 26400.00
 7900 | JAMES | 950.00 | | 22800.00
 7902 | FORD | 3000.00 | | 72000.00
 7934 | MILLER | 1300.00 | | 31200.00
(14 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 904

16.2.4.3 Deleting a Function

A function can be deleted from the database using the DROP FUNCTION command.

DROP FUNCTION [IF EXISTS] <name> [(<parameters>)]
 [CASCADE | RESTRICT];

Where name is the name of the function to be dropped.

NoteNote

The specification of the parameter list is required in Advanced Server under certain circumstances such as if this is an overloaded
function. Oracle requires that the parameter list always be omitted.

Usage of IF EXISTS, CASCADE , or RESTRICT is not compatible with Oracle databases. See the DROP FUNCTION command in
the Database Compatibility for Oracle Developers SQL Guide for information on these options.

The previously created function is dropped in this example:

DROP FUNCTION simple_function;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 905

16.2.5 Procedure and Function Parameters

An important aspect of using procedures and functions is the capability to pass data from the calling program to the procedure or function and to receive
data back from the procedure or function. This is accomplished by using parameters.

Parameters are declared in the procedure or function definition, enclosed within parenthesis following the procedure or function name. Parameters
declared in the procedure or function definition are known as formal parameters. When the procedure or function is invoked, the calling program supplies
the actual data that is to be used in the called program’s processing as well as the variables that are to receive the results of the called program’s
processing. The data and variables supplied by the calling program when the procedure or function is called are referred to as the actual parameters.

The following is the general format of a formal parameter declaration.

(<name> [IN | OUT | IN OUT] <data_type> [DEFAULT <value>])

name is an identifier assigned to the formal parameter. If specified, IN defines the parameter for receiving input data into the procedure or function. An
IN parameter can also be initialized to a default value. If specified, OUT defines the parameter for returning data from the procedure or function. If

specified, IN OUT allows the parameter to be used for both input and output. If all of IN, OUT , and IN OUT are omitted, then the parameter acts as
if it were defined as IN by default. Whether a parameter is IN, OUT , or IN OUT is referred to as the parameter’s mode. data_type defines the
data type of the parameter. value is a default value assigned to an IN parameter in the called program if an actual parameter is not specified in the
call.

The following is an example of a procedure that takes parameters:

CREATE OR REPLACE PROCEDURE emp_query (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
 p_job OUT VARCHAR2,
 p_hiredate OUT DATE,
 p_sal OUT NUMBER
)
IS
BEGIN
 SELECT empno, ename, job, hiredate, sal
 INTO p_empno, p_ename, p_job, p_hiredate, p_sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;

In this example, p_deptno is an IN formal parameter, p_empno and p_ename are IN OUT formal parameters, and p_job, p_hiredate ,
and p_sal are OUT formal parameters.

NoteNote

In the previous example, no maximum length was specified on the VARCHAR2 parameters and no precision and scale were specified on the
NUMBER parameters. It is illegal to specify a length, precision, scale or other constraints on parameter declarations. These constraints are

automatically inherited from the actual parameters that are used when the procedure or function is called.

The emp_query procedure can be called by another program, passing it the actual parameters. The following is an example of another SPL program that
calls emp_query .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 906

DECLARE
 v_deptno NUMBER(2);
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER;
BEGIN
 v_deptno := 30;
 v_empno := 7900;
 v_ename := '';
 emp_query(v_deptno, v_empno, v_ename, v_job, v_hiredate, v_sal);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
END;

In this example, v_deptno, v_empno, v_ename, v_job, v_hiredate , and v_sal are the actual parameters.

The output from the preceding example is shown as follows:

Department : 30
Employee No: 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81
Salary : 950

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 907

16.2.5.1 Positional vs. Named Parameter Notation

You can use either positional or named parameter notation when passing parameters to a function or procedure. If you specify parameters using positional
notation, you must list the parameters in the order that they are declared; if you specify parameters with named notation, the order of the parameters is not
significant.

To specify parameters using named notation, list the name of each parameter followed by an arrow (=>) and the parameter value. Named notation is
more verbose, but makes your code easier to read and maintain.

A simple example that demonstrates using positional and named parameter notation follows:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

To call the procedure using positional notation, pass the following:

emp_info(30, 7455, 'Clark');

To call the procedure using named notation, pass the following:

emp_info(p_ename =>'Clark', p_empno=>7455, p_deptno=>30);

Using named notation can alleviate the need to re-arrange a procedure’s parameter list if the parameter list changes, if the parameters are reordered or if a
new optional parameter is added.

In a case where you have a default value for an argument and the argument is not a trailing argument, you must use named notation to call the procedure
or function. The following case demonstrates a procedure with two, leading, default arguments.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 908

CREATE OR REPLACE PROCEDURE check_balance (
 p_customerID IN NUMBER DEFAULT NULL,
 p_balance IN NUMBER DEFAULT NULL,
 p_amount IN NUMBER
)
IS
DECLARE
 balance NUMBER;
BEGIN
 IF (p_balance IS NULL AND p_customerID IS NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20010, 'Must provide balance or customer');
 ELSEIF (p_balance IS NOT NULL AND p_customerID IS NOT NULL) THEN
 RAISE_APPLICATION_ERROR
 (-20020,'Must provide balance or customer, not both');
 ELSEIF (p_balance IS NULL) THEN
 balance := getCustomerBalance(p_customerID);
 ELSE
 balance := p_balance;
 END IF;

 IF (amount > balance) THEN
 RAISE_APPLICATION_ERROR
 (-20030, 'Balance insufficient');
 END IF;
END;

You can only omit non-trailing argument values (when you call this procedure) by using named notation; when using positional notation, only trailing
arguments are allowed to default. You can call this procedure with the following arguments:

check_balance(p_customerID => 10, p_amount = 500.00)

check_balance(p_balance => 1000.00, p_amount = 500.00)

You can use a combination of positional and named notation (mixed notation) to specify parameters. A simple example that demonstrates using mixed
parameter notation follows:

CREATE OR REPLACE PROCEDURE emp_info (
 p_deptno IN NUMBER,
 p_empno IN OUT NUMBER,
 p_ename IN OUT VARCHAR2,
)
IS
BEGIN
 dbms_output.put_line('Department Number =' || p_deptno);
 dbms_output.put_line('Employee Number =' || p_empno);
 dbms_output.put_line('Employee Name =' || p_ename;
END;

You can call the procedure using mixed notation:

emp_info(30, p_ename =>'Clark', p_empno=>7455);

If you do use mixed notation, remember that named arguments cannot precede positional arguments.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 909

16.2.5.2 Parameter Modes

As previously discussed, a parameter has one of three possible modes - IN, OUT , or IN OUT . The following characteristics of a formal parameter are
dependent upon its mode:

Its initial value when the procedure or function is called.
Whether or not the called procedure or function can modify the formal parameter.
How the actual parameter value is passed from the calling program to the called program.
What happens to the formal parameter value when an unhandled exception occurs in the called program.

The following table summarizes the behavior of parameters according to their mode.

Mode Property IN IN OUT OUT

Formal parameter initialized to: Actual parameter value Actual parameter value Actual parameter value

Formal parameter modifiable by the called
program?

No Yes Yes

Actual parameter contains: (after normal called
program termination)

Original actual parameter
value prior to the call

Last value of the formal
parameter

Last value of the formal
parameter

Actual parameter contains: (after a handled
exception in the called program)

Original actual parameter
value prior to the call

Last value of the formal
parameter

Last value of the formal
parameter

Actual parameter contains: (after an unhandled
exception in the called program)

Original actual parameter
value prior to the call

Original actual parameter
value prior to the call

Original actual parameter
value prior to the call

As shown by the table, an IN formal parameter is initialized to the actual parameter with which it is called unless it was explicitly initialized with a default
value. The IN parameter may be referenced within the called program, however, the called program may not assign a new value to the IN parameter.
After control returns to the calling program, the actual parameter always contains the same value as it was set to prior to the call.

The OUT formal parameter is initialized to the actual parameter with which it is called. The called program may reference and assign new values to the
formal parameter. If the called program terminates without an exception, the actual parameter takes on the value last set in the formal parameter. If a
handled exception occurs, the value of the actual parameter takes on the last value assigned to the formal parameter. If an unhandled exception occurs,
the value of the actual parameter remains as it was prior to the call.

Like an IN parameter, an IN OUT formal parameter is initialized to the actual parameter with which it is called. Like an OUT parameter, an IN OUT
formal parameter is modifiable by the called program and the last value in the formal parameter is passed to the calling program’s actual parameter if the
called program terminates without an exception. If a handled exception occurs, the value of the actual parameter takes on the last value assigned to the
formal parameter. If an unhandled exception occurs, the value of the actual parameter remains as it was prior to the call.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 910

16.2.5.3 Using Default Values in Parameters

You can set a default value of a formal parameter by including the DEFAULT clause or using the assignment operator (:=) in the CREATE
PROCEDURE or CREATE FUNCTION statement.

The general form of a formal parameter declaration is:

(<name> [IN|OUT|IN OUT] <data_type> [{DEFAULT | := } <expr>])

name is an identifier assigned to the parameter.

IN|OUT|IN OUT specifies the parameter mode.

data_type is the data type assigned to the variable.

expr is the default value assigned to the parameter. If you do not include a DEFAULT clause, the caller must provide a value for the parameter.

The default value is evaluated every time the function or procedure is invoked. For example, assigning SYSDATE to a parameter of type DATE causes the
parameter to have the time of the current invocation, not the time when the procedure or function was created.

The following simple procedure demonstrates using the assignment operator to set a default value of SYSDATE into the parameter, hiredate:

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE := SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');
END hire_emp;

If the parameter declaration includes a default value, you can omit the parameter from the actual parameter list when you call the procedure. Calls to the
sample procedure (hire_emp) must include two arguments: the employee number (p_empno) and employee name (p_empno) . The third
parameter (p_hiredate) defaults to the value of SYSDATE:

hire_emp (7575, Clark)

If you do include a value for the actual parameter when you call the procedure, that value takes precedence over the default value:

hire_emp (7575, Clark, 15-FEB-2010)

Adds a new employee with a hiredate of February 15, 2010 , regardless of the current value of SYSDATE .

You can write the same procedure by substituting the DEFAULT keyword for the assignment operator:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 911

CREATE OR REPLACE PROCEDURE hire_emp (
 p_empno NUMBER,
 p_ename VARCHAR2,
 p_hiredate DATE DEFAULT SYSDATE
)
IS
BEGIN
 INSERT INTO emp(empno, ename, hiredate)
 VALUES(p_empno, p_ename, p_hiredate);

 DBMS_OUTPUT.PUT_LINE('Hired!');
END hire_emp;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 912

16.2.6 Subprograms – Subprocedures and Subfunctions

The capability and functionality of SPL procedure and function programs can be used in an advantageous manner to build well-structured and
maintainable programs by organizing the SPL code into subprocedures and subfunctions.

The same SPL code can be invoked multiple times from different locations within a relatively large SPL program by declaring subprocedures and
subfunctions within the SPL program.

Subprocedures and subfunctions have the following characteristics:

The syntax, structure, and functionality of subprocedures and subfunctions are practically identical to standalone procedures and functions. The
major difference is the use of the keyword PROCEDURE or FUNCTION instead of CREATE PROCEDURE or CREATE FUNCTION to declare the
subprogram.
Subprocedures and subfunctions provide isolation for the identifiers (that is, variables, cursors, types, and other subprograms) declared within itself.
That is, these identifiers cannot be accessed nor altered from the upper, parent level SPL programs or subprograms outside of the subprocedure or
subfunction. This ensures that the subprocedure and subfunction results are reliable and predictable.
The declaration section of subprocedures and subfunctions can include its own subprocedures and subfunctions. Thus, a multi-level hierarchy of
subprograms can exist in the standalone program. Within the hierarchy, a subprogram can access the identifiers of upper level parent subprograms
and also invoke upper level parent subprograms. However, the same access to identifiers and invocation cannot be done for lower level child
subprograms in the hierarchy.

Subprocedures and subfunctions can be declared and invoked from within any of the following types of SPL programs:

Standalone procedures and functions
Anonymous blocks
Triggers
Packages
Procedure and function methods of an object type body
Subprocedures and subfunctions declared within any of the preceding programs

The rules regarding subprocedure and subfunction structure and access are discussed in more detail in the next sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 913

16.2.6.1 Creating a Subprocedure

The PROCEDURE clause specified in the declaration section defines and names a subprocedure local to that block.

The term block refers to the SPL block structure consisting of an optional declaration section, a mandatory executable section, and an optional exception
section. Blocks are the structures for standalone procedures and functions, anonymous blocks, subprograms, triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable, cursor, type, or subprogram) is declared within the declaration
section of that block and is therefore accessible by the SPL code within the executable section and optional exception section of that block.

Subprocedures can only be declared after all other variable, cursor, and type declarations included in the declaration section. (That is, subprograms must be
the last set of declarations.)

PROCEDURE <name> [(<parameters>)]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:Where:

name

name is the identifier of the subprocedure.

parameters

parameters is a list of formal parameters.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the subprocedure as an autonomous transaction.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

ExamplesExamples

The following example is a subprocedure within an anonymous block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 914

DECLARE
 PROCEDURE list_emp
 IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
 BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('Subprocedure list_emp:');
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
 END;
BEGIN
 list_emp;
END;

Invoking this anonymous block produces the following output:

Subprocedure list_emp:
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following example is a subprocedure within a trigger.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 915

CREATE OR REPLACE TRIGGER dept_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON dept
DECLARE
 v_action VARCHAR2(24);
 PROCEDURE display_action (
 p_action IN VARCHAR2
)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('User ' || USER || ' ' || p_action ||
 ' dept on ' || TO_CHAR(SYSDATE,'YYYY-MM-DD'));
 END display_action;
BEGIN
 IF INSERTING THEN
 v_action := 'added';
 ELSIF UPDATING THEN
 v_action := 'updated';
 ELSIF DELETING THEN
 v_action := 'deleted';
 END IF;
 display_action(v_action);
END;

Invoking this trigger produces the following output:

INSERT INTO dept VALUES (50,'HR','DENVER');

User enterprisedb added dept on 2016-07-26

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 916

16.2.6.2 Creating a Subfunction

The FUNCTION clause specified in the declaration section defines and names a subfunction local to that block.

The term block refers to the SPL block structure consisting of an optional declaration section, a mandatory executable section, and an optional exception
section. Blocks are the structures for standalone procedures and functions, anonymous blocks, subprograms, triggers, packages, and object type methods.

The phrase the identifier is local to the block means that the identifier (that is, a variable, cursor, type, or subprogram) is declared within the declaration
section of that block and is therefore accessible by the SPL code within the executable section and optional exception section of that block.

FUNCTION <name> [(<parameters>)]
RETURN <data_type>
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

Where:Where:

name

name is the identifier of the subfunction.

parameters

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the function’s RETURN statement.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the subfunction as an autonomous transaction.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

ExamplesExamples

The following example shows the use of a recursive subfunction:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 917

DECLARE
 FUNCTION factorial (
 n BINARY_INTEGER
) RETURN BINARY_INTEGER
 IS
 BEGIN
 IF n = 1 THEN
 RETURN n;
 ELSE
 RETURN n * factorial(n-1);
 END IF;
 END factorial;
BEGIN
 FOR i IN 1..5 LOOP
 DBMS_OUTPUT.PUT_LINE(i || '! = ' || factorial(i));
 END LOOP;
END;

The output from the example is the following:

1! = 1
2! = 2
3! = 6
4! = 24
5! = 120

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 918

16.2.6.3 Block Relationships

This section describes the terminology of the relationship between blocks that can be declared in an SPL program. The ability to invoke subprograms and
access identifiers declared within a block depends upon this relationship.

The following are the basic terms:

A block is the basic SPL structure consisting of an optional declaration section, a mandatory executable section, and an optional exception section.
Blocks implement standalone procedure and function programs, anonymous blocks, triggers, packages, and subprocedures and subfunctions.
An identifier (variable, cursor, type, or subprogram) local to a block means that it is declared within the declaration section of the given block. Such
local identifiers are accessible from the executable section and optional exception section of the block.
The parent block contains the declaration of another block (the child block).
Descendent blocks are the set of blocks forming the child relationship starting from a given parent block.
Ancestor blocks are the set of blocks forming the parental relationship starting from a given child block.
The set of descendent (or ancestor) blocks form a hierarchy.
The level is an ordinal number of a given block from the highest, ancestor block. For example, given a standalone procedure, the subprograms
declared within the declaration section of this procedure are all at the same level, for example call it level 1. Additional subprograms within the
declaration section of the subprograms declared in the standalone procedure are at the next level, which is level 2.
The sibling blocks are the set of blocks that have the same parent block (that is, they are all locally declared in the same block). Sibling blocks are
also always at the same level relative to each other.

The following schematic of a set of procedure declaration sections provides an example of a set of blocks and their relationships to their surrounding
blocks.

The two vertical lines on the left-hand side of the blocks indicate there are two pairs of sibling blocks. block_1a and block_1b is one pair, and
block_2a and block_2b is the second pair.

The relationship of each block with its ancestors is shown on the right-hand side of the blocks. There are three hierarchical paths formed when progressing
up the hierarchy from the lowest level child blocks. The first consists of block_0, block_1a, block_2a , and block_3 . The second is
block_0, block_1a , and block_2b . The third is block_0, block_1b , and block_2b .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 919

CREATE PROCEDURE block_0
IS
 .
 +---- PROCEDURE block_1a ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | +-- PROCEDURE block_2a ---- Local to block_1a and descendant
 | | IS of block_0
 | | . |
 | | . |
 | | . |
 | | PROCEDURE block_3 -- Local to block_2a and descendant
 | | IS of block_1a, and block_0
 | Siblings . |
 | | . |
 | | . |
 | | END block_3; |
 | | END block_2a; |
 | +-- PROCEDURE block_2b ---- Local to block_1a and descendant
 | | IS of block_0
 Siblings | , |
 | | . |
 | | . |
 | +-- END block_2b; |
 | |
 | END block_1a; ---------+
 +---- PROCEDURE block_1b; ------- Local to block_0
 | IS
 | . |
 | . |
 | . |
 | PROCEDURE block_2b ---- Local to block_1b and descendant
 | IS of block_0
 | . |
 | . |
 | . |
 | END block_2b; |
 | |
 +---- END block_1b; ---------+
BEGIN
 .
 .
 .
END block_0;

The rules for invoking subprograms based upon block location is described starting with Invoking Subprograms. The rules for accessing variables based
upon block location is described in Accessing Subprogram Variables.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 920

16.2.6.4 Invoking Subprograms

A subprogram is invoked in the same manner as a standalone procedure or function by specifying its name and any actual parameters.

The subprogram may be invoked with none, one, or more qualifiers, which are the names of the parent subprograms or labeled anonymous blocks forming
the ancestor hierarchy from where the subprogram has been declared.

The invocation is specified as a dot-separated list of qualifiers ending with the subprogram name and any of its arguments as shown by the following:

[[<qualifier_1>.][...]<qualifier_n>.]<subprog> [(<arguments>)]

If specified, qualifier_n is the subprogram in which subprog has been declared in its declaration section. The preceding list of qualifiers must
reside in a continuous path up the hierarchy from qualifier_n to qualifier_1. qualifier_1 may be any ancestor subprogram in the path as
well as any of the following:

Standalone procedure name containing the subprogram
Standalone function name containing subprogram
Package name containing the subprogram
Object type name containing the subprogram within an object type method
An anonymous block label included prior to the DECLARE keyword if a declaration section exists, or prior to the BEGIN keyword if there is no
declaration section.

NoteNote

qualifier_1 may not be a schema name, otherwise an error is thrown upon invocation of the subprogram. This Advanced Server restriction
is not compatible with Oracle databases, which allow use of the schema name as a qualifier.

arguments is the list of actual parameters to be passed to the subprocedure or subfunction.

Upon invocation, the search for the subprogram occurs as follows:

The invoked subprogram name of its type (that is, subprocedure or subfunction) along with any qualifiers in the specified order, (referred to as the
invocation list) is used to find a matching set of blocks residing in the same hierarchical order. The search begins in the block hierarchy where the
lowest level is the block from where the subprogram is invoked. The declaration of the subprogram must be in the SPL code prior to the code line
where it is invoked when the code is observed from top to bottom. (An exception to this requirement can be accomplished using a forward
declaration. See Using Forward Declarations for information on forward declarations.)
If the invocation list does not match the hierarchy of blocks starting from the block where the subprogram is invoked, a comparison is made by
matching the invocation list starting with the parent of the previous starting block. In other words, the comparison progresses up the hierarchy.
If there are sibling blocks of the ancestors, the invocation list comparison also includes the hierarchy of the sibling blocks, but always comparing in
an upward level, never comparing the descendants of the sibling blocks.
This comparison process continues up the hierarchies until the first complete match is found in which case the located subprogram is invoked. Note
that the formal parameter list of the matched subprogram must comply with the actual parameter list specified for the invoked subprogram,
otherwise an error occurs upon invocation of the subprogram.
If no match is found after searching up to the standalone program, then an error is thrown upon invocation of the subprogram.

NoteNote

The Advanced Server search algorithm for subprogram invocation is not quite compatible with Oracle databases. For Oracle, the search looks for
the first match of the first qualifier (that is qualifier_1). When such a match is found, all remaining qualifiers, the subprogram name,
subprogram type, and arguments of the invocation must match the hierarchy content where the matching first qualifier is found, otherwise an
error is thrown. For Advanced Server, a match is not found unless all qualifiers, the subprogram name, and the subprogram type of the invocation
match the hierarchy content. If such an exact match is not initially found, Advanced Server continues the search progressing up the hierarchy.

The location of subprograms relative to the block from where the invocation is made can be accessed as follows:

Subprograms declared in the local block can be invoked from the executable section or the exception section of the same block.
Subprograms declared in the parent or other ancestor blocks can be invoked from the child block of the parent or other ancestors.
Subprograms declared in sibling blocks can be called from a sibling block or from any descendent block of the sibling.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 921

However, the following location of subprograms cannot be accessed relative to the block from where the invocation is made:

Subprograms declared in blocks that are descendants of the block from where the invocation is attempted.
Subprograms declared in blocks that are descendants of a sibling block from where the invocation is attempted.

The following examples illustrate the various conditions previously described.

Invoking Locally Declared SubprogramsInvoking Locally Declared Subprograms

The following example contains a single hierarchy of blocks contained within standalone procedure level_0 . Within the executable section of
procedure level_1a , the means of invoking the local procedure level_2a are shown, both with and without qualifiers.

Also note that access to the descendant of local procedure level_2a , which is procedure level_3a , is not permitted, with or without qualifiers.
These calls are commented out in the example.

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 level_1a.level_2a; -- Qualified local block called
 level_0.level_1a.level_2a; -- Double qualified local block called
-- level_3a; -- Error - Descendant of local block
-- level_2a.level_3a; -- Error - Descendant of local block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

When the standalone procedure is invoked, the output is the following, which indicates that procedure level_2a is successfully invoked from the calls
in the executable section of procedure level_1a .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 922

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
...... BLOCK level_2a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

If you were to attempt to run procedure level_0 with any of the calls to the descendent block uncommented, then an error occurs.

Invoking Subprograms Declared in Ancestor BlocksInvoking Subprograms Declared in Ancestor Blocks

The following example shows how subprograms can be invoked that are declared in parent and other ancestor blocks relative to the block where the
invocation is made.

In this example, the executable section of procedure level_3a invokes procedure level_2a , which is its parent block. (Note that v_cnt is used to
avoid an infinite loop.)

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_2a; -- Parent block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the resulting output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 923

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

In a similar example, the executable section of procedure level_3a invokes procedure level_1a , which is further up the ancestor hierarchy. (Note
that v_cnt is used to avoid an infinite loop.)

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 PROCEDURE level_3a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3a');
 v_cnt := v_cnt + 1;
 IF v_cnt < 2 THEN
 level_1a; -- Ancestor block called
 END IF;
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3a');
 END level_3a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 level_3a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1a;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the resulting output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 924

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
.. BLOCK level_1a
...... BLOCK level_2a
........ BLOCK level_3a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
........ END BLOCK level_3a
...... END BLOCK level_2a
.. END BLOCK level_1a
END BLOCK level_0

Invoking Subprograms Declared in Sibling BlocksInvoking Subprograms Declared in Sibling Blocks

The following examples show how subprograms can be invoked that are declared in a sibling block relative to the local, parent, or other ancestor blocks
from where the invocation of the subprogram is made.

In this example, the executable section of procedure level_1b invokes procedure level_1a , which is its sibling block. Both are local to standalone
procedure level_0 .

Note that invocation of level_2a or equivalently, level_1a.level_2a from within procedure level_1b is commented out as this call would
result in an error. Invoking a descendent subprogram (level_2a) of sibling block (level_1a) is not permitted.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_cnt NUMBER(2) := 0;
 PROCEDURE level_1a
 IS
 PROCEDURE level_2a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_1a; -- Sibling block called
-- level_2a; -- Error – Descendant of sibling block
-- level_1a.level_2a; -- Error - Descendant of sibling block
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 925

The following is the resulting output:

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
.. BLOCK level_1a
.. END BLOCK level_1a
.. END BLOCK level_1b
END BLOCK level_0

In the following example, procedure level_1a , which is the sibling of procedure level_1b , which is an ancestor of procedure level_3b is
successfully invoked.

CREATE OR REPLACE PROCEDURE level_0
IS
 PROCEDURE level_1a
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 PROCEDURE level_2b
 IS
 PROCEDURE level_3b
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('........ BLOCK level_3b');
 level_1a; -- Ancestor's sibling block called
 level_0.level_1a; -- Qualified ancestor's sibling block
 DBMS_OUTPUT.PUT_LINE('........ END BLOCK level_3b');
 END level_3b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2b');
 level_3b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2b');
 END level_2b;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 level_2b; -- Local block called
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the resulting output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 926

BEGIN
 level_0;
END;

BLOCK level_0
.. BLOCK level_1b
...... BLOCK level_2b
........ BLOCK level_3b
.. BLOCK level_1a
.. END BLOCK level_1a
.. BLOCK level_1a
.. END BLOCK level_1a
........ END BLOCK level_3b
...... END BLOCK level_2b
.. END BLOCK level_1b
END BLOCK level_0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 927

16.2.6.5 Using Forward Declarations

As discussed so far, when a subprogram is to be invoked, it must have been declared somewhere in the hierarchy of blocks within the standalone program,
but prior to where it is invoked. In other words, when scanning the SPL code from beginning to end, the subprogram declaration must be found before its
invocation.

However, there is a method of constructing the SPL code so that the full declaration of the subprogram (that is, its optional declaration section, its
mandatory executable section, and optional exception section) appears in the SPL code after the point in the code where it is invoked.

This is accomplished by inserting a forward declaration in the SPL code prior to its invocation. The forward declaration is the specification of a
subprocedure or subfunction name, formal parameters, and return type if it is a subfunction.

The full subprogram specification consisting of the optional declaration section, the executable section, and the optional exception section must be
specified in the same declaration section as the forward declaration, but may appear following other subprogram declarations that invoke this subprogram
with the forward declaration.

Typical usage of a forward declaration is when two subprograms invoke each other as shown by the following:

DECLARE
 FUNCTION add_one (
 p_add IN NUMBER
) RETURN NUMBER;
 FUNCTION test_max (
 p_test IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 IF p_test < 5 THEN
 RETURN add_one(p_test);
 END IF;
 DBMS_OUTPUT.PUT('Final value is ');
 RETURN p_test;
 END;
 FUNCTION add_one (
 p_add IN NUMBER)
 RETURN NUMBER
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Increase by 1');
 RETURN test_max(p_add + 1);
 END;
BEGIN
 DBMS_OUTPUT.PUT_LINE(test_max(3));
END;

Subfunction test_max invokes subfunction add_one , which also invokes subfunction test_max , so a forward declaration is required for one of the
subprograms, which is implemented for add_one at the beginning of the anonymous block declaration section.

The resulting output from the anonymous block is as follows:

Increase by 1
Increase by 1
Final value is 5

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 928

16.2.6.6 Overloading Subprograms

Generally, subprograms of the same type (subprocedure or subfunction) with the same name, and same formal parameter specification can appear multiple
times within the same standalone program as long as they are not sibling blocks (that is, the subprograms are not declared in the same local block).

Each subprogram can be individually invoked depending upon the use of qualifiers and the location where the subprogram invocation is made as discussed
in the previous sections.

It is however possible to declare subprograms, even as siblings, that are of the same subprogram type and name as long as certain aspects of the formal
parameters differ. These characteristics (subprogram type, name, and formal parameter specification) is generally known as a program’s signature.

The declaration of multiple subprograms where the signatures are identical except for certain aspects of the formal parameter specification is referred to
as subprogram overloading.

Thus, the determination of which particular overloaded subprogram is to be invoked is determined by a match of the actual parameters specified by the
subprogram invocation and the formal parameter lists of the overloaded subprograms.

Any of the following differences permit overloaded subprograms:

The number of formal parameters are different.
At least one pair of data types of the corresponding formal parameters (that is, compared according to the same order of appearance in the formal
parameter list) are different, but are not aliases. Data type aliases are discussed later in this section.

Note that the following differences alone do not permit overloaded subprograms:

Different formal parameter names
Different parameter modes (IN, IN OUT, OUT) for the corresponding formal parameters
For subfunctions, different data types in the RETURN clause

As previously indicated, one of the differences allowing overloaded subprograms are different data types.

However, certain data types have alternative names referred to as aliases, which can be used for the table definition.

For example, there are fixed length character data types that can be specified as CHAR or CHARACTER . There are variable length character data types
that can be specified as CHAR VARYING, CHARACTER VARYING, VARCHAR, or VARCHAR2 . For integers, there are BINARY_INTEGER,
PLS_INTEGER, and INTEGER data types. For numbers, there are NUMBER, NUMERIC, DEC, and DECIMAL data types.

For detailed information about the data types supported by Advanced Server, see Data types.

Thus, when attempting to create overloaded subprograms, the formal parameter data types are not considered different if the specified data types are
aliases of each other.

It can be determined if certain data types are aliases of other types by displaying the table definition containing the data types in question.

For example, the following table definition contains some data types and their aliases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 929

CREATE TABLE data_type_aliases (
 dt_BLOB BLOB,
 dt_LONG_RAW LONG RAW,
 dt_RAW RAW(4),
 dt_BYTEA BYTEA,
 dt_INTEGER INTEGER,
 dt_BINARY_INTEGER BINARY_INTEGER,
 dt_PLS_INTEGER PLS_INTEGER,
 dt_REAL REAL,
 dt_DOUBLE_PRECISION DOUBLE PRECISION,
 dt_FLOAT FLOAT,
 dt_NUMBER NUMBER,
 dt_DECIMAL DECIMAL,
 dt_NUMERIC NUMERIC,
 dt_CHAR CHAR,
 dt_CHARACTER CHARACTER,
 dt_VARCHAR2 VARCHAR2(4),
 dt_CHAR_VARYING CHAR VARYING(4),
 dt_VARCHAR VARCHAR(4)
);

Using the PSQL \d command to display the table definition, the Type column displays the data type internally assigned to each column based upon its
data type in the table definition:

\d data_type_aliases
 Column | Type | Modifiers
---------------------+----------------------+-----------
 dt_blob | bytea |
 dt_long_raw | bytea |
 dt_raw | bytea(4) |
 dt_bytea | bytea |
 dt_integer | integer |
 dt_binary_integer | integer |
 dt_pls_integer | integer |
 dt_real | real |
 dt_double_precision | double precision |
 dt_float | double precision |
 dt_number | numeric |
 dt_decimal | numeric |
 dt_numeric | numeric |
 dt_char | character(1) |
 dt_character | character(1) |
 dt_varchar2 | character varying(4) |
 dt_char_varying | character varying(4) |
 dt_varchar | character varying(4) |

In the example, the base set of data types are bytea, integer, real, double precision, numeric, character , and character
varying .

When attempting to declare overloaded subprograms, a pair of formal parameter data types that are aliases would not be sufficient to allow subprogram
overloading. Thus, parameters with data types INTEGER and PLS_INTEGER cannot overload a pair of subprograms, but data types INTEGER and
REAL , or INTEGER and FLOAT , or INTEGER and NUMBER can overload the subprograms.

NoteNote

The overloading rules based upon formal parameter data types are not compatible with Oracle databases. Generally, the Advanced Server rules
are more flexible, and certain combinations are allowed in Advanced Server that would result in an error when attempting to create the
procedure or function in Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 930

For certain pairs of data types used for overloading, casting of the arguments specified by the subprogram invocation may be required to avoid an error
encountered during runtime of the subprogram. Invocation of a subprogram must include the actual parameter list that can specifically identify the data
types. Certain pairs of overloaded data types may require the CAST function to explicitly identify data types. For example, pairs of overloaded data types
that may require casting during the invocation are CHAR and VARCHAR2 , or NUMBER and REAL .

The following example shows a group of overloaded subfunctions invoked from within an anonymous block. The executable section of the anonymous
block contains the use of the CAST function to invoke overloaded functions with certain data types.

DECLARE
 FUNCTION add_it (
 p_add_1 IN BINARY_INTEGER,
 p_add_2 IN BINARY_INTEGER
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it BINARY_INTEGER: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN NUMBER,
 p_add_2 IN NUMBER
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it NUMBER: ' || TO_CHAR(p_add_1 + p_add_2,999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN REAL,
 p_add_2 IN REAL
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it REAL: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
 FUNCTION add_it (
 p_add_1 IN DOUBLE PRECISION,
 p_add_2 IN DOUBLE PRECISION
) RETURN VARCHAR2
 IS
 BEGIN
 RETURN 'add_it DOUBLE PRECISION: ' || TO_CHAR(p_add_1 + p_add_2,9999.9999);
 END add_it;
BEGIN
 DBMS_OUTPUT.PUT_LINE(add_it (25, 50));
 DBMS_OUTPUT.PUT_LINE(add_it (25.3333, 50.3333));
 DBMS_OUTPUT.PUT_LINE(add_it (TO_NUMBER(25.3333), TO_NUMBER(50.3333)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS REAL), CAST('50.3333' AS REAL)));
 DBMS_OUTPUT.PUT_LINE(add_it (CAST('25.3333' AS DOUBLE PRECISION),
 CAST('50.3333' AS DOUBLE PRECISION)));
END;

The following is the output displayed from the anonymous block:

add_it BINARY_INTEGER: 75.0000
add_it NUMBER: 75.6666
add_it NUMBER: 75.6666
add_it REAL: 75.6666
add_it DOUBLE PRECISION: 75.6666

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 931

16.2.6.7 Accessing Subprogram Variables

Variable declared in blocks such as subprograms or anonymous blocks can be accessed from the executable section or the exception section of other
blocks depending upon their relative location.

Accessing a variable means being able to reference it within a SQL statement or an SPL statement as is done with any local variable.

NoteNote

If the subprogram signature contains formal parameters, these may be accessed in the same manner as local variables of the subprogram. In this
section, all discussion related to variables of a subprogram also applies to formal parameters of the subprogram.

Access of variables not only includes those defined as a data type, but also includes others such as record types, collection types, and cursors.

The variable may be accessed by at most one qualifier, which is the name of the subprogram or labeled anonymous block in which the variable has been
locally declared.

The syntax to reference a variable is shown by the following:

[<qualifier>.]<variable>

If specified, qualifier is the subprogram or labeled anonymous block in which variable has been declared in its declaration section (that is, it is a
local variable).

NoteNote

In Advanced Server, there is only one circumstance where two qualifiers are permitted. This scenario is for accessing public variables of packages
where the reference can be specified in the following format:

schema_name.package_name.public_variable_name

For more information about supported package syntax, see the Database Compatibility for Oracle Developers Built-In Package Guide .

The following summarizes how variables can be accessed:

Variables can be accessed as long as the block in which the variable has been locally declared is within the ancestor hierarchical path starting from
the block containing the reference to the variable. Such variables declared in ancestor blocks are referred to as global variables.
If a reference to an unqualified variable is made, the first attempt is to locate a local variable of that name. If such a local variable does not exist,
then the search for the variable is made in the parent of the current block, and so forth, proceeding up the ancestor hierarchy. If such a variable is
not found, then an error occurs upon invocation of the subprogram.
If a reference to a qualified variable is made, the same search process is performed as described in the previous bullet point, but searching for the
first match of the subprogram or labeled anonymous block that contains the local variable. The search proceeds up the ancestor hierarchy until a
match is found. If such a match is not found, then an error occurs upon invocation of the subprogram.

The following location of variables cannot be accessed relative to the block from where the reference to the variable is made:

Variables declared in a descendent block cannot be accessed,
Variables declared in a sibling block, a sibling block of an ancestor block, or any descendants within the sibling block cannot be accessed.

NoteNote

The Advanced Server process for accessing variables is not compatible with Oracle databases. For Oracle, any number of qualifiers can be
specified and the search is based upon the first match of the first qualifier in a similar manner to the Oracle matching algorithm for invoking
subprograms.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 932

The following example displays how variables in various blocks are accessed, with and without qualifiers. The lines that are commented out illustrate
attempts to access variables that would result in an error.

CREATE OR REPLACE PROCEDURE level_0
IS
 v_level_0 VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_level_1a VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_level_2a VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_level_2a: ' || v_level_2a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_1a: ' || v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_level_1a: ' || level_1a.v_level_1a);
 DBMS_OUTPUT.PUT_LINE('........ v_level_0: ' || v_level_0);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_level_0: ' || level_0.v_level_0);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 level_2a;
-- DBMS_OUTPUT.PUT_LINE('.... v_level_2a: ' || v_level_2a);
-- Error - Descendent block ----^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Descendent block ---------------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 v_level_1b VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_level_1b: ' || v_level_1b);
 DBMS_OUTPUT.PUT_LINE('.... v_level_0 : ' || v_level_0);
-- DBMS_OUTPUT.PUT_LINE('.... level_1a.v_level_1a: ' || level_1a.v_level_1a);
-- Error - Sibling block -----------------^
-- DBMS_OUTPUT.PUT_LINE('.... level_2a.v_level_2a: ' || level_2a.v_level_2a);
-- Error - Sibling block descendant ------^
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_level_0: ' || v_level_0);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output showing the content of each variable when the procedure is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 933

BEGIN
 level_0;
END;

BLOCK level_0
.. v_level_0: Value from level_0
.. BLOCK level_1a
...... BLOCK level_2a
........ v_level_2a: Value from level_2a
........ v_level_1a: Value from level_1a
........ level_1a.v_level_1a: Value from level_1a
........ v_level_0: Value from level_0
........ level_0.v_level_0: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_level_1b: Value from level_1b
.... v_level_0 : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

The following example shows similar access attempts when all variables in all blocks have the same name:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 934

CREATE OR REPLACE PROCEDURE level_0
IS
 v_common VARCHAR2(20) := 'Value from level_0';
 PROCEDURE level_1a
 IS
 v_common VARCHAR2(20) := 'Value from level_1a';
 PROCEDURE level_2a
 IS
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_2a.v_common: ' || level_2a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_0.v_common: ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END level_2a;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common: ' || level_0.v_common);
 level_2a;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END level_1a;
 PROCEDURE level_1b
 IS
 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_0.v_common : ' || level_0.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END level_1b;
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 level_1a;
 level_1b;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END level_0;

The following is the output showing the content of each variable when the procedure is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 935

BEGIN
 level_0;
END;

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
.... level_0.v_common: Value from level_0
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_2a.v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
........ level_0.v_common: Value from level_0
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_0.v_common : Value from level_0
.. END BLOCK level_1b
END BLOCK level_0

As previously discussed, the labels on anonymous blocks can also be used to qualify access to variables. The following example shows variable access
within a set of nested anonymous blocks:

DECLARE
 v_common VARCHAR2(20) := 'Value from level_0';
BEGIN
 DBMS_OUTPUT.PUT_LINE('BLOCK level_0');
 DBMS_OUTPUT.PUT_LINE('.. v_common: ' || v_common);
 <<level_1a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_1a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1a');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 <<level_2a>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_2a';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('...... BLOCK level_2a');
 DBMS_OUTPUT.PUT_LINE('........ v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('........ level_1a.v_common: ' || level_1a.v_common);
 DBMS_OUTPUT.PUT_LINE('...... END BLOCK level_2a');
 END;
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1a');
 END;
 <<level_1b>>
 DECLARE
 v_common VARCHAR2(20) := 'Value from level_1b';
 BEGIN
 DBMS_OUTPUT.PUT_LINE('.. BLOCK level_1b');
 DBMS_OUTPUT.PUT_LINE('.... v_common: ' || v_common);
 DBMS_OUTPUT.PUT_LINE('.... level_1b.v_common: ' || level_1b.v_common);
 DBMS_OUTPUT.PUT_LINE('.. END BLOCK level_1b');
 END;
 DBMS_OUTPUT.PUT_LINE('END BLOCK level_0');
END;

The following is the output showing the content of each variable when the anonymous block is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 936

BLOCK level_0
.. v_common: Value from level_0
.. BLOCK level_1a
.... v_common: Value from level_1a
...... BLOCK level_2a
........ v_common: Value from level_2a
........ level_1a.v_common: Value from level_1a
...... END BLOCK level_2a
.. END BLOCK level_1a
.. BLOCK level_1b
.... v_common: Value from level_1b
.... level_1b.v_common: Value from level_1b
.. END BLOCK level_1b
END BLOCK level_0

The following example is an object type whose object type method, display_emp , contains record type emp_typ and subprocedure
emp_sal_query . Record variable r_emp declared locally to emp_sal_query is able to access the record type emp_typ declared in the parent

block display_emp .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 937

CREATE OR REPLACE TYPE emp_pay_obj_typ AS OBJECT
(
 empno NUMBER(4),
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_pay_obj_typ)
);

CREATE OR REPLACE TYPE BODY emp_pay_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_pay_obj_typ)
 IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
 IS
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
 BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
 END;
 BEGIN
 emp_sal_query(SELF.empno);
 END;
END;

The following is the output displayed when an instance of the object type is created and procedure display_emp is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 938

DECLARE
 v_emp EMP_PAY_OBJ_TYP;
BEGIN
 v_emp := emp_pay_obj_typ(7900);
 v_emp.display_emp;
END;

Employee # : 7900
Name : JAMES
Job : CLERK
Hire Date : 03-DEC-81 00:00:00
Salary : 950.00
Dept # : 30
Employee's salary does not exceed the department average of 1566.67

The following example is a package with three levels of subprocedures. A record type, collection type, and cursor type declared in the upper level procedure
can be accessed by the descendent subprocedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 939

CREATE OR REPLACE PACKAGE emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
);
END;

CREATE OR REPLACE PACKAGE BODY emp_dept_pkg
IS
 PROCEDURE display_emp (
 p_deptno NUMBER
)
 IS
 TYPE emp_rec_typ IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 TYPE emp_cur_type IS REF CURSOR RETURN emp_rec_typ;
 PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
 IS
 emp_arr emp_arr_typ;
 emp_refcur emp_cur_type;
 i BINARY_INTEGER := 0;
 PROCEDURE display_emp_arr
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR j IN emp_arr.FIRST .. emp_arr.LAST LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
 END display_emp_arr;
 BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 LOOP
 i := i + 1;
 FETCH emp_refcur INTO emp_arr(i).empno, emp_arr(i).ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 END LOOP;
 CLOSE emp_refcur;
 display_emp_arr;
 END emp_by_dept;
 BEGIN
 emp_by_dept(p_deptno);
 END;
END;

The following is the output displayed when the top level package procedure is invoked:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 940

BEGIN
 emp_dept_pkg.display_emp(20);
END;

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 941

16.2.7 Compilation Errors in Procedures and Functions

When the Advanced Server parsers compile a procedure or function, they confirm that both the CREATE statement and the program body (that portion of
the program that follows the AS keyword) conforms to the grammar rules for SPL and SQL constructs. By default, the server will terminate the compilation
process if a parser detects an error. Note that the parsers detect syntax errors in expressions, but not semantic errors (i.e. an expression referencing a non-
existent column, table, or function, or a value of incorrect type).

spl.max_error_count instructs the server to stop parsing if it encounters the specified number of errors in SPL code, or when it encounters an error
in SQL code. The default value of spl.max_error_count is 10 ; the maximum value is 1000 . Setting spl.max_error_count to a value of 1
instructs the server to stop parsing when it encounters the first error in either SPL or SQL code.

You can use the SET command to specify a value for spl.max_error_count for your current session. The syntax is:

SET spl.max_error_count = <number_of_errors>

Where number_of_errors specifies the number of SPL errors that may occur before the server halts the compilation process. For example:

SET spl.max_error_count = 6

The example instructs the server to continue past the first five SPL errors it encounters. When the server encounters the sixth error it will stop validating,
and print six detailed error messages, and one error summary.

To save time when developing new code, or when importing existing code from another source, you may want to set the spl.max_error_count
configuration parameter to a relatively high number of errors.

Please note that if you instruct the server to continue parsing in spite of errors in the SPL code in a program body, and the parser encounters an error in a
segment of SQL code, there may still be errors in any SPL or SQL code that follows the erroneous SQL code. For example, the following function results in
two errors:

CREATE FUNCTION computeBonus(baseSalary number) RETURN number AS
BEGIN

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;
END;

ERROR: "bonus" is not a known variable
LINE 4: bonus := baseSalary * 1.10;
 ^
ERROR: "total" is not a known variable
LINE 5: total := bonus + 100;
 ^
ERROR: compilation of SPL function/procedure "computebonus" failed due to 2 errors

The following example adds a SELECT statement to the previous example. The error in the SELECT statement masks the other errors that follow:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 942

CREATE FUNCTION computeBonus(employeeName number) RETURN number AS
BEGIN
 SELECT salary INTO baseSalary FROM emp
 WHERE ename = employeeName;

 bonus := baseSalary * 1.10;
 total := bonus + 100;

 RETURN bonus;

END;

ERROR: "basesalary" is not a known variable
LINE 3: SELECT salary INTO baseSalary FROM emp WHERE ename = emp...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 943

16.2.8 Program Security

Security over what user may execute an SPL program and what database objects an SPL program may access for any given user executing the program is
controlled by the following:

Privilege to execute a program.
Privileges granted on the database objects (including other SPL programs) which a program attempts to access.
Whether the program is defined with definer’s rights or invoker’s rights.

These aspects are discussed in the following sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 944

16.2.8.1 EXECUTE Privilege

An SPL program (function, procedure, or package) can begin execution only if any of the following are true:

The current user is a superuser, or
The current user has been granted EXECUTE privilege on the SPL program, or
The current user inherits EXECUTE privilege on the SPL program by virtue of being a member of a group which does have such privilege, or
EXECUTE privilege has been granted to the PUBLIC group.

Whenever an SPL program is created in Advanced Server, EXECUTE privilege is automatically granted to the PUBLIC group by default, therefore, any
user can immediately execute the program.

This default privilege can be removed by using the REVOKE EXECUTE command. The following is an example:

REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;

Explicit EXECUTE privilege on the program can then be granted to individual users or groups.

GRANT EXECUTE ON PROCEDURE list_emp TO john;

Now, user, john , can execute the list_emp program; other users who do not meet any of the conditions listed at the beginning of this section cannot.

Once a program begins execution, the next aspect of security is what privilege checks occur if the program attempts to perform an action on any database
object including:

Reading or modifying table or view data.
Creating, modifying, or deleting a database object such as a table, view, index, or sequence.
Obtaining the current or next value from a sequence.
Calling another program (function, procedure, or package).

Each such action can be protected by privileges on the database object either allowed or disallowed for the user.

Note that it is possible for a database to have more than one object of the same type with the same name, but each such object belonging to a different
schema in the database. If this is the case, which object is being referenced by an SPL program? This is the topic of the next section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 945

16.2.8.2 Database Object Name Resolution

A database object inside an SPL program may either be referenced by its qualified name or by an unqualified name. A qualified name is in the form of
schema.name where schema is the name of the schema under which the database object with identifier, name , exists. An unqualified name does not

have the schema. portion. When a reference is made to a qualified name, there is absolutely no ambiguity as to exactly which database object is
intended – it either does or does not exist in the specified schema.

Locating an object with an unqualified name, however, requires the use of the current user’s search path. When a user becomes the current user of a
session, a default search path is always associated with that user. The search path consists of a list of schemas which are searched in left-to-right order for
locating an unqualified database object reference. The object is considered non-existent if it can’t be found in any of the schemas in the search path. The
default search path can be displayed in PSQL using the SHOW search_path command.

edb=# SHOW search_path;
 search_path

 "$user", public
(1 row)

$user in the above search path is a generic placeholder that refers to the current user so if the current user of the above session is enterprisedb , an
unqualified database object would be searched for in the following schemas in this order – first, enterprisedb , then public .

Once an unqualified name has been resolved in the search path, it can be determined if the current user has the appropriate privilege to perform the desired
action on that specific object.

NoteNote

The concept of the search path is not compatible with Oracle databases. For an unqualified reference, Oracle simply looks in the schema of the
current user for the named database object. It also important to note that in Oracle, a user and his or her schema is the same entity while in
Advanced Server, a user and a schema are two distinct objects.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 946

16.2.8.3 Database Object Privileges

Once an SPL program begins execution, any attempt to access a database object from within the program results in a check to ensure the current user has
the authorization to perform the intended action against the referenced object. Privileges on database objects are bestowed and removed using the
GRANT and REVOKE commands, respectively. If the current user attempts unauthorized access on a database object, then the program will throw an

exception. See Exception Handling for information about exception handling.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 947

16.2.8.4 Definer’s vs. Invokers Rights

When an SPL program is about to begin execution, a determination is made as to what user is to be associated with this process. This user is referred to as
the current user. The current user’s database object privileges are used to determine whether or not access to database objects referenced in the program
will be permitted. The current prevailing search path in effect when the program is invoked will be used to resolve any unqualified object references.

The selection of the current user is influenced by whether the SPL program was created with definer’s right or invoker’s rights. The AUTHID clause
determines that selection. Appearance of the clause AUTHID DEFINER gives the program definer’s rights. This is also the default if the AUTHID clause
is omitted. Use of the clause AUTHID CURRENT_USER gives the program invoker’s rights. The difference between the two is summarized as follows:

If a program has definer’s rights, then the owner of the program becomes the current user when program execution begins. The program owner’s
database object privileges are used to determine if access to a referenced object is permitted. In a definer’s rights program, it is irrelevant as to
which user actually invoked the program.
If a program has invoker’s rights, then the current user at the time the program is called remains the current user while the program is executing (but
not necessarily within called subprograms – see the following bullet points). When an invoker’s rights program is invoked, the current user is
typically the user that started the session (i.e., made the database connection) although it is possible to change the current user after the session
has started using the SET ROLE command. In an invoker’s rights program, it is irrelevant as to which user actually owns the program.

From the previous definitions, the following observations can be made:

If a definer’s rights program calls a definer’s rights program, the current user changes from the owner of the calling program to the owner of the
called program during execution of the called program.
If a definer’s rights program calls an invoker’s rights program, the owner of the calling program remains the current user during execution of both
the calling and called programs.
If an invoker’s rights program calls an invoker’s rights program, the current user of the calling program remains the current user during execution of
the called program.
If an invokers’ rights program calls a definer’s rights program, the current user switches to the owner of the definer’s rights program during
execution of the called program.

The same principles apply if the called program in turn calls another program in the cases cited above.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 948

16.2.8.5 Security Example

In the following example, a new database will be created along with two users – hr_mgr who will own a copy of the entire sample application in
schema, hr_mgr ; and sales_mgr who will own a schema named, sales_mgr , that will have a copy of only the emp table containing only the
employees who work in sales.

The procedure list_emp , function hire_clerk , and package emp_admin will be used in this example. All of the default privileges that are granted
upon installation of the sample application will be removed and then be explicitly re-granted so as to present a more secure environment in this example.

Programs list_emp and hire_clerk will be changed from the default of definer’s rights to invoker’s rights. It will be then illustrated that when
sales_mgr runs these programs, they act upon the emp table in sales_mgr ’s schema since sales_mgr ’s search path and privileges will be used

for name resolution and authorization checking.

Programs get_dept_name and hire_emp in the emp_admin package will then be executed by sales_mgr . In this case, the dept table and
emp table in hr_mgr ’s schema will be accessed as hr_mgr is the owner of the emp_admin package which is using definer’s rights. Since the default

search path is in effect with the $user placeholder, the schema matching the user (in this case, hr_mgr) is used to find the tables.

Step 1 – Create Database and UsersStep 1 – Create Database and Users

As user enterprisedb , create the hr database:

CREATE DATABASE hr;

Switch to the hr database and create the users:

\c hr enterprisedb
CREATE USER hr_mgr IDENTIFIED BY password;
CREATE USER sales_mgr IDENTIFIED BY password;

Step 2 – Create the Sample ApplicationStep 2 – Create the Sample Application

Create the entire sample application, owned by hr_mgr , in hr_mgr ’s schema.

\c - hr_mgr
\i /usr/edb/as13/share/edb-sample.sql

BEGIN
CREATE TABLE
CREATE TABLE
CREATE TABLE
CREATE VIEW
CREATE SEQUENCE
 .
 .
 .
CREATE PACKAGE
CREATE PACKAGE BODY
COMMIT

Step 3 – Create the emp Table in Schema sales_mgrStep 3 – Create the emp Table in Schema sales_mgr

Create a subset of the emp table owned by sales_mgr in sales_mgr ’s schema.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 949

\c – hr_mgr
GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
\c – sales_mgr
CREATE TABLE emp AS SELECT * FROM hr_mgr.emp WHERE job = 'SALESMAN';

In the above example, the GRANT USAGE ON SCHEMA command is given to allow sales_mgr access into hr_mgr ’s schema to make a copy of
hr_mgr ’s emp table. This step is required in Advanced Server and is not compatible with Oracle databases since Oracle does not have the concept of a

schema that is distinct from its user.

Step 4 – Remove Default PrivilegesStep 4 – Remove Default Privileges

Remove all privileges to later illustrate the minimum required privileges needed.

\c – hr_mgr
REVOKE USAGE ON SCHEMA hr_mgr FROM sales_mgr;
REVOKE ALL ON dept FROM PUBLIC;
REVOKE ALL ON emp FROM PUBLIC;
REVOKE ALL ON next_empno FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION new_empno() FROM PUBLIC;
REVOKE EXECUTE ON PROCEDURE list_emp FROM PUBLIC;
REVOKE EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) FROM PUBLIC;
REVOKE EXECUTE ON PACKAGE emp_admin FROM PUBLIC;

Step 5 – Change list_emp to Invoker’s RightsStep 5 – Change list_emp to Invoker’s Rights

While connected as user, hr_mgr , add the AUTHID CURRENT_USER clause to the list_emp program and resave it in Advanced Server. When
performing this step, be sure you are logged on as hr_mgr , otherwise the modified program may wind up in the public schema instead of in
hr_mgr ’s schema.

CREATE OR REPLACE PROCEDURE list_emp
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

Step 6 – Change hire_clerk to Invoker’s Rights and Qualify Call to new_empnoStep 6 – Change hire_clerk to Invoker’s Rights and Qualify Call to new_empno

While connected as user, hr_mgr , add the AUTHID CURRENT_USER clause to the hire_clerk program.

Also, after the BEGIN statement, fully qualify the reference, new_empno , to hr_mgr.new_empno in order to ensure the hire_clerk function
call to the new_empno function resolves to the hr_mgr schema.

When resaving the program, be sure you are logged on as hr_mgr , otherwise the modified program may wind up in the public schema instead of in
hr_mgr ’s schema.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 950

CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR2,
 p_deptno NUMBER
) RETURN NUMBER
AUTHID CURRENT_USER
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_mgr NUMBER(4);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_comm NUMBER(7,2);
 v_deptno NUMBER(2);
BEGIN
 v_empno := hr_mgr.new_empno;
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 TRUNC(SYSDATE), 950.00, NULL, p_deptno);
 SELECT empno, ename, job, mgr, hiredate, sal, comm, deptno INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 FROM emp WHERE empno = v_empno;
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || v_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || v_comm);
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('The following is SQLERRM:');
 DBMS_OUTPUT.PUT_LINE(SQLERRM);
 DBMS_OUTPUT.PUT_LINE('The following is SQLCODE:');
 DBMS_OUTPUT.PUT_LINE(SQLCODE);
 RETURN -1;
END;

Step 7 – Grant Required PrivilegesStep 7 – Grant Required Privileges

While connected as user, hr_mgr , grant the privileges needed so sales_mgr can execute the list_emp procedure, hire_clerk function, and
emp_admin package. Note that the only data object sales_mgr has access to is the emp table in the sales_mgr schema. sales_mgr has no

privileges on any table in the hr_mgr schema.

GRANT USAGE ON SCHEMA hr_mgr TO sales_mgr;
GRANT EXECUTE ON PROCEDURE list_emp TO sales_mgr;
GRANT EXECUTE ON FUNCTION hire_clerk(VARCHAR2,NUMBER) TO sales_mgr;
GRANT EXECUTE ON FUNCTION new_empno() TO sales_mgr;
GRANT EXECUTE ON PACKAGE emp_admin TO sales_mgr;

Step 8 – Run Programs list_emp and hire_clerkStep 8 – Run Programs list_emp and hire_clerk

Connect as user, sales_mgr , and run the following anonymous block:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 951

\c – sales_mgr
DECLARE
 v_empno NUMBER(4);
BEGIN
 hr_mgr.list_emp;
 DBMS_OUTPUT.PUT_LINE('*** Adding new employee ***');
 v_empno := hr_mgr.hire_clerk('JONES',40);
 DBMS_OUTPUT.PUT_LINE('*** After new employee added ***');
 hr_mgr.list_emp;
END;

EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
*** Adding new employee ***
Department : 40
Employee No: 8000
Name : JONES
Job : CLERK
Manager : 7782
Hire Date : 08-NOV-07 00:00:00
Salary : 950.00
*** After new employee added ***
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER
8000 JONES

The table and sequence accessed by the programs of the anonymous block are illustrated in the following diagram. The gray ovals represent the schemas of
sales_mgr and hr_mgr . The current user during each program execution is shown within parenthesis in bold red font.

Fig. 1: Invokers Rights Programs

Selecting from sales_mgr ’s emp table shows that the update was made in this table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 952

SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM sales_mgr.emp;

 empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 8000 | JONES | 08-NOV-07 00:00:00 | 950.00 | 40 | OPERATIONS
(5 rows)

The following diagram shows that the SELECT command references the emp table in the sales_mgr schema, but the dept table referenced by the
get_dept_name function in the emp_admin package is from the hr_mgr schema since the emp_admin package has definer’s rights and is owned

by hr_mgr . The default search path setting with the $user placeholder resolves the access by user hr_mgr to the dept table in the hr_mgr
schema.

Fig. 2: Definer's Rights Package

Step 9 – Run Program hire_emp in the emp_admin PackageStep 9 – Run Program hire_emp in the emp_admin Package

While connected as user, sales_mgr , run the hire_emp procedure in the emp_admin package.

EXEC hr_mgr.emp_admin.hire_emp(9001,
'ALICE','SALESMAN',8000,TRUNC(SYSDATE),1000,7369,40);

This diagram illustrates that the hire_emp procedure in the emp_admin definer’s rights package updates the emp table belonging to hr_mgr since
the object privileges of hr_mgr are used, and the default search path setting with the $user placeholder resolves to the schema of hr_mgr .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 953

Fig. 3: Definer's Rights Package

Now connect as user, hr_mgr . The following SELECT command verifies that the new employee was added to hr_mgr ’s emp table since the
emp_admin package has definer’s rights and hr_mgr is emp_admin ’s owner.

\c – hr_mgr
SELECT empno, ename, hiredate, sal, deptno,
hr_mgr.emp_admin.get_dept_name(deptno) FROM hr_mgr.emp;

empno | ename | hiredate | sal | deptno | get_dept_name
-------+--------+--------------------+---------+--------+---------------
 7369 | SMITH | 17-DEC-80 00:00:00 | 800.00 | 20 | RESEARCH
 7499 | ALLEN | 20-FEB-81 00:00:00 | 1600.00 | 30 | SALES
 7521 | WARD | 22-FEB-81 00:00:00 | 1250.00 | 30 | SALES
 7566 | JONES | 02-APR-81 00:00:00 | 2975.00 | 20 | RESEARCH
 7654 | MARTIN | 28-SEP-81 00:00:00 | 1250.00 | 30 | SALES
 7698 | BLAKE | 01-MAY-81 00:00:00 | 2850.00 | 30 | SALES
 7782 | CLARK | 09-JUN-81 00:00:00 | 2450.00 | 10 | ACCOUNTING
 7788 | SCOTT | 19-APR-87 00:00:00 | 3000.00 | 20 | RESEARCH
 7839 | KING | 17-NOV-81 00:00:00 | 5000.00 | 10 | ACCOUNTING
 7844 | TURNER | 08-SEP-81 00:00:00 | 1500.00 | 30 | SALES
 7876 | ADAMS | 23-MAY-87 00:00:00 | 1100.00 | 20 | RESEARCH
 7900 | JAMES | 03-DEC-81 00:00:00 | 950.00 | 30 | SALES
 7902 | FORD | 03-DEC-81 00:00:00 | 3000.00 | 20 | RESEARCH
 7934 | MILLER | 23-JAN-82 00:00:00 | 1300.00 | 10 | ACCOUNTING
 9001 | ALICE | 08-NOV-07 00:00:00 | 8000.00 | 40 | OPERATIONS
(15 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 954

16.3 Variable Declarations

SPL is a block-structured language. The first section that can appear in a block is the declaration. The declaration contains the definition of variables,
cursors, and other types that can be used in SPL statements contained in the block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 955

16.3.1 Declaring a Variable

Generally, all variables used in a block must be declared in the declaration section of the block. A variable declaration consists of a name that is assigned to
the variable and its data type. Optionally, the variable can be initialized to a default value in the variable declaration.

The general syntax of a variable declaration is:

<name> <type> [{ := | DEFAULT } { <expression> | NULL }];

name is an identifier assigned to the variable.

type is the data type assigned to the variable.

[:= expression] , if given, specifies the initial value assigned to the variable when the block is entered. If the clause is not given then the variable is
initialized to the SQL NULL value.

The default value is evaluated every time the block is entered. So, for example, assigning SYSDATE to a variable of type DATE causes the variable to
have the time of the current invocation, not the time when the procedure or function was precompiled.

The following procedure illustrates some variable declarations that utilize defaults consisting of string and numeric expressions.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE := SYSDATE;
 rpt_title VARCHAR2(60) := 'Report For Department # ' || p_deptno
 || ' on ' || todays_date;
 base_sal INTEGER := 35525;
 base_comm_rate NUMBER := 1.33333;
 base_annual NUMBER := ROUND(base_sal * base_comm_rate, 2);
BEGIN
 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

The following output of the above procedure shows that default values in the variable declarations are indeed assigned to the variables.

EXEC dept_salary_rpt(20);

Report For Department # 20 on 10-JUL-07 16:44:45
Base Annual Salary: 47366.55

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 956

16.3.2 Using %TYPE in Variable Declarations

Often, variables will be declared in SPL programs that will be used to hold values from tables in the database. In order to ensure compatibility between the
table columns and the SPL variables, the data types of the two should be the same.

However, as quite often happens, a change might be made to the table definition. If the data type of the column is changed, the corresponding change may
be required to the variable in the SPL program.

Instead of coding the specific column data type into the variable declaration the column attribute, %TYPE , can be used instead. A qualified column name
in dot notation or the name of a previously declared variable must be specified as a prefix to %TYPE . The data type of the column or variable prefixed to
%TYPE is assigned to the variable being declared. If the data type of the given column or variable changes, the new data type will be associated with the

variable without the need to modify the declaration code.

NoteNote

The %TYPE attribute can be used with formal parameter declarations as well.

<name> { { <table> | <view> }.<column> | <variable> }%TYPE;

name is the identifier assigned to the variable or formal parameter that is being declared. column is the name of a column in table or view .
variable is the name of a variable that was declared prior to the variable identified by name .

NoteNote

The variable does not inherit any of the column’s other attributes such as might be specified on the column with the NOT NULL clause or the
DEFAULT clause.

In the following example a procedure queries the emp table using an employee number, displays the employee’s data, finds the average salary of all
employees in the department to which the employee belongs, and then compares the chosen employee’s salary with the department average.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 957

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN NUMBER
)
IS
 v_ename VARCHAR2(10);
 v_job VARCHAR2(9);
 v_hiredate DATE;
 v_sal NUMBER(7,2);
 v_deptno NUMBER(2);
 v_avgsal NUMBER(7,2);
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Instead of the above, the procedure could be written as follows without explicitly coding the emp table data types into the declaration section of the
procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 958

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_deptno emp.deptno%TYPE;
 v_avgsal v_sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO v_ename, v_job, v_hiredate, v_sal, v_deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || v_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || v_deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = v_deptno;
 IF v_sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

NoteNote

p_empno shows an example of a formal parameter defined using %TYPE .

v_avgsal illustrates the usage of %TYPE referring to another variable instead of a table column.

The following is sample output from executing this procedure.

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 959

16.3.3 Using %ROWTYPE in Record Declarations

The %TYPE attribute provides an easy way to create a variable dependent upon a column’s data type. Using the %ROWTYPE attribute, you can define a
record that contains fields that correspond to all columns of a given table. Each field takes on the data type of its corresponding column. The fields in the
record do not inherit any of the columns’ other attributes such as might be specified with the NOT NULL clause or the DEFAULT clause.

A record is a named, ordered collection of fields. A field is similar to a variable; it has an identifier and data type, but has the additional property of
belonging to a record, and must be referenced using dot notation with the record name as its qualifier.

You can use the %ROWTYPE attribute to declare a record. The %ROWTYPE attribute is prefixed by a table name. Each column in the named table defines
an identically named field in the record with the same data type as the column.

<record> <table>%ROWTYPE;

record is an identifier assigned to the record. table is the name of a table (or view) whose columns are to define the fields in the record. The following
example shows how the emp_sal_query procedure from the prior section can be modified to use emp%ROWTYPE to create a record named r_emp
instead of declaring individual variables for the columns in emp .

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);
 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 960

16.3.4 User-Defined Record Types and Record Variables

Records can be declared based upon a table definition using the %ROWTYPE attribute as shown in Using %ROWTYPE in Record Declarations. This section
describes how a new record structure can be defined that is not tied to any particular table definition.

The TYPE IS RECORD statement is used to create the definition of a record type. A record type is a definition of a record comprised of one or more
identifiers and their corresponding data types. A record type cannot, by itself, be used to manipulate data.

The syntax for a TYPE IS RECORD statement is:

TYPE <rec_type> IS RECORD (<fields>)

Where fields is a comma-separated list of one or more field definitions of the following form:

<field_name> <data_type> [NOT NULL][{:= | DEFAULT} <default_value>]

Where:

rec_type

rec_type is an identifier assigned to the record type.

field_name

field_name is the identifier assigned to the field of the record type.

data_type

data_type specifies the data type of field_name .

DEFAULT default_value

The DEFAULT clause assigns a default data value for the corresponding field. The data type of the default expression must match the data type of the
column. If no default is specified, then the default is NULL .

A record variable or simply put, a record, is an instance of a record type. A record is declared from a record type. The properties of the record such as its field
names and types are inherited from the record type.

The following is the syntax for a record declaration.

<record> <rectype>

record is an identifier assigned to the record variable. rectype is the identifier of a previously defined record type. Once declared, a record can then
be used to hold data.

Dot notation is used to make reference to the fields in the record.

<record>.<field>

record is a previously declared record variable and field is the identifier of a field belonging to the record type from which record is defined.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 961

The emp_sal_query is again modified – this time using a user-defined record type and record variable.

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 TYPE emp_typ IS RECORD (
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 deptno emp.deptno%TYPE
);
 r_emp emp_typ;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT ename, job, hiredate, sal, deptno
 INTO r_emp.ename, r_emp.job, r_emp.hiredate, r_emp.sal, r_emp.deptno
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
END;

Note that instead of specifying data type names, the %TYPE attribute can be used for the field data types in the record type definition.

The following is the output from executing this stored procedure.

EXEC emp_sal_query(7698);

Employee # : 7698
Name : BLAKE
Job : MANAGER
Hire Date : 01-MAY-81 00:00:00
Salary : 2850.00
Dept # : 30
Employee's salary is more than the department average of 1566.67

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 962

16.4 Basic Statements

This section begins the discussion of the programming statements that can be used in an SPL program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 963

16.4.1 Assignment

The assignment statement sets a variable or a formal parameter of mode OUT or IN OUT specified on the left side of the assignment, := , to the
evaluated expression specified on the right side of the assignment.

<variable> := <expression>;

variable is an identifier for a previously declared variable, OUT formal parameter, or IN OUT formal parameter.

expression is an expression that produces a single value. The value produced by the expression must have a compatible data type with that of
variable .

The following example shows the typical use of assignment statements in the executable section of the procedure.

CREATE OR REPLACE PROCEDURE dept_salary_rpt (
 p_deptno NUMBER
)
IS
 todays_date DATE;
 rpt_title VARCHAR2(60);
 base_sal INTEGER;
 base_comm_rate NUMBER;
 base_annual NUMBER;
BEGIN
 todays_date := SYSDATE;
 rpt_title := 'Report For Department # ' || p_deptno || ' on '
 || todays_date;
 base_sal := 35525;
 base_comm_rate := 1.33333;
 base_annual := ROUND(base_sal * base_comm_rate, 2);

 DBMS_OUTPUT.PUT_LINE(rpt_title);
 DBMS_OUTPUT.PUT_LINE('Base Annual Salary: ' || base_annual);
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 964

16.4.2 DELETE

The DELETE command (available in the SQL language) can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the SQL DELETE command. Thus, SPL variables and parameters can
be used to supply values to the delete operation.

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
BEGIN
 DELETE FROM emp WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || p_empno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns TRUE if a row is deleted, FALSE otherwise. See Obtaining the Result Status for a discussion of
SQL%FOUND and other similar expressions.

The following shows the deletion of an employee using this procedure.

EXEC emp_delete(9503);

Deleted Employee # : 9503

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

NoteNote

The DELETE command can be included in a FORALL statement. A FORALL statement allows a single DELETE command to delete multiple
rows from values supplied in one or more collections. See Using the FORALL Statement for more information on the FORALL statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 965

16.4.3 INSERT

The INSERT command available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the SQL INSERT command. Thus, SPL variables and parameters can
be used to supply values to the insert operation.

The following is an example of a procedure that performs an insert of a new employee using data passed from a calling program.

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('OTHERS exception on INSERT of employee # '
 || p_empno);
 DBMS_OUTPUT.PUT_LINE('SQLCODE : ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM : ' || SQLERRM);
END;

If an exception occurs all database changes made in the procedure are automatically rolled back. In this example the EXCEPTION section with the WHEN
OTHERS clause catches all exceptions. Two variables are displayed. SQLCODE is a number that identifies the specific exception that occurred.
SQLERRM is a text message explaining the error. See Exception Handling for more information on exception handling.

The following shows the output when this procedure is executed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 966

EXEC emp_insert(9503,'PETERSON','ANALYST',7902,'31-MAR-05',5000,NULL,40);

Added employee...
Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 5000
Dept # : 40

SELECT * FROM emp WHERE empno = 9503;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+--------+------+-------------------+---------+------+-------
 9503 |PETERSON| ANALYST| 7902 | 31-MAR-05 00:00:00| 5000.00 | | 40
(1 row)

NoteNote

The INSERT command can be included in a FORALL statement. A FORALL statement allows a single INSERT command to insert multiple
rows from values supplied in one or more collections. See Using the FORALL Statement for more information on the FORALL statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 967

16.4.4 NULL

The simplest statement is the NULL statement. This statement is an executable statement that does nothing.

NULL;

The following is the simplest, possible valid SPL program.

BEGIN
 NULL;
END;

The NULL statement can act as a placeholder where an executable statement is required such as in a branch of an IF-THEN-ELSE statement.

For example:

CREATE OR REPLACE PROCEDURE divide_it (
 p_numerator IN NUMBER,
 p_denominator IN NUMBER,
 p_result OUT NUMBER
)
IS
BEGIN
 IF p_denominator = 0 THEN
 NULL;
 ELSE
 p_result := p_numerator / p_denominator;
 END IF;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 968

16.4.5 Using the RETURNING INTO Clause

The INSERT, UPDATE , and DELETE commands may be appended by the optional RETURNING INTO clause. This clause allows the SPL program to
capture the newly added, modified, or deleted values from the results of an INSERT, UPDATE , or DELETE command, respectively.

The following is the syntax.

{ <insert> | <update> | <delete> }
 RETURNING { * | <expr_1> [, <expr_2>] ...}
 INTO { <record> | <field_1> [, <field_2>] ...};

insert is a valid INSERT command. update is a valid UPDATE command. delete is a valid DELETE command. If * is specified, then the
values from the row affected by the INSERT, UPDATE , or DELETE command are made available for assignment to the record or fields to the right of
the INTO keyword. (Note that the use of * is an Advanced Server extension and is not compatible with Oracle databases.) expr_1, expr_2... are
expressions evaluated upon the row affected by the INSERT, UPDATE , or DELETE command. The evaluated results are assigned to the record or fields
to the right of the INTO keyword. record is the identifier of a record that must contain fields that match in number and order, and are data type
compatible with the values in the RETURNING clause. field_1, field_2,... are variables that must match in number and order, and are data
type compatible with the set of values in the RETURNING clause.

If the INSERT, UPDATE , or DELETE command returns a result set with more than one row, then an exception is thrown with SQLCODE 01422,
query returned more than one row . If no rows are in the result set, then the variables following the INTO keyword are set to null.

NoteNote

There is a variation of RETURNING INTO using the BULK COLLECT clause that allows a result set of more than one row that is returned into
a collection. See Using the BULK COLLECT Clause for more information on the BULK COLLECT clause.

The following example is a modification of the emp_comp_update procedure introduced in UPDATE, with the addition of the RETURNING INTO
clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 969

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_deptno emp.deptno%TYPE;
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno
 RETURNING
 empno,
 ename,
 job,
 sal,
 comm,
 deptno
 INTO
 v_empno,
 v_ename,
 v_job,
 v_sal,
 v_comm,
 v_deptno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
 DBMS_OUTPUT.PUT_LINE('Department : ' || v_deptno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || v_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || v_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure (assuming employee 9503 created by the emp_insert procedure still exists within the table).

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
Name : PETERSON
Job : ANALYST
Department : 40
New Salary : 6540.00
New Commission : 1200.00

The following example is a modification of the emp_delete procedure, with the addition of the RETURNING INTO clause using record types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 970

CREATE OR REPLACE PROCEDURE emp_delete (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
BEGIN
 DELETE FROM emp WHERE empno = p_empno
 RETURNING
 *
 INTO
 r_emp;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Deleted Employee # : ' || r_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || r_emp.mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || r_emp.comm);
 DBMS_OUTPUT.PUT_LINE('Department : ' || r_emp.deptno);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The following is the output from this procedure.

EXEC emp_delete(9503);

Deleted Employee # : 9503
Name : PETERSON
Job : ANALYST
Manager : 7902
Hire Date : 31-MAR-05 00:00:00
Salary : 6540.00
Commission : 1200.00
Department : 40

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 971

16.4.6 SELECT INTO

The SELECT INTO statement is an SPL variation of the SQL SELECT command, the differences being:

That SELECT INTO is designed to assign the results to variables or records where they can then be used in SPL program statements.
The accessible result set of SELECT INTO is at most one row.

Other than the above, all of the clauses of the SELECT command such as WHERE, ORDER BY, GROUP BY, HAVING , etc. are valid for SELECT
INTO . The following are the two variations of SELECT INTO .

SELECT <select_expressions> INTO <target> FROM ...;

target is a comma-separated list of simple variables. select_expressions and the remainder of the statement are the same as for the SELECT
command. The selected values must exactly match in data type, number, and order the structure of the target or a runtime error occurs.

SELECT * INTO <record> FROM <table> ...;

record is a record variable that has previously been declared.

If the query returns zero rows, null values are assigned to the target(s). If the query returns multiple rows, the first row is assigned to the target(s) and the
rest are discarded. (Note that "the first row" is not well-defined unless you’ve used ORDER BY.)

NoteNote

In either cases, where no row is returned or more than one row is returned, SPL throws an exception.

There is a variation of SELECT INTO using the BULK COLLECT clause that allows a result set of more than one row that is returned
into a collection. See SELECT BULK COLLECT for more information on using the BULK COLLECT clause with the SELECT INTO
statement.

You can use the WHEN NO_DATA_FOUND clause in an EXCEPTION block to determine whether the assignment was successful (that is, at least one row
was returned by the query).

This version of the emp_sal_query procedure uses the variation of SELECT INTO that returns the result set into a record. Also note the addition of
the EXCEPTION block containing the WHEN NO_DATA_FOUND conditional expression.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 972

CREATE OR REPLACE PROCEDURE emp_sal_query (
 p_empno IN emp.empno%TYPE
)
IS
 r_emp emp%ROWTYPE;
 v_avgsal emp.sal%TYPE;
BEGIN
 SELECT * INTO r_emp
 FROM emp WHERE empno = p_empno;
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || r_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || r_emp.job);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || r_emp.hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || r_emp.sal);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || r_emp.deptno);

 SELECT AVG(sal) INTO v_avgsal
 FROM emp WHERE deptno = r_emp.deptno;
 IF r_emp.sal > v_avgsal THEN
 DBMS_OUTPUT.PUT_LINE('Employee''s salary is more than the '
 || 'department average of ' || v_avgsal);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee''s salary does not exceed the '
 || 'department average of ' || v_avgsal);
 END IF;
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
END;

If the query is executed with a non-existent employee number the results appear as follows.

EXEC emp_sal_query(0);

Employee # 0 not found

Another conditional clause of use in the EXCEPTION section with SELECT INTO is the TOO_MANY_ROWS exception. If more than one row is selected
by the SELECT INTO statement an exception is thrown by SPL.

When the following block is executed, the TOO_MANY_ROWS exception is thrown since there are many employees in the specified department.

DECLARE
 v_ename emp.ename%TYPE;
BEGIN
 SELECT ename INTO v_ename FROM emp WHERE deptno = 20 ORDER BY ename;
EXCEPTION
 WHEN TOO_MANY_ROWS THEN
 DBMS_OUTPUT.PUT_LINE('More than one employee found');
 DBMS_OUTPUT.PUT_LINE('First employee returned is ' || v_ename);
END;

More than one employee found
First employee returned is ADAMS

NoteNote

See Exception Handling for more information on exception handling.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 973

16.4.7 UPDATE

The UPDATE command available in the SQL language can also be used in SPL programs.

An expression in the SPL language can be used wherever an expression is allowed in the SQL UPDATE command. Thus, SPL variables and parameters can
be used to supply values to the update operation.

CREATE OR REPLACE PROCEDURE emp_comp_update (
 p_empno IN emp.empno%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE
)
IS
BEGIN
 UPDATE emp SET sal = p_sal, comm = p_comm WHERE empno = p_empno;

 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Updated Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('New Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('New Commission : ' || p_comm);
 ELSE
 DBMS_OUTPUT.PUT_LINE('Employee # ' || p_empno || ' not found');
 END IF;
END;

The SQL%FOUND conditional expression returns TRUE if a row is updated, FALSE otherwise. See Obtaining the Result Status for a discussion of
SQL%FOUND and other similar expressions.

The following shows the update on the employee using this procedure.

EXEC emp_comp_update(9503, 6540, 1200);

Updated Employee # : 9503
New Salary : 6540
New Commission : 1200

SELECT * FROM emp WHERE empno = 9503;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+------+-------------------+--------+-------+-------
 9503 |PETERSON| ANALYST| 7902 | 31-MAR-05 00:00:00|6540.00 |1200.00| 40
(1 row)

NoteNote

The UPDATE command can be included in a FORALL statement. A FORALL statement allows a single UPDATE command to update multiple
rows from values supplied in one or more collections. See Using the FORALL Statement for more information on the FORALL statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 974

16.4.8 Obtaining the Result Status

There are several attributes that can be used to determine the effect of a command. SQL%FOUND is a Boolean that returns TRUE if at least one row was
affected by an INSERT, UPDATE or DELETE command or a SELECT INTO command retrieved one or more rows.

The following anonymous block inserts a row and then displays the fact that the row has been inserted.

BEGIN
 INSERT INTO emp (empno,ename,job,sal,deptno) VALUES (
 9001, 'JONES', 'CLERK', 850.00, 40);
 IF SQL%FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Row has been inserted');
 END IF;
END;

Row has been inserted

SQL%ROWCOUNT provides the number of rows affected by an INSERT, UPDATE, DELETE , or SELECT INTO command. The SQL%ROWCOUNT
value is returned as a BIGINT data type. The following example updates the row that was just inserted and displays SQL%ROWCOUNT .

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9001;
 DBMS_OUTPUT.PUT_LINE('# rows updated: ' || SQL%ROWCOUNT);
END;

rows updated: 1

SQL%NOTFOUND is the opposite of SQL%FOUND . SQL%NOTFOUND returns TRUE if no rows were affected by an INSERT, UPDATE or DELETE
command or a SELECT INTO command retrieved no rows.

BEGIN
 UPDATE emp SET hiredate = '03-JUN-07' WHERE empno = 9000;
 IF SQL%NOTFOUND THEN
 DBMS_OUTPUT.PUT_LINE('No rows were updated');
 END IF;
END;

No rows were updated

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 975

16.5 Control Structures

The programming statements in SPL that make it a full procedural complement to SQL are described in this section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 976

16.5.1 IF Statement

IF statements let you execute commands based on certain conditions. SPL has four forms of IF:

IF ... THEN
IF ... THEN ... ELSE
IF ... THEN ... ELSE IF
IF ... THEN ... ELSIF ... THEN ... ELSE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 977

16.5.1.1 IF-THEN

IF boolean-expression THEN
 <statements>
END IF;

IF-THEN statements are the simplest form of IF . The statements between THEN and END IF will be executed if the condition is TRUE . Otherwise,
they are skipped.

In the following example an IF-THEN statement is used to test and display employees who have a commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO COMM
----- -------
7499 $300.00
7521 $500.00
7654 $1400.00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 978

16.5.1.2 IF-THEN-ELSE

IF boolean-expression THEN
 <statements>
ELSE
 <statements>
END IF;

IF-THEN-ELSE statements add to IF-THEN by letting you specify an alternative set of statements that should be executed if the condition evaluates
to false.

The previous example is modified so an IF-THEN-ELSE statement is used to display the text Non-commission if the employee does not get a
commission.

DECLARE
 v_empno emp.empno%TYPE;
 v_comm emp.comm%TYPE;
 CURSOR emp_cursor IS SELECT empno, comm FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO COMM');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_comm,'$99999.99'));
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || 'Non-commission');
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EMPNO COMM
----- -------
7369 Non-commission
7499 $ 300.00
7521 $ 500.00
7566 Non-commission
7654 $ 1400.00
7698 Non-commission
7782 Non-commission
7788 Non-commission
7839 Non-commission
7844 Non-commission
7876 Non-commission
7900 Non-commission
7902 Non-commission
7934 Non-commission

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 979

16.5.1.3 IF-THEN-ELSE IF

IF statements can be nested so that alternative IF statements can be invoked once it is determined whether or not the conditional of an outer IF
statement is TRUE or FALSE .

In the following example the outer IF-THEN-ELSE statement tests whether or not an employee has a commission. The inner IF-THEN-ELSE
statements then test whether the employee’s total compensation exceeds or is less than the company average.

DECLARE
 v_empno emp.empno%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_avg NUMBER(7,2);
 CURSOR emp_cursor IS SELECT empno, sal, comm FROM emp;
BEGIN
--
-- Calculate the average yearly compensation in the company
--
 SELECT AVG((sal + NVL(comm,0)) * 24) INTO v_avg FROM emp;
 DBMS_OUTPUT.PUT_LINE('Average Yearly Compensation: ' ||
 TO_CHAR(v_avg,'$999,999.99'));
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO YEARLY COMP');
 DBMS_OUTPUT.PUT_LINE('----- -----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_sal, v_comm;
 EXIT WHEN emp_cursor%NOTFOUND;
--
-- Test whether or not the employee gets a commission
--
 IF v_comm IS NOT NULL AND v_comm > 0 THEN
--
-- Test if the employee's compensation with commission exceeds the average
--
 IF (v_sal + v_comm) * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR((v_sal + v_comm) * 24,'$999,999.99') || ' Below Average');
 END IF;
 ELSE
--
-- Test if the employee's compensation without commission exceeds the
average
--
 IF v_sal * 24 > v_avg THEN
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Exceeds Average');
 ELSE
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' ||
 TO_CHAR(v_sal * 24,'$999,999.99') || ' Below Average');
 END IF;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 980

NoteNote

The logic in this program can be simplified considerably by calculating the employee’s yearly compensation using the NVL function within the
SELECT command of the cursor declaration, however, the purpose of this example is to demonstrate how IF statements can be used.

The following is the output from this program.

Average Yearly Compensation: $ 53,528.57
EMPNO YEARLY COMP
----- -----------
7369 $ 19,200.00 Below Average
7499 $ 45,600.00 Below Average
7521 $ 42,000.00 Below Average
7566 $ 71,400.00 Exceeds Average
7654 $ 63,600.00 Exceeds Average
7698 $ 68,400.00 Exceeds Average
7782 $ 58,800.00 Exceeds Average
7788 $ 72,000.00 Exceeds Average
7839 $ 120,000.00 Exceeds Average
7844 $ 36,000.00 Below Average
7876 $ 26,400.00 Below Average
7900 $ 22,800.00 Below Average
7902 $ 72,000.00 Exceeds Average
7934 $ 31,200.00 Below Average

When you use this form, you are actually nesting an IF statement inside the ELSE part of an outer IF statement. Thus you need one END IF
statement for each nested IF and one for the parent IF-ELSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 981

16.5.1.4 IF-THEN-ELSIF-ELSE

IF boolean-expression THEN
 <statements>
[ELSIF boolean-expression THEN
 <statements>
[ELSIF boolean-expression THEN
 <statements>] ...]
[ELSE
 <statements>]
END IF;

IF-THEN-ELSIF-ELSE provides a method of checking many alternatives in one statement. Formally it is equivalent to nested IF-THEN-ELSE-IF-
THEN commands, but only one END IF is needed.

The following example uses an IF-THEN-ELSIF-ELSE statement to count the number of employees by compensation ranges of $25,000.

DECLARE
 v_empno emp.empno%TYPE;
 v_comp NUMBER(8,2);
 v_lt_25K SMALLINT := 0;
 v_25K_50K SMALLINT := 0;
 v_50K_75K SMALLINT := 0;
 v_75K_100K SMALLINT := 0;
 v_ge_100K SMALLINT := 0;
 CURSOR emp_cursor IS SELECT empno, (sal + NVL(comm,0)) * 24 FROM emp;
BEGIN
 OPEN emp_cursor;
 LOOP
 FETCH emp_cursor INTO v_empno, v_comp;
 EXIT WHEN emp_cursor%NOTFOUND;
 IF v_comp < 25000 THEN
 v_lt_25K := v_lt_25K + 1;
 ELSIF v_comp < 50000 THEN
 v_25K_50K := v_25K_50K + 1;
 ELSIF v_comp < 75000 THEN
 v_50K_75K := v_50K_75K + 1;
 ELSIF v_comp < 100000 THEN
 v_75K_100K := v_75K_100K + 1;
 ELSE
 v_ge_100K := v_ge_100K + 1;
 END IF;
 END LOOP;
 CLOSE emp_cursor;
 DBMS_OUTPUT.PUT_LINE('Number of employees by yearly compensation');
 DBMS_OUTPUT.PUT_LINE('Less than 25,000 : ' || v_lt_25K);
 DBMS_OUTPUT.PUT_LINE('25,000 - 49,9999 : ' || v_25K_50K);
 DBMS_OUTPUT.PUT_LINE('50,000 - 74,9999 : ' || v_50K_75K);
 DBMS_OUTPUT.PUT_LINE('75,000 - 99,9999 : ' || v_75K_100K);
 DBMS_OUTPUT.PUT_LINE('100,000 and over : ' || v_ge_100K);
END;

The following is the output from this program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 982

Number of employees by yearly compensation
Less than 25,000 : 2
25,000 - 49,9999 : 5
50,000 - 74,9999 : 6
75,000 - 99,9999 : 0
100,000 and over : 1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 983

16.5.2 RETURN Statement

The RETURN statement terminates the current function, procedure or anonymous block and returns control to the caller.

There are two forms of the RETURN Statement. The first form of the RETURN statement is used to terminate a procedure or function that returns void .
The syntax of the first form is:

RETURN;

The second form of RETURN returns a value to the caller. The syntax of the second form of the RETURN statement is:

RETURN <expression>;

expression must evaluate to the same data type as the return type of the function.

The following example uses the RETURN statement returns a value to the caller:

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END emp_comp;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 984

16.5.3 GOTO Statement

The GOTO statement causes the point of execution to jump to the statement with the specified label. The syntax of a GOTO statement is:

GOTO <label>

label is a name assigned to an executable statement. label must be unique within the scope of the function, procedure or anonymous block.

To label a statement, use the syntax:

<<label>> <statement>

statement is the point of execution that the program jumps to.

You can label assignment statements, any SQL statement (like INSERT, UPDATE, CREATE , etc.) and selected procedural language statements. The
procedural language statements that can be labeled are:

IF
EXIT
RETURN
RAISE
EXECUTE
PERFORM
GET DIAGNOSTICS
OPEN
FETCH
MOVE
CLOSE
NULL
COMMIT
ROLLBACK
GOTO
CASE
LOOP
WHILE
FOR

Please note that exit is considered a keyword, and cannot be used as the name of a label.

GOTO statements cannot transfer control into a conditional block or sub-block, but can transfer control from a conditional block or sub-block.

The following example verifies that an employee record contains a name, job description, and employee hire date; if any piece of information is missing, a
GOTO statement transfers the point of execution to a statement that prints a message that the employee is not valid.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 985

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, hiredate
 INTO v_ename, v_job, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_job IS NULL THEN
 GOTO invalid_emp;
 END IF;
 IF v_hiredate IS NULL THEN
 GOTO invalid_emp;
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors.');
 RETURN;
 <<invalid_emp>> DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' is not a valid employee.');
END;

GOTO statements have the following restrictions:

A GOTO statement cannot jump to a declaration.
A GOTO statement cannot transfer control to another function or procedure.
A label should not be placed at the end of a block, function or procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 986

16.5.4 CASE Expression

The CASE expression returns a value that is substituted where the CASE expression is located within an expression.

There are two formats of the CASE expression - one that is called a searched CASE and the other that uses a selector.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 987

16.5.4.1 Selector CASE Expression

The selector CASE expression attempts to match an expression called the selector to the expression specified in one or more WHEN clauses. result is
an expression that is type-compatible in the context where the CASE expression is used. If a match is found, the value given in the corresponding THEN
clause is returned by the CASE expression. If there are no matches, the value following ELSE is returned. If ELSE is omitted, the CASE expression
returns null.

CASE <selector-expression>
 WHEN <match-expression> THEN
 <result>
[WHEN <match-expression> THEN
 <result>
[WHEN <match-expression> THEN
 <result>] ...]
[ELSE
 <result>]
END;

match-expression is evaluated in the order in which it appears within the CASE expression. result is an expression that is type-compatible in the
context where the CASE expression is used. When the first match-expression is encountered that equals selector-expression , result in
the corresponding THEN clause is returned as the value of the CASE expression. If none of match-expression equals selector-expression
then result following ELSE is returned. If no ELSE is specified, the CASE expression returns null.

The following example uses a selector CASE expression to assign the department name to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE v_deptno
 WHEN 10 THEN 'Accounting'
 WHEN 20 THEN 'Research'
 WHEN 30 THEN 'Sales'
 WHEN 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 988

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 989

16.5.4.2 Searched CASE Expression

A searched CASE expression uses one or more Boolean expressions to determine the resulting value to return.

CASE WHEN <boolean-expression> THEN
 <result>
[WHEN <boolean-expression> THEN
 <result>
 [WHEN <boolean-expression> THEN
 <result>] ...]
[ELSE
 <result>]
END;

boolean-expression is evaluated in the order in which it appears within the CASE expression. result is an expression that is type-compatible in
the context where the CASE expression is used. When the first boolean-expression is encountered that evaluates to TRUE , result in the
corresponding THEN clause is returned as the value of the CASE expression. If none of boolean-expression evaluates to true then result
following ELSE is returned. If no ELSE is specified, the CASE expression returns null.

The following example uses a searched CASE expression to assign the department name to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 v_dname :=
 CASE
 WHEN v_deptno = 10 THEN 'Accounting'
 WHEN v_deptno = 20 THEN 'Research'
 WHEN v_deptno = 30 THEN 'Sales'
 WHEN v_deptno = 40 THEN 'Operations'
 ELSE 'unknown'
 END;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || v_dname);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 990

EMPNO ENAME DEPTNO DNAME
----- ------- ------ ----------
7369 SMITH 20 Research
7499 ALLEN 30 Sales
7521 WARD 30 Sales
7566 JONES 20 Research
7654 MARTIN 30 Sales
7698 BLAKE 30 Sales
7782 CLARK 10 Accounting
7788 SCOTT 20 Research
7839 KING 10 Accounting
7844 TURNER 30 Sales
7876 ADAMS 20 Research
7900 JAMES 30 Sales
7902 FORD 20 Research
7934 MILLER 10 Accounting

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 991

16.5.5 CASE Statement

The CASE statement executes a set of one or more statements when a specified search condition is TRUE . The CASE statement is a stand-alone
statement in itself while the previously discussed CASE expression must appear as part of an expression.

There are two formats of the CASE statement - one that is called a searched CASE and the other that uses a selector.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 992

16.5.5.1 Selector CASE Statement

The selector CASE statement attempts to match an expression called the selector to the expression specified in one or more WHEN clauses. When a
match is found one or more corresponding statements are executed.

CASE <selector-expression>
WHEN <match-expression> THEN
 <statements>
[WHEN <match-expression> THEN
 <statements>
[WHEN <match-expression> THEN
 <statements>] ...]
[ELSE
 <statements>]
END CASE;

selector-expression returns a value type-compatible with each match-expression . match-expression is evaluated in the order in which
it appears within the CASE statement. statements are one or more SPL statements, each terminated by a semi-colon. When the value of selector-
expression equals the first match-expression , the statement(s) in the corresponding THEN clause are executed and control continues following
the END CASE keywords. If there are no matches, the statement(s) following ELSE are executed. If there are no matches and there is no ELSE clause,
an exception is thrown.

The following example uses a selector CASE statement to assign a department name and location to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE v_deptno
 WHEN 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 993

The following is the output from this program.

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 994

16.5.5.2 Searched CASE Statement

A searched CASE statement uses one or more Boolean expressions to determine the resulting set of statements to execute.

CASE WHEN <boolean-expression> THEN
 <statements>
[WHEN <boolean-expression> THEN
 <statements>
[WHEN <boolean-expression> THEN
 <statements>] ...]
[ELSE
 <statements>]
END CASE;

boolean-expression is evaluated in the order in which it appears within the CASE statement. When the first boolean-expression is
encountered that evaluates to TRUE , the statement(s) in the corresponding THEN clause are executed and control continues following the END CASE
keywords. If none of boolean-expression evaluates to TRUE , the statement(s) following ELSE are executed. If none of boolean-expression
evaluates to TRUE and there is no ELSE clause, an exception is thrown.

The following example uses a searched CASE statement to assign a department name and location to a variable based upon the department number.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 CURSOR emp_cursor IS SELECT empno, ename, deptno FROM emp;
BEGIN
 OPEN emp_cursor;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME DEPTNO DNAME '
 || ' LOC');
 DBMS_OUTPUT.PUT_LINE('----- ------- ------ ----------'
 || ' ---------');
 LOOP
 FETCH emp_cursor INTO v_empno, v_ename, v_deptno;
 EXIT WHEN emp_cursor%NOTFOUND;
 CASE
 WHEN v_deptno = 10 THEN v_dname := 'Accounting';
 v_loc := 'New York';
 WHEN v_deptno = 20 THEN v_dname := 'Research';
 v_loc := 'Dallas';
 WHEN v_deptno = 30 THEN v_dname := 'Sales';
 v_loc := 'Chicago';
 WHEN v_deptno = 40 THEN v_dname := 'Operations';
 v_loc := 'Boston';
 ELSE v_dname := 'unknown';
 v_loc := '';
 END CASE;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || RPAD(v_ename, 10) ||
 ' ' || v_deptno || ' ' || RPAD(v_dname, 14) || ' ' ||
 v_loc);
 END LOOP;
 CLOSE emp_cursor;
END;

The following is the output from this program.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 995

EMPNO ENAME DEPTNO DNAME LOC
----- ------- ------ ---------- ---------
7369 SMITH 20 Research Dallas
7499 ALLEN 30 Sales Chicago
7521 WARD 30 Sales Chicago
7566 JONES 20 Research Dallas
7654 MARTIN 30 Sales Chicago
7698 BLAKE 30 Sales Chicago
7782 CLARK 10 Accounting New York
7788 SCOTT 20 Research Dallas
7839 KING 10 Accounting New York
7844 TURNER 30 Sales Chicago
7876 ADAMS 20 Research Dallas
7900 JAMES 30 Sales Chicago
7902 FORD 20 Research Dallas
7934 MILLER 10 Accounting New York

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 996

16.5.6 Loops

With the LOOP, EXIT, CONTINUE, WHILE , and FOR statements, you can arrange for your SPL program to repeat a series of commands.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 997

16.5.6.1 LOOP

LOOP
 <statements>
END LOOP;

LOOP defines an unconditional loop that is repeated indefinitely until terminated by an EXIT or RETURN statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 998

16.5.6.2 EXIT

EXIT [WHEN <expression>];

The innermost loop is terminated and the statement following END LOOP is executed next.

If WHEN is present, loop exit occurs only if the specified condition is TRUE , otherwise control passes to the statement after EXIT .

EXIT can be used to cause early exit from all types of loops; it is not limited to use with unconditional loops.

The following is a simple example of a loop that iterates ten times and then uses the EXIT statement to terminate.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 LOOP
 EXIT WHEN v_counter > 10;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The following is the output from this program.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 999

16.5.6.3 CONTINUE

The CONTINUE statement provides a way to proceed with the next iteration of a loop while skipping intervening statements.

When the CONTINUE statement is encountered, the next iteration of the innermost loop is begun, skipping all statements following the CONTINUE
statement until the end of the loop. That is, control is passed back to the loop control expression, if any, and the body of the loop is re-evaluated.

If the WHEN clause is used, then the next iteration of the loop is begun only if the specified expression in the WHEN clause evaluates to TRUE .
Otherwise, control is passed to the next statement following the CONTINUE statement.

The CONTINUE statement may not be used outside of a loop.

The following is a variation of the previous example that uses the CONTINUE statement to skip the display of the odd numbers.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 0;
 LOOP
 v_counter := v_counter + 1;
 EXIT WHEN v_counter > 10;
 CONTINUE WHEN MOD(v_counter,2) = 1;
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 END LOOP;
END;

The following is the output from above program.

Iteration # 2
Iteration # 4
Iteration # 6
Iteration # 8
Iteration # 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1000

16.5.6.4 WHILE

WHILE <expression> LOOP
 <statements>
END LOOP;

The WHILE statement repeats a sequence of statements so long as the condition expression evaluates to TRUE . The condition is checked just before
each entry to the loop body.

The following example contains the same logic as in the previous example except the WHILE statement is used to take the place of the EXIT statement
to determine when to exit the loop.

NoteNote

The conditional expression used to determine when to exit the loop must be altered. The EXIT statement terminates the loop when its
conditional expression is true. The WHILE statement terminates (or never begins the loop) when its conditional expression is false.

DECLARE
 v_counter NUMBER(2);
BEGIN
 v_counter := 1;
 WHILE v_counter <= 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || v_counter);
 v_counter := v_counter + 1;
 END LOOP;
END;

The same result is generated by this example as in the prior example.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1001

16.5.6.5 FOR (integer variant)

FOR <name> IN [REVERSE] <expression .. expression> LOOP
 <statements>
END LOOP;

This form of FOR creates a loop that iterates over a range of integer values. The variable name is automatically defined as type INTEGER and exists
only inside the loop. The two expressions giving the loop range are evaluated once when entering the loop. The iteration step is +1 and name begins with
the value of expression to the left of .. and terminates once name exceeds the value of expression to the right of ... Thus the two expressions take
on the following roles: start-value.. end-value.

The optional REVERSE clause specifies that the loop should iterate in reverse order. The first time through the loop, name is set to the value of the right-
most expression ; the loop terminates when the name is less than the left-most expression .

The following example simplifies the WHILE loop example even further by using a FOR loop that iterates from 1 to 10.

BEGIN
 FOR i IN 1 .. 10 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

Here is the output using the FOR statement.

Iteration # 1
Iteration # 2
Iteration # 3
Iteration # 4
Iteration # 5
Iteration # 6
Iteration # 7
Iteration # 8
Iteration # 9
Iteration # 10

If the start value is greater than the end value the loop body is not executed at all. No error is raised as shown by the following example.

BEGIN
 FOR i IN 10 .. 1 LOOP
 DBMS_OUTPUT.PUT_LINE('Iteration # ' || i);
 END LOOP;
END;

There is no output from this example as the loop body is never executed.

NoteNote

SPL also supports CURSOR FOR loops (see Cursor FOR Loop).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1002

16.5.7 Exception Handling

By default, any error occurring in an SPL program aborts execution of the program. You can trap errors and recover from them by using a BEGIN block
with an EXCEPTION section. The syntax is an extension of the normal syntax for a BEGIN block:

[DECLARE
 <declarations>]
 BEGIN
 <statements>
 EXCEPTION
 WHEN <condition> [OR <condition>]... THEN
 <handler_statements>
 [WHEN <condition> [OR <condition>]... THEN
 <handler_statements>]...
END;

If no error occurs, this form of block simply executes all the statements , and then control passes to the next statement after END . If an error occurs
within the statements , further processing of the statements is abandoned, and control passes to the EXCEPTION list. The list is searched for the
first condition matching the error that occurred. If a match is found, the corresponding handler_statements are executed, and then control
passes to the next statement after END . If no match is found, the error propagates out as though the EXCEPTION clause were not there at all. The error
can be caught by an enclosing block with EXCEPTION ; if there is no enclosing block, it aborts processing of the subprogram.

The special condition name OTHERS matches every error type. Condition names are not case-sensitive.

If a new error occurs within the selected handler_statements , it cannot be caught by this EXCEPTION clause, but is propagated out. A surrounding
EXCEPTION clause could catch it.

The following table lists the condition names that may be used:

Condition Name Description

CASE_NOT_FOUND The application has encountered a situation where none of the cases in CASE statement evaluates to TRUE and there
is no ELSE condition.

COLLECTION_IS_NULL The application has attempted to invoke a collection method on a null collection such as an uninitialized nested table.

CURSOR_ALREADY_OPEN The application has attempted to open a cursor that is already open.

DUP_VAL_ON_INDEX The application has attempted to store a duplicate value that currently exists within a constrained column.

INVALID_CURSOR The application has attempted to access an unopened cursor.

INVALID_NUMBER The application has encountered a data exception (equivalent to SQLSTATE class code 22). INVALID_NUMBER is an
alias for VALUE_ERROR .

NO_DATA_FOUND No rows satisfy the selection criteria.

OTHERS The application has encountered an exception that hasn’t been caught by a prior condition in the exception section.

SUBSCRIPT_BEYOND_CO
UNT

The application has attempted to reference a subscript of a nested table or varray beyond its initialized or extended size.

SUBSCRIPT_OUTSIDE_L
IMIT

The application has attempted to reference a subscript or extend a varray beyond its maximum size limit.

TOO_MANY_ROWS The application has encountered more than one row that satisfies the selection criteria (where only one row is allowed
to be returned).

VALUE_ERROR The application has encountered a data exception (equivalent to SQLSTATE class code 22). VALUE_ERROR is an alias
for INVALID_NUMBER .

ZERO_DIVIDE The application has tried to divide by zero.

User-defined
Exception

See User-defined Exceptions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1003

NoteNote

Condition names INVALID_NUMBER and VALUE_ERROR are not compatible with Oracle databases for which these condition names are for
exceptions resulting only from a failed conversion of a string to a numeric literal. In addition, for Oracle databases, an INVALID_NUMBER
exception is applicable only to SQL statements while a VALUE_ERROR exception is applicable only to procedural statements.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1004

16.5.8 User-defined Exceptions

Any number of errors (referred to in PL/SQL as exceptions) can occur during program execution. When an exception is thrown, normal execution of the
program stops, and control of the program transfers to the error-handling portion of the program. An exception may be a pre-defined error that is generated
by the server, or may be a logical error that raises a user-defined exception.

User-defined exceptions are never raised by the server; they are raised explicitly by a RAISE statement. A user-defined exception is raised when a
developer-defined logical rule is broken; a common example of a logical rule being broken occurs when a check is presented against an account with
insufficient funds. An attempt to cash a check against an account with insufficient funds will provoke a user-defined exception.

You can define exceptions in functions, procedures, packages or anonymous blocks. While you cannot declare the same exception twice in the same block,
you can declare the same exception in two different blocks.

Before implementing a user-defined exception, you must declare the exception in the declaration section of a function, procedure, package or anonymous
block. You can then raise the exception using the RAISE statement:

DECLARE
 <exception_name> EXCEPTION;

BEGIN
 ...
 RAISE <exception_name>;
 ...
END;

exception_name is the name of the exception.

Unhandled exceptions propagate back through the call stack. If the exception remains unhandled, the exception is eventually reported to the client
application.

User-defined exceptions declared in a block are considered to be local to that block, and global to any nested blocks within the block. To reference an
exception that resides in an outer block, you must assign a label to the outer block; then, preface the name of the exception with the block name
block_name.exception_name .

Conversely, outer blocks cannot reference exceptions declared in nested blocks.

The scope of a declaration is limited to the block in which it is declared unless it is created in a package, and when referenced, qualified by the package
name. For example, to raise an exception named out_of_stock that resides in a package named inventory_control a program must raise an
error named inventory_control.out_of_stock .

The following example demonstrates declaring a user-defined exception in a package. The user-defined exception does not require a package-qualifier
when it is raised in check_balance , since it resides in the same package as the exception:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1005

The following procedure (purchase) calls the check_balance procedure. If p_amount is greater than p_balance, check_balance raises
an exception; purchase catches the ar.overdrawn exception. purchase must refer to the exception with a package-qualified name
(ar.overdrawn) because purchase is not defined within the ar package.

CREATE PROCEDURE purchase(customerID INT, amount NUMERIC)
AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);
 END;

When ar.check_balance raises an exception, execution jumps to the exception handler defined in purchase:

EXCEPTION
 WHEN ar.overdrawn THEN
 raise_credit_limit(customerid, amount*1.5);

The exception handler raises the customer’s credit limit and ends. When the exception handler ends, execution resumes with the statement that follows
ar.check_balance .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1006

16.5.9 PRAGMA EXCEPTION_INIT

PRAGMA EXCEPTION_INIT associates a user-defined error code with an exception. A PRAGMA EXCEPTION_INIT declaration may be included in
any block, sub-block or package. You can only assign an error code to an exception (using PRAGMA EXCEPTION_INIT) after declaring the exception.
The format of a PRAGMA EXCEPTION_INIT declaration is:

PRAGMA EXCEPTION_INIT(<exception_name>,
 {<exception_number> | <exception_code>})

Where:

exception_name is the name of the associated exception.

exception_number is a user-defined error code associated with the pragma. If you specify an unmapped exception_number , the server will return
a warning.

exception_code is the name of a pre-defined exception. For a complete list of valid exceptions, see the Postgres core documentation available at:

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

The previous section (User-defined Exceptions) included an example that demonstrates declaring a user-defined exception in a package. The following
example uses the same basic structure, but adds a PRAGMA EXCEPTION_INIT declaration:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (overdrawn, -20100);
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_balance NUMBER, p_amount NUMBER)
 IS
 BEGIN
 IF (p_amount > p_balance) THEN
 RAISE overdrawn;
 END IF;
 END;

The following procedure (purchase) calls the check_balance procedure. If p_amount is greater than p_balance, check_balance raises
an exception; purchase catches the ar.overdrawn exception.

CREATE PROCEDURE purchase(customerID int, amount NUMERIC)
AS
 BEGIN
 ar.check_ balance(getcustomerbalance(customerid), amount);
 record_purchase(customerid, amount);
 EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.');
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);
END;

When ar.check_balance raises an exception, execution jumps to the exception handler defined in purchase .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1007

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

EXCEPTION
 WHEN ar.overdrawn THEN
 DBMS_OUTPUT.PUT_LINE ('This account is overdrawn.');
 DBMS_OUTPUT.PUT_LINE ('SQLCode :'||SQLCODE||' '||SQLERRM);

The exception handler returns an error message, followed by SQLCODE information:

This account is overdrawn.
SQLCODE: -20100 User-Defined Exception

The following example demonstrates using a pre-defined exception. The code creates a more meaningful name for the no_data_found exception ; if
the given customer does not exist, the code catches the exception, calls DBMS_OUTPUT.PUT_LINE to report the error, and then re-raises the original
exception:

CREATE OR REPLACE PACKAGE ar AS
 overdrawn EXCEPTION;
 PRAGMA EXCEPTION_INIT (unknown_customer, no_data_found);
 PROCEDURE check_balance(p_customer_id NUMBER);
END;

CREATE OR REPLACE PACKAGE BODY ar AS
 PROCEDURE check_balance(p_customer_id NUMBER)
 IS
 DECLARE
 v_balance NUMBER;
 BEGIN
 SELECT balance INTO v_balance FROM customer
 WHERE cust_id = p_customer_id;
 EXCEPTION WHEN unknown_customer THEN
 DBMS_OUTPUT.PUT_LINE('invalid customer id');
 RAISE;
 END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1008

16.5.10 RAISE_APPLICATION_ERROR

The procedure, RAISE_APPLICATION_ERROR , allows a developer to intentionally abort processing within an SPL program from which it is called by
causing an exception. The exception is handled in the same manner as described in Exception Handling. In addition, the RAISE_APPLICATION_ERROR
procedure makes a user-defined code and error message available to the program which can then be used to identify the exception.

RAISE_APPLICATION_ERROR(<error_number>, <message>);

Where:

error_number is an integer value or expression that is returned in a variable named SQLCODE when the procedure is executed. error_number
must be a value between ‑20000 and -20999 .

message is a string literal or expression that is returned in a variable named SQLERRM .

For additional information on the SQLCODE and SQLERRM variables, see Errors and Messages.

The following example uses the RAISE_APPLICATION_ERROR procedure to display a different code and message depending upon the information
missing from an employee.

CREATE OR REPLACE PROCEDURE verify_emp (
 p_empno NUMBER
)
IS
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
 v_mgr emp.mgr%TYPE;
 v_hiredate emp.hiredate%TYPE;
BEGIN
 SELECT ename, job, mgr, hiredate
 INTO v_ename, v_job, v_mgr, v_hiredate FROM emp
 WHERE empno = p_empno;
 IF v_ename IS NULL THEN
 RAISE_APPLICATION_ERROR(-20010, 'No name for ' || p_empno);
 END IF;
 IF v_job IS NULL THEN
 RAISE_APPLICATION_ERROR(-20020, 'No job for' || p_empno);
 END IF;
 IF v_mgr IS NULL THEN
 RAISE_APPLICATION_ERROR(-20030, 'No manager for ' || p_empno);
 END IF;
 IF v_hiredate IS NULL THEN
 RAISE_APPLICATION_ERROR(-20040, 'No hire date for ' || p_empno);
 END IF;
 DBMS_OUTPUT.PUT_LINE('Employee ' || p_empno ||
 ' validated without errors');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
END;

The following shows the output in a case where the manager number is missing from an employee record.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1009

EXEC verify_emp(7839);

SQLCODE: -20030
SQLERRM: EDB-20030: No manager for 7839

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1010

16.6 Transaction Control

There may be circumstances where it is desired that all updates to a database are to occur successfully, or none are to occur at all if any error occurs. A set
of database updates that are to all occur successfully as a single unit, or are not to occur at all, is said to be a transaction.

A common example in banking is a funds transfer between two accounts. The two parts of the transaction are the withdrawal of funds from one account,
and the deposit of the funds in another account. Both parts of this transaction must occur otherwise the bank’s books will be out of balance. The deposit
and withdrawal are one transaction.

An SPL application can be created that uses a style of transaction control compatible with Oracle databases if the following conditions are met:

The edb_stmt_level_tx parameter must be set to TRUE . This prevents the action of unconditionally rolling back all database updates within
the BEGIN/END block if any exception occurs.
The application must not be running in autocommit mode. If autocommit mode is on, each successful database update is immediately committed
and cannot be undone. The manner in which autocommit mode is turned on or off is application dependent.

A transaction begins when the first SQL command is encountered in the SPL program. All subsequent SQL commands are included as part of that
transaction. The transaction ends when one of the following occurs:

An unhandled exception occurs in which case the effects of all database updates made during the transaction are rolled back and the transaction is
aborted.
A COMMIT command is encountered in which case the effect of all database updates made during the transaction become permanent.
A ROLLBACK command is encountered in which case the effects of all database updates made during the transaction are rolled back and the
transaction is aborted. If a new SQL command is encountered, a new transaction begins.
Control returns to the calling application (such as Java, PSQL, etc.) in which case the action of the application determines whether the transaction is
committed or rolled back unless the transaction is within a block in which PRAGMA AUTONOMOUS_TRANSACTION has been declared in which
case the commitment or rollback of the transaction occurs independently of the calling program.

NoteNote

Unlike Oracle, DDL commands such as CREATE TABLE do not implicitly occur within their own transaction. Therefore, DDL commands do not
automatically cause an immediate database commit as in Oracle, and DDL commands may be rolled back just like DML commands.

A transaction may span one or more BEGIN/END blocks, or a single BEGIN/END block may contain one or more transactions.

The following sections discuss the COMMIT and ROLLBACK commands in more detail.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1011

16.6.1 COMMIT

The COMMIT command makes all database updates made during the current transaction permanent, and ends the current transaction.

COMMIT [WORK];

The COMMIT command may be used within anonymous blocks, stored procedures, or functions. Within an SPL program, it may appear in the executable
section and/or the exception section.

In the following example, the third INSERT command in the anonymous block results in an error. The effect of the first two INSERT commands are
retained as shown by the first SELECT command. Even after issuing a ROLLBACK command, the two rows remain in the table as shown by the second
SELECT command verifying that they were indeed committed.

NoteNote

The edb_stmt_level_tx configuration parameter shown in the example below can be set for the entire database using the ALTER
DATABASE command, or it can be set for the entire database server by changing it in the postgresql.conf file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1012

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 COMMIT;
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

ROLLBACK;

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | FINANCE | DALLAS
 60 | MARKETING | CHICAGO
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1013

16.6.2 ROLLBACK

The ROLLBACK command undoes all database updates made during the current transaction, and ends the current transaction.

ROLLBACK [WORK];

The ROLLBACK command may be used within anonymous blocks, stored procedures, or functions. Within an SPL program, it may appear in the
executable section and/or the exception section.

In the following example, the exception section contains a ROLLBACK command. Even though the first two INSERT commands are executed
successfully, the third results in an exception that results in the rollback of all the INSERT commands in the anonymous block.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

BEGIN
 INSERT INTO dept VALUES (50, 'FINANCE', 'DALLAS');
 INSERT INTO dept VALUES (60, 'MARKETING', 'CHICAGO');
 INSERT INTO dept VALUES (70, 'HUMAN RESOURCES', 'CHICAGO');
EXCEPTION
 WHEN OTHERS THEN
 ROLLBACK;
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('SQLCODE: ' || SQLCODE);
END;

SQLERRM: value too long for type character varying(14)
SQLCODE: 22001

SELECT * FROM dept;

deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

The following is a more complex example using both COMMIT and ROLLBACK . First, the following stored procedure is created which inserts a new
employee.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1014

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

CREATE OR REPLACE PROCEDURE emp_insert (
 p_empno IN emp.empno%TYPE,
 p_ename IN emp.ename%TYPE,
 p_job IN emp.job%TYPE,
 p_mgr IN emp.mgr%TYPE,
 p_hiredate IN emp.hiredate%TYPE,
 p_sal IN emp.sal%TYPE,
 p_comm IN emp.comm%TYPE,
 p_deptno IN emp.deptno%TYPE
)
IS
BEGIN
 INSERT INTO emp VALUES (
 p_empno,
 p_ename,
 p_job,
 p_mgr,
 p_hiredate,
 p_sal,
 p_comm,
 p_deptno);

 DBMS_OUTPUT.PUT_LINE('Added employee...');
 DBMS_OUTPUT.PUT_LINE('Employee # : ' || p_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || p_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || p_job);
 DBMS_OUTPUT.PUT_LINE('Manager : ' || p_mgr);
 DBMS_OUTPUT.PUT_LINE('Hire Date : ' || p_hiredate);
 DBMS_OUTPUT.PUT_LINE('Salary : ' || p_sal);
 DBMS_OUTPUT.PUT_LINE('Commission : ' || p_comm);
 DBMS_OUTPUT.PUT_LINE('Dept # : ' || p_deptno);
 DBMS_OUTPUT.PUT_LINE('----------------------');
END;

Note that this procedure has no exception section so any error that may occur is propagated up to the calling program.

The following anonymous block is run. Note the use of the COMMIT command after all calls to the emp_insert procedure and the ROLLBACK
command in the exception section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1015

BEGIN
 emp_insert(9601,'FARRELL','ANALYST',7902,'03-MAR-08',5000,NULL,40);
 emp_insert(9602,'TYLER','ANALYST',7900,'25-JAN-08',4800,NULL,40);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9601
Name : FARRELL
Job : ANALYST
Manager : 7902
Hire Date : 03-MAR-08 00:00:00
Salary : 5000
Commission :
Dept # : 40

Added employee...
Employee # : 9602
Name : TYLER
Job : ANALYST
Manager : 7900
Hire Date : 25-JAN-08 00:00:00
Salary : 4800
Commission :
Dept # : 40

The following SELECT command shows that employees Farrell and Tyler were successfully added.

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+-----+--------------------+---------+------+--------
 9601| FARRELL| ANALYST|7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602| TYLER | ANALYST|7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

Now, execute the following anonymous block:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1016

BEGIN
 emp_insert(9603,'HARRISON','SALESMAN',7902,'13-DEC-07',5000,3000,20);
 emp_insert(9604,'JARVIS','SALESMAN',7902,'05-MAY-08',4800,4100,11);
 COMMIT;
EXCEPTION
 WHEN OTHERS THEN
 DBMS_OUTPUT.PUT_LINE('SQLERRM: ' || SQLERRM);
 DBMS_OUTPUT.PUT_LINE('An error occurred - roll back inserts');
 ROLLBACK;
END;

Added employee...
Employee # : 9603
Name : HARRISON
Job : SALESMAN
Manager : 7902
Hire Date : 13-DEC-07 00:00:00
Salary : 5000
Commission : 3000
Dept # : 20

SQLERRM: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
An error occurred - roll back inserts

A SELECT command run against the table yields the following:

SELECT * FROM emp WHERE empno > 9600;

empno | ename | job | mgr | hiredate | sal | comm | deptno
------+--------+--------+-----+--------------------+---------+------+--------
 9601| FARRELL| ANALYST|7902 | 03-MAR-08 00:00:00 | 5000.00 | | 40
 9602| TYLER | ANALYST|7900 | 25-JAN-08 00:00:00 | 4800.00 | | 40
(2 rows)

The ROLLBACK command in the exception section successfully undoes the insert of employee Harrison. Also note that employees Farrell and Tyler are
still in the table as their inserts were made permanent by the COMMIT command in the first anonymous block.

NoteNote

Executing a COMMIT or ROLLBACK in a plpgsql procedure will throw an error if there is an Oracle-style SPL procedure on the runtime stack.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1017

16.6.3 PRAGMA AUTONOMOUS_TRANSACTION

An SPL program can be declared as an autonomous transaction by specifying the following directive in the declaration section of the SPL block:

PRAGMA AUTONOMOUS_TRANSACTION;

An autonomous transaction is an independent transaction started by a calling program. A commit or rollback of SQL commands within the autonomous
transaction has no effect on the commit or rollback in any transaction of the calling program. A commit or rollback in the calling program has no effect on
the commit or rollback of SQL commands in the autonomous transaction.

The following SPL programs can include PRAGMA AUTONOMOUS_TRANSACTION:

Standalone procedures and functions
Anonymous blocks
Procedures and functions declared as subprograms within packages and other calling procedures, functions, and anonymous blocks
Triggers
Object type methods

The following are issues and restrictions related to autonomous transactions:

Each autonomous transaction consumes a connection slot for as long as it is in progress. In some cases, this may mean that the
max_connections parameter in the postgresql.conf file should be raised.

In most respects, an autonomous transaction behaves exactly as if it was a completely separate session, but GUCs (that is, settings established with
SET) are a deliberate exception. Autonomous transactions absorb the surrounding values and can propagate values they commit to the outer

transaction.
Autonomous transactions can be nested, but there is a limit of 16 levels of autonomous transactions within a single session.
Parallel query is not supported within autonomous transactions.
The Advanced Server implementation of autonomous transactions is not entirely compatible with Oracle databases in that the Advanced Server
autonomous transaction does not produce an ERROR if there is an uncommitted transaction at the end of an SPL block.

The following set of examples illustrates the usage of autonomous transactions. This first set of scenarios show the default behavior when there are no
autonomous transactions.

Before each scenario, the dept table is reset to the following initial values:

SELECT * FROM dept;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1a – No autonomous transactions with only a final COMMITScenario 1a – No autonomous transactions with only a final COMMIT

This first set of scenarios show the insertion of three rows starting just after the initial BEGIN command of the transaction, then from within an
anonymous block within the starting transaction, and finally from a stored procedure executed from within the anonymous block.

The stored procedure is the following:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1018

The PSQL session is the following:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
COMMIT;

After the final commit, all three rows are inserted:

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES
(7 rows)

Scenario 1b – No autonomous transactions, but a final ROLLBACKScenario 1b – No autonomous transactions, but a final ROLLBACK

The next scenario shows that a final ROLLBACK command after all inserts results in the rollback of all three insertions:

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
END;
ROLLBACK;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

Scenario 1c – No autonomous transactions, but anonymous block ROLLBACKScenario 1c – No autonomous transactions, but anonymous block ROLLBACK

A ROLLBACK command given at the end of the anonymous block also eliminates all three prior insertions:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1019

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 ROLLBACK;
END;
COMMIT;

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

This next set of scenarios shows the effect of using autonomous transactions with PRAGMA AUTONOMOUS_TRANSACTION in various locations.

Scenario 2a – Autonomous transaction of anonymous block with COMMITScenario 2a – Autonomous transaction of anonymous block with COMMIT

The procedure remains as initially created:

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
END;

Now, the PRAGMA AUTONOMOUS_TRANSACTION is given with the anonymous block along with the COMMIT command at the end of the anonymous
block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
ROLLBACK;

After the ROLLBACK at the end of the transaction, only the first row insertion at the very beginning of the transaction is discarded. The other two row
insertions within the anonymous block with PRAGMA AUTONOMOUS_TRANSACTION have been independently committed.

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+-------------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO
 70 | MARKETING | LOS ANGELES
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1020

Scenario 2b – Autonomous transaction anonymous block with COMMIT including procedure with ROLLBACK, but not an autonomous transactionScenario 2b – Autonomous transaction anonymous block with COMMIT including procedure with ROLLBACK, but not an autonomous transaction
procedureprocedure

Now, the procedure has the ROLLBACK command at the end. Note, however, that the PRAGMA ANONYMOUS_TRANSACTION is not included in this
procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

Now, the rollback within the procedure removes the two rows inserted within the anonymous block (deptno 60 and 70) before the final COMMIT
command within the anonymous block.

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
COMMIT;

After the final commit at the end of the transaction, the only row inserted is the first one from the beginning of the transaction. Since the anonymous block
is an autonomous transaction, the rollback within the enclosed procedure has no effect on the insertion that occurs before the anonymous block is
executed.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
(5 rows)

Scenario 2c – Autonomous transaction anonymous block with COMMIT including procedure with ROLLBACK that is also an autonomous transactionScenario 2c – Autonomous transaction anonymous block with COMMIT including procedure with ROLLBACK that is also an autonomous transaction
procedureprocedure

Now, the procedure with the ROLLBACK command at the end also has PRAGMA ANONYMOUS_TRANSACTION included. This isolates the effect of the
ROLLBACK command within the procedure.

CREATE OR REPLACE PROCEDURE insert_dept_70 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (70,'MARKETING','LOS ANGELES');
 ROLLBACK;
END;

Now, the rollback within the procedure removes the row inserted by the procedure, but not the other row inserted within the anonymous block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1021

BEGIN;
INSERT INTO dept VALUES (50,'HR','DENVER');
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
BEGIN
 INSERT INTO dept VALUES (60,'FINANCE','CHICAGO');
 insert_dept_70;
 COMMIT;
END;
COMMIT;

After the final commit at the end of the transaction, the row inserted is the first one from the beginning of the transaction as well as the row inserted at the
beginning of the anonymous block. The only insertion rolled back is the one within the procedure.

SELECT * FROM dept ORDER by 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 50 | HR | DENVER
 60 | FINANCE | CHICAGO
(6 rows)

The following sections now show examples of PRAGMA AUTONOMOUS_TRANSACTION in a couple of other SPL program types.

Autonomous Transaction TriggerAutonomous Transaction Trigger

The following example shows the effect of declaring a trigger with PRAGMA AUTONOMOUS_TRANSACTION .

The following table is created to log changes to the emp table:

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);

The trigger attached to the emp table that inserts these changes into the empauditlog table is the following. Note the inclusion of PRAGMA
AUTONOMOUS_TRANSACTION in the declaration section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1022

CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 PRAGMA AUTONOMOUS_TRANSACTION;
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

The following two inserts are made into the emp table within a transaction started by the BEGIN command.

BEGIN;
INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);
INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

The following shows the two new rows in the emp table as well as the two entries in the empauditlog table:

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+---------+------+--------------------+-----+------+--------
 9001 | SMITH | ANALYST | 7782 | 23-AUG-18 07:12:27 | | | 10
 9002 | JONES | CLERK | 7782 | 23-AUG-18 07:12:27 | | | 10
(2 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

But then the ROLLBACK command is given during this session. The emp table no longer contains the two rows, but the empauditlog table still
contains its two entries as the trigger implicitly performed a commit and PRAGMA AUTONOMOUS_TRANSACTION commits those changes independent
from the rollback given in the calling transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1023

ROLLBACK;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "audit date",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

 audit date | audit_user | audit_desc
--------------------+--------------+-------------------
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
 23-AUG-18 07:12:27 | enterprisedb | Added employee(s)
(2 rows)

Autonomous Transaction Object Type MethodAutonomous Transaction Object Type Method

The following example shows the effect of declaring an object method with PRAGMA AUTONOMOUS_TRANSACTION.

The following object type and object type body are created. The member procedure within the object type body contains the PRAGMA
AUTONOMOUS_TRANSACTION in the declaration section along with COMMIT at the end of the procedure.

CREATE OR REPLACE TYPE insert_dept_typ AS OBJECT (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 MEMBER PROCEDURE insert_dept
);

CREATE OR REPLACE TYPE BODY insert_dept_typ AS
 MEMBER PROCEDURE insert_dept
 IS
 PRAGMA AUTONOMOUS_TRANSACTION;
 BEGIN
 INSERT INTO dept VALUES (SELF.deptno,SELF.dname,SELF.loc);
 COMMIT;
 END;
END;

In the following anonymous block, an insert is performed into the dept table, followed by invocation of the insert_dept method of the object,
ending with a ROLLBACK command in the anonymous block.

BEGIN;
DECLARE
 v_dept INSERT_DEPT_TYP :=
 insert_dept_typ(60,'FINANCE','CHICAGO');
BEGIN
 INSERT INTO dept VALUES (50,'HR','DENVER');
 v_dept.insert_dept;
 ROLLBACK;
END;

Since insert_dept has been declared as an autonomous transaction, its insert of department number 60 remains in the table, but the rollback removes
the insertion of department 50.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1024

SELECT * FROM dept ORDER BY 1;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 60 | FINANCE | CHICAGO
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1025

16.7 Dynamic SQL

Dynamic SQL is a technique that provides the ability to execute SQL commands that are not known until the commands are about to be executed. Up to this
point, the SQL commands that have been illustrated in SPL programs have been static SQL - the full command (with the exception of variables) must be
known and coded into the program before the program, itself, can begin to execute. Thus using dynamic SQL, the executed SQL can change during program
runtime.

In addition, dynamic SQL is the only method by which data definition commands, such as CREATE TABLE , can be executed from within an SPL program.

Note, however, that the runtime performance of dynamic SQL will be slower than static SQL.

The EXECUTE IMMEDIATE command is used to run SQL commands dynamically.

EXECUTE IMMEDIATE '<sql_expression>;'
 [INTO { <variable> [, ...] | <record> }]
 [USING <expression> [, ...]]

sql_expression is a string expression containing the SQL command to be dynamically executed. variable receives the output of the result set,
typically from a SELECT command, created as a result of executing the SQL command in sql_expression . The number, order, and type of variables
must match the number, order, and be type-compatible with the fields of the result set. Alternatively, a record can be specified as long as the record’s
fields match the number, order, and are type-compatible with the result set. When using the INTO clause, exactly one row must be returned in the result
set, otherwise an exception occurs. When using the USING clause the value of expression is passed to a placeholder. Placeholders appear embedded
within the SQL command in sql_expression where variables may be used. Placeholders are denoted by an identifier with a colon (:) prefix - :name .
The number, order, and resultant data types of the evaluated expressions must match the number, order and be type-compatible with the placeholders in
sql_expression . Note that placeholders are not declared anywhere in the SPL program – they only appear in sql_expression .

The following example shows basic dynamic SQL commands as string literals.

DECLARE
 v_sql VARCHAR2(50);
BEGIN
 EXECUTE IMMEDIATE 'CREATE TABLE job (jobno NUMBER(3),' ||
 ' jname VARCHAR2(9))';
 v_sql := 'INSERT INTO job VALUES (100, ''ANALYST'')';
 EXECUTE IMMEDIATE v_sql;
 v_sql := 'INSERT INTO job VALUES (200, ''CLERK'')';
 EXECUTE IMMEDIATE v_sql;
END;

The following example illustrates the USING clause to pass values to placeholders in the SQL string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1026

DECLARE
 v_sql VARCHAR2(50) := 'INSERT INTO job VALUES ' ||
 '(:p_jobno, :p_jname)';
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
BEGIN
 v_jobno := 300;
 v_jname := 'MANAGER';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 400;
 v_jname := 'SALESMAN';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
 v_jobno := 500;
 v_jname := 'PRESIDENT';
 EXECUTE IMMEDIATE v_sql USING v_jobno, v_jname;
END;

The following example shows both the INTO and USING clauses. Note the last execution of the SELECT command returns the results into a record
instead of individual variables.

DECLARE
 v_sql VARCHAR2(60);
 v_jobno job.jobno%TYPE;
 v_jname job.jname%TYPE;
 r_job job%ROWTYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('JOBNO JNAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_sql := 'SELECT jobno, jname FROM job WHERE jobno = :p_jobno';
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 100;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 200;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 300;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO v_jobno, v_jname USING 400;
 DBMS_OUTPUT.PUT_LINE(v_jobno || ' ' || v_jname);
 EXECUTE IMMEDIATE v_sql INTO r_job USING 500;
 DBMS_OUTPUT.PUT_LINE(r_job.jobno || ' ' || r_job.jname);
END;

The following is the output from the previous anonymous block:

JOBNO JNAME
----- -------
100 ANALYST
200 CLERK
300 MANAGER
400 SALESMAN
500 PRESIDENT

You can use the BULK COLLECT clause to assemble the result set from an EXECUTE IMMEDIATE statement into a named collection. See Using the
BULK COLLECT Clause, EXECUTE IMMEDIATE BULK COLLECT for information about using the BULK COLLECT clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1027

16.8 Static Cursors

Rather than executing a whole query at once, it is possible to set up a cursor that encapsulates the query, and then read the query result set one row at a
time. This allows the creation of SPL program logic that retrieves a row from the result set, does some processing on the data in that row, and then retrieves
the next row and repeats the process.

Cursors are most often used in the context of a FOR or WHILE loop. A conditional test should be included in the SPL logic that detects when the end of
the result set has been reached so the program can exit the loop.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1028

16.8.1 Declaring a Cursor

In order to use a cursor, it must first be declared in the declaration section of the SPL program. A cursor declaration appears as follows:

CURSOR <name> IS <query>;

name is an identifier that will be used to reference the cursor and its result set later in the program. query is a SQL SELECT command that determines
the result set retrievable by the cursor.

NoteNote

An extension of this syntax allows the use of parameters. This is discussed in more detail in Parameterized Cursors.

The following are some examples of cursor declarations:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 CURSOR emp_cur_2 IS SELECT empno, ename FROM emp;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 ...
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1029

16.8.2 Opening a Cursor

Before a cursor can be used to retrieve rows, it must first be opened. This is accomplished with the OPEN statement.

OPEN <name>;

name is the identifier of a cursor that has been previously declared in the declaration section of the SPL program. The OPEN statement must not be
executed on a cursor that has already been, and still is open.

The following shows an OPEN statement with its corresponding cursor declaration.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 ...
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1030

16.8.3 Fetching Rows From a Cursor

Once a cursor has been opened, rows can be retrieved from the cursor’s result set by using the FETCH statement.

FETCH <name> INTO { <record> | <variable> [, <variable_2>]... };

name is the identifier of a previously opened cursor. record is the identifier of a previously defined record (for example, using table%ROWTYPE).
variable, variable_2... are SPL variables that will receive the field data from the fetched row. The fields in record or variable,
variable_2... must match in number and order, the fields returned in the SELECT list of the query given in the cursor declaration. The data types of
the fields in the SELECT list must match, or be implicitly convertible to the data types of the fields in record or the data types of variable,
variable_2...

NoteNote

There is a variation of FETCH INTO using the BULK COLLECT clause that can return multiple rows at a time into a collection. See Section
Using the BULK COLLECT Clause for more information on using the BULK COLLECT clause with the FETCH INTO statement.

The following shows the FETCH statement.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

Instead of explicitly declaring the data type of a target variable, %TYPE can be used instead. In this way, if the data type of the database column is
changed, the target variable declaration in the SPL program does not have to be changed. %TYPE will automatically pick up the new data type of the
specified column.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 CURSOR emp_cur_3 IS SELECT empno, ename FROM emp WHERE deptno = 10
 ORDER BY empno;
BEGIN
 OPEN emp_cur_3;
 FETCH emp_cur_3 INTO v_empno, v_ename;
 ...
END;

If all the columns in a table are retrieved in the order defined in the table, %ROWTYPE can be used to define a record into which the FETCH statement will
place the retrieved data. Each field within the record can then be accessed using dot notation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1031

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 ...
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1032

16.8.4 Closing a Cursor

Once all the desired rows have been retrieved from the cursor result set, the cursor must be closed. Once closed, the result set is no longer accessible. The
CLOSE statement appears as follows:

CLOSE <name>;

name is the identifier of a cursor that is currently open. Once a cursor is closed, it must not be closed again. However, once the cursor is closed, the
OPEN statement can be issued again on the closed cursor and the query result set will be rebuilt after which the FETCH statement can then be used to

retrieve the rows of the new result set.

The following example illustrates the use of the CLOSE statement:

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 FETCH emp_cur_1 INTO v_emp_rec;
 DBMS_OUTPUT.PUT_LINE('Employee Number: ' || v_emp_rec.empno);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || v_emp_rec.ename);
 CLOSE emp_cur_1;
END;

This procedure produces the following output when invoked. Employee number 7369, SMITH is the first row of the result set.

EXEC cursor_example;

Employee Number: 7369
Employee Name : SMITH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1033

16.8.5 Using %ROWTYPE With Cursors

Using the %ROWTYPE attribute, a record can be defined that contains fields corresponding to all columns fetched from a cursor or cursor variable. Each
field takes on the data type of its corresponding column. The %ROWTYPE attribute is prefixed by a cursor name or cursor variable name.

<record> <cursor>%ROWTYPE;

record is an identifier assigned to the record. cursor is an explicitly declared cursor within the current scope.

The following example shows how you can use a cursor with %ROWTYPE to get information about which employee works in which department.

CREATE OR REPLACE PROCEDURE emp_info
IS
 CURSOR empcur IS SELECT ename, deptno FROM emp;
 myvar empcur%ROWTYPE;
BEGIN
 OPEN empcur;
 LOOP
 FETCH empcur INTO myvar;
 EXIT WHEN empcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(myvar.ename || ' works in department '
 || myvar.deptno);
 END LOOP;
 CLOSE empcur;
END;

The following is the output from this procedure.

EXEC emp_info;

SMITH works in department 20
ALLEN works in department 30
WARD works in department 30
JONES works in department 20
MARTIN works in department 30
BLAKE works in department 30
CLARK works in department 10
SCOTT works in department 20
KING works in department 10
TURNER works in department 30
ADAMS works in department 20
JAMES works in department 30
FORD works in department 20
MILLER works in department 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1034

16.8.6 Cursor Attributes

Each cursor has a set of attributes associated with it that allows the program to test the state of the cursor. These attributes are %ISOPEN, %FOUND,
%NOTFOUND , and %ROWCOUNT . These attributes are described in the following sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1035

16.8.6.1 %ISOPEN

The %ISOPEN attribute is used to test whether or not a cursor is open.

<cursor_name>%ISOPEN

cursor_name is the name of the cursor for which a BOOLEAN data type of TRUE will be returned if the cursor is open, FALSE otherwise.

The following is an example of using %ISOPEN .

CREATE OR REPLACE PROCEDURE cursor_example
IS
 ...
 CURSOR emp_cur_1 IS SELECT * FROM emp;
 ...
BEGIN
 ...
 IF emp_cur_1%ISOPEN THEN
 NULL;
 ELSE
 OPEN emp_cur_1;
 END IF;
 FETCH emp_cur_1 INTO ...
 ...
END;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1036

16.8.6.2 %FOUND

The %FOUND attribute is used to test whether or not a row is retrieved from the result set of the specified cursor after a FETCH on the cursor.

<cursor_name>%FOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of TRUE will be returned if a row is retrieved from the result set of the cursor
after a FETCH .

After the last row of the result set has been fetched the next FETCH results in %FOUND returning FALSE . FALSE is also returned after the first
FETCH if there are no rows in the result set to begin with.

Referencing %FOUND on a cursor before it is opened or after it is closed results in an INVALID_CURSOR exception being thrown.

%FOUND returns null if it is referenced when the cursor is open, but before the first FETCH .

The following example uses %FOUND .

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FETCH emp_cur_1 INTO v_emp_rec;
 WHILE emp_cur_1%FOUND LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 FETCH emp_cur_1 INTO v_emp_rec;
 END LOOP;
 CLOSE emp_cur_1;
END;

When the previous procedure is invoked, the output appears as follows:

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1037

16.8.6.3 %NOTFOUND

The %NOTFOUND attribute is the logical opposite of %FOUND .

<cursor_name>%NOTFOUND

cursor_name is the name of the cursor for which a BOOLEAN data type of FALSE will be returned if a row is retrieved from the result set of the cursor
after a FETCH .

After the last row of the result set has been fetched the next FETCH results in %NOTFOUND returning TRUE . TRUE is also returned after the first
FETCH if there are no rows in the result set to begin with.

Referencing %NOTFOUND on a cursor before it is opened or after it is closed, results in an INVALID_CURSOR exception being thrown.

%NOTFOUND returns null if it is referenced when the cursor is open, but before the first FETCH .

The following example uses %NOTFOUND .

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 CLOSE emp_cur_1;
END;

Similar to the prior example, this procedure produces the same output when invoked.

EXEC cursor_example;

EMPNO ENAME
----- ------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1038

16.8.6.4 %ROWCOUNT

The %ROWCOUNT attribute returns an integer showing the number of rows fetched so far from the specified cursor.

<cursor_name>%ROWCOUNT

cursor_name is the name of the cursor for which %ROWCOUNT returns the number of rows retrieved thus far. After the last row has been retrieved,
%ROWCOUNT remains set to the total number of rows returned until the cursor is closed at which point %ROWCOUNT will throw an INVALID_CURSOR

exception if referenced.

Referencing %ROWCOUNT on a cursor before it is opened or after it is closed, results in an INVALID_CURSOR exception being thrown.

%ROWCOUNT returns 0 if it is referenced when the cursor is open, but before the first FETCH . %ROWCOUNT also returns 0 after the first FETCH
when there are no rows in the result set to begin with.

The following example uses %ROWCOUNT .

CREATE OR REPLACE PROCEDURE cursor_example
IS
 v_emp_rec emp%ROWTYPE;
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur_1;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur_1 INTO v_emp_rec;
 EXIT WHEN emp_cur_1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('**********************');
 DBMS_OUTPUT.PUT_LINE(emp_cur_1%ROWCOUNT || ' rows were retrieved');
 CLOSE emp_cur_1;
END;

This procedure prints the total number of rows retrieved at the end of the employee list as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1039

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

14 rows were retrieved

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1040

16.8.6.5 Summary of Cursor States and Attributes

The following table summarizes the possible cursor states and the values returned by the cursor attributes.

Cursor State %ISOPEN %FOUND %NOTFOUND %ROWCOUNT

Before OPEN False INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

After OPEN & Before 1st FETCH True Null Null 0

After 1st Successful FETCH True True False 1

After nth Successful FETCH (last
row)

True True False n

After n+1st FETCH (after last row) True False True n

After CLOSE False INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

INVALID_CURSOR
Exception

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1041

16.8.7 Cursor FOR Loop

In the cursor examples presented so far, the programming logic required to process the result set of a cursor included a statement to open the cursor, a loop
construct to retrieve each row of the result set, a test for the end of the result set, and finally a statement to close the cursor. The cursor FOR loop is a loop
construct that eliminates the need to individually code the statements just listed.

The cursor FOR loop opens a previously declared cursor, fetches all rows in the cursor result set, and then closes the cursor.

The syntax for creating a cursor FOR loop is as follows.

FOR <record> IN <cursor>
LOOP
 <statements>
END LOOP;

record is an identifier assigned to an implicitly declared record with definition, cursor%ROWTYPE . cursor is the name of a previously declared
cursor. statements are one or more SPL statements. There must be at least one statement.

The following example shows the example from %NOTFOUND, modified to use a cursor FOR loop.

CREATE OR REPLACE PROCEDURE cursor_example
IS
 CURSOR emp_cur_1 IS SELECT * FROM emp;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR v_emp_rec IN emp_cur_1 LOOP
 DBMS_OUTPUT.PUT_LINE(v_emp_rec.empno || ' ' || v_emp_rec.ename);
 END LOOP;
END;

The same results are achieved as shown in the output below.

EXEC cursor_example;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1042

16.8.8 Parameterized Cursors

A user can also declare a static cursor that accepts parameters, and can pass values for those parameters when opening that cursor. In the following
example we have created a parameterized cursor which will display the name and salary of all employees from the emp table that have a salary less than a
specified value which is passed as a parameter.

DECLARE
 my_record emp%ROWTYPE;
 CURSOR c1 (max_wage NUMBER) IS
 SELECT * FROM emp WHERE sal < max_wage;
BEGIN
 OPEN c1(2000);
 LOOP
 FETCH c1 INTO my_record;
 EXIT WHEN c1%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE('Name = ' || my_record.ename || ', salary = '
 || my_record.sal);
 END LOOP;
 CLOSE c1;
END;

So for example if we pass the value 2000 as max_wage , then we will only be shown the name and salary of all employees that have a salary less than
2000. The result of the above query is the following:

Name = SMITH, salary = 800.00
Name = ALLEN, salary = 1600.00
Name = WARD, salary = 1250.00
Name = MARTIN, salary = 1250.00
Name = TURNER, salary = 1500.00
Name = ADAMS, salary = 1100.00
Name = JAMES, salary = 950.00
Name = MILLER, salary = 1300.00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1043

16.9 REF CURSORs and Cursor Variables

This section discusses another type of cursor that provides far greater flexibility than the previously discussed static cursors.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1044

16.9.1 REF CURSOR Overview

A cursor variable is a cursor that actually contains a pointer to a query result set. The result set is determined by the execution of the OPEN FOR
statement using the cursor variable.

A cursor variable is not tied to a single particular query like a static cursor. The same cursor variable may be opened a number of times with OPEN FOR
statements containing different queries. Each time, a new result set is created from that query and made available via the cursor variable.

REF CURSOR types may be passed as parameters to or from stored procedures and functions. The return type of a function may also be a REF CURSOR
type. This provides the capability to modularize the operations on a cursor into separate programs by passing a cursor variable between programs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1045

16.9.2 Declaring a Cursor Variable

SPL supports the declaration of a cursor variable using both the SYS_REFCURSOR built-in data type as well as creating a type of REF CURSOR and then
declaring a variable of that type. SYS_REFCURSOR is a REF CURSOR type that allows any result set to be associated with it. This is known as a weakly-
typed REF CURSOR .

Only the declaration of SYS_REFCURSOR and user-defined REF CURSOR variables are different. The remaining usage like opening the cursor, selecting
into the cursor and closing the cursor is the same across both the cursor types. For the rest of this chapter our examples will primarily be making use of the
SYS_REFCURSOR cursors. All you need to change in the examples to make them work for user defined REF CURSORs is the declaration section.

NoteNote

Strongly-typed REF CURSORs require the result set to conform to a declared number and order of fields with compatible data types and can
also optionally return a result set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1046

16.9.2.1 Declaring a SYS_REFCURSOR Cursor Variable

The following is the syntax for declaring a SYS_REFCURSOR cursor variable:

<name> SYS_REFCURSOR;

name is an identifier assigned to the cursor variable.

The following is an example of a SYS_REFCURSOR variable declaration.

DECLARE
 emp_refcur SYS_REFCURSOR;
 ...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1047

16.9.2.2 Declaring a User Defined REF CURSOR Type Variable

You must perform two distinct declaration steps in order to use a user defined REF CURSOR variable:

Create a referenced cursor TYPE
Declare the actual cursor variable based on that TYPE

The syntax for creating a user defined REF CURSOR type is as follows:

TYPE <cursor_type_name> IS REF CURSOR [RETURN <return_type>];

The following is an example of a cursor variable declaration.

DECLARE
 TYPE emp_cur_type IS REF CURSOR RETURN emp%ROWTYPE;
 my_rec emp_cur_type;
 ...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1048

16.9.3 Opening a Cursor Variable

Once a cursor variable is declared, it must be opened with an associated SELECT command. The OPEN FOR statement specifies the SELECT
command to be used to create the result set.

OPEN <name> FOR query;

name is the identifier of a previously declared cursor variable. query is a SELECT command that determines the result set when the statement is
executed. The value of the cursor variable after the OPEN FOR statement is executed identifies the result set.

In the following example, the result set is a list of employee numbers and names from a selected department. Note that a variable or parameter can be used
in the SELECT command anywhere an expression can normally appear. In this case a parameter is used in the equality test for department number.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 ...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1049

16.9.4 Fetching Rows From a Cursor Variable

After a cursor variable is opened, rows may be retrieved from the result set using the FETCH statement. See Fetching Rows From a Cursor for details on
using the FETCH statement to retrieve rows from a result set.

In the example below, a FETCH statement has been added to the previous example so now the result set is returned into two variables and then displayed.
Note that the cursor attributes used to determine cursor state of static cursors can also be used with cursor variables. See Cursor Attributes for details on
cursor attributes.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 ...

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1050

16.9.5 Closing a Cursor Variable

Use the CLOSE statement described in Closing a Cursor to release the result set.

NoteNote

Unlike static cursors, a cursor variable does not have to be closed before it can be re-opened again. The result set from the previous open will be
lost.

The example is completed with the addition of the CLOSE statement.

CREATE OR REPLACE PROCEDURE emp_by_dept (
 p_deptno emp.deptno%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE deptno = p_deptno;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output when this procedure is executed.

EXEC emp_by_dept(20)

EMPNO ENAME
----- -------
7369 SMITH
7566 JONES
7788 SCOTT
7876 ADAMS
7902 FORD

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1051

16.9.6 Usage Restrictions

The following are restrictions on cursor variable usage.

Comparison operators cannot be used to test cursor variables for equality, inequality, null, or not null
Null cannot be assigned to a cursor variable
The value of a cursor variable cannot be stored in a database column
Static cursors and cursor variables are not interchangeable. For example, a static cursor cannot be used in an OPEN FOR statement.

In addition the following table shows the permitted parameter modes for a cursor variable used as a procedure or function parameter depending upon the
operations on the cursor variable within the procedure or function.

Operation IN IN
OUT

OUT

OPEN No Yes No

FETCH Yes Yes No

CLOSE Yes Yes No

So for example, if a procedure performs all three operations, OPEN FOR, FETCH , and CLOSE on a cursor variable declared as the procedure’s formal
parameter, then that parameter must be declared with IN OUT mode.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1052

16.9.7 Examples

The following examples demonstrate cursor variable usage.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1053

16.9.7.1 Returning a REF CURSOR From a Function

In the following example the cursor variable is opened with a query that selects employees with a given job. Note that the cursor variable is specified in this
function’s RETURN statement so the result set is made available to the caller of the function.

CREATE OR REPLACE FUNCTION emp_by_job (p_job VARCHAR2)
RETURN SYS_REFCURSOR
IS
 emp_refcur SYS_REFCURSOR;
BEGIN
 OPEN emp_refcur FOR SELECT empno, ename FROM emp WHERE job = p_job;
 RETURN emp_refcur;
END;

This function is invoked in the following anonymous block by assigning the function’s return value to a cursor variable declared in the anonymous block’s
declaration section. The result set is fetched using this cursor variable and then it is closed.

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE := 'SALESMAN';
 v_emp_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPLOYEES WITH JOB ' || v_job);
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 v_emp_refcur := emp_by_job(v_job);
 LOOP
 FETCH v_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN v_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE v_emp_refcur;
END;

The following is the output when the anonymous block is executed.

EMPLOYEES WITH JOB SALESMAN
EMPNO ENAME
----- -------
7499 ALLEN
7521 WARD
7654 MARTIN
7844 TURNER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1054

16.9.7.2 Modularizing Cursor Operations

The following example illustrates how the various operations on cursor variables can be modularized into separate programs.

The following procedure opens the given cursor variable with a SELECT command that retrieves all rows.

CREATE OR REPLACE PROCEDURE open_all_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp;
END;

This variation opens the given cursor variable with a SELECT command that retrieves all rows, but of a given department.

CREATE OR REPLACE PROCEDURE open_emp_by_dept (
 p_emp_refcur IN OUT SYS_REFCURSOR,
 p_deptno emp.deptno%TYPE
)
IS
BEGIN
 OPEN p_emp_refcur FOR SELECT empno, ename FROM emp
 WHERE deptno = p_deptno;
END;

This third variation opens the given cursor variable with a SELECT command that retrieves all rows, but from a different table. Also note that the
function’s return value is the opened cursor variable.

CREATE OR REPLACE FUNCTION open_dept (
 p_dept_refcur IN OUT SYS_REFCURSOR
) RETURN SYS_REFCURSOR
IS
 v_dept_refcur SYS_REFCURSOR;
BEGIN
 v_dept_refcur := p_dept_refcur;
 OPEN v_dept_refcur FOR SELECT deptno, dname FROM dept;
 RETURN v_dept_refcur;
END;

This procedure fetches and displays a cursor variable result set consisting of employee number and name.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1055

CREATE OR REPLACE PROCEDURE fetch_emp (
 p_emp_refcur IN OUT SYS_REFCURSOR
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH p_emp_refcur INTO v_empno, v_ename;
 EXIT WHEN p_emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
END;

This procedure fetches and displays a cursor variable result set consisting of department number and name.

CREATE OR REPLACE PROCEDURE fetch_dept (
 p_dept_refcur IN SYS_REFCURSOR
)
IS
 v_deptno dept.deptno%TYPE;
 v_dname dept.dname%TYPE;
BEGIN
 DBMS_OUTPUT.PUT_LINE('DEPT DNAME');
 DBMS_OUTPUT.PUT_LINE('---- ---------');
 LOOP
 FETCH p_dept_refcur INTO v_deptno, v_dname;
 EXIT WHEN p_dept_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_deptno || ' ' || v_dname);
 END LOOP;
END;

This procedure closes the given cursor variable.

CREATE OR REPLACE PROCEDURE close_refcur (
 p_refcur IN OUT SYS_REFCURSOR
)
IS
BEGIN
 CLOSE p_refcur;
END;

The following anonymous block executes all the previously described programs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1056

DECLARE
 gen_refcur SYS_REFCURSOR;
BEGIN
 DBMS_OUTPUT.PUT_LINE('ALL EMPLOYEES');
 open_all_emp(gen_refcur);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('EMPLOYEES IN DEPT #10');
 open_emp_by_dept(gen_refcur, 10);
 fetch_emp(gen_refcur);
 DBMS_OUTPUT.PUT_LINE('****************');

 DBMS_OUTPUT.PUT_LINE('DEPARTMENTS');
 fetch_dept(open_dept(gen_refcur));
 DBMS_OUTPUT.PUT_LINE('*****************');

 close_refcur(gen_refcur);
END;

The following is the output from the anonymous block.

ALL EMPLOYEES
EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

EMPLOYEES IN DEPT #10
EMPNO ENAME
----- -------
7782 CLARK
7839 KING
7934 MILLER

DEPARTMENTS
DEPT DNAME
---- ---------
10 ACCOUNTING
20 RESEARCH
30 SALES
40 OPERATIONS

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1057

16.9.8 Dynamic Queries With REF CURSORs

Advanced Server also supports dynamic queries via the OPEN FOR USING statement. A string literal or string variable is supplied in the OPEN FOR
USING statement to the SELECT command.

OPEN <name> FOR <dynamic_string>
 [USING <bind_arg> [, <bind_arg_2>] ...];

name is the identifier of a previously declared cursor variable. dynamic_string is a string literal or string variable containing a SELECT command
(without the terminating semi-colon). bind_arg, bind_arg_2... are bind arguments that are used to pass variables to corresponding placeholders
in the SELECT command when the cursor variable is opened. The placeholders are identifiers prefixed by a colon character.

The following is an example of a dynamic query using a string literal.

CREATE OR REPLACE PROCEDURE dept_query
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = 30' ||
 ' AND sal >= 1500';
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the output when the procedure is executed.

EXEC dept_query;

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

In the next example, the previous query is modified to use bind arguments to pass the query parameters.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1058

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
BEGIN
 OPEN emp_refcur FOR 'SELECT empno, ename FROM emp WHERE deptno = :dept'
 || ' AND sal >= :sal' USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;

The following is the resulting output.

EXEC dept_query(30, 1500);

EMPNO ENAME
----- -------
7499 ALLEN
7698 BLAKE
7844 TURNER

Finally, a string variable is used to pass the SELECT providing the most flexibility.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1059

CREATE OR REPLACE PROCEDURE dept_query (
 p_deptno emp.deptno%TYPE,
 p_sal emp.sal%TYPE
)
IS
 emp_refcur SYS_REFCURSOR;
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 p_query_string VARCHAR2(100);
BEGIN
 p_query_string := 'SELECT empno, ename FROM emp WHERE ' ||
 'deptno = :dept AND sal >= :sal';
 OPEN emp_refcur FOR p_query_string USING p_deptno, p_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_refcur INTO v_empno, v_ename;
 EXIT WHEN emp_refcur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_refcur;
END;
EXEC dept_query(20, 1500);

EMPNO ENAME
----- -------
7566 JONES
7788 SCOTT
7902 FORD

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1060

16.10 Collections

A collection is a set of ordered data items with the same data type. Generally, the data item is a scalar field, but may also be a user-defined type such as a
record type or an object type as long as the structure and the data types that comprise each field of the user-defined type are the same for each element in
the set. Each particular data item in the set is referenced by using subscript notation within a pair of parentheses.

NoteNote

Multilevel collections (that is, where the data item of a collection is another collection) are not supported.

The most commonly known type of collection is an array. In Advanced Server, the supported collection types are associative arrays (formerly called index-
by-tables in Oracle), nested tables, and varrays.

The general steps for using a collection are the following:

A collection of the desired type must be defined. This can be done in the declaration section of an SPL program, which results in a local type that is
accessible only within that program. For nested table and varray types this can also be done using the CREATE TYPE command, which creates a
persistent, standalone type that can be referenced by any SPL program in the database.
Variables of the collection type are declared. The collection associated with the declared variable is said to be uninitialized at this point if there is no
value assignment made as part of the variable declaration.
Uninitialized collections of nested tables and varrays are null. A null collection does not yet exist. Generally, a COLLECTION_IS_NULL exception
is thrown if a collection method is invoked on a null collection.
Uninitialized collections of associative arrays exist, but have no elements. An existing collection with no elements is called an empty collection.
To initialize a null collection, you must either make it an empty collection or assign a non-null value to it. Generally, a null collection is initialized by
using its constructor.
To add elements to an empty associative array, you can simply assign values to its keys. For nested tables and varrays, generally its constructor is
used to assign initial values to the nested table or varray. For nested tables and varrays, the EXTEND method is then used to grow the collection
beyond its initial size established by the constructor.

The specific process for each collection type is described in the following sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1061

16.10.1 Associative Arrays

An associative array is a type of collection that associates a unique key with a value. The key does not have to be numeric, but can be character data as well.

An associative array has the following characteristics:

An associative array type must be defined after which array variables can be declared of that array type. Data manipulation occurs using the array
variable.
When an array variable is declared, the associative array is created, but it is empty - just start assigning values to key values.
The key can be any negative integer, positive integer, or zero if INDEX BY BINARY_INTEGER or PLS_INTEGER is specified.
The key can be character data if INDEX BY VARCHAR2 is specified.
There is no pre-defined limit on the number of elements in the array - it grows dynamically as elements are added.
The array can be sparse - there may be gaps in the assignment of values to keys.
An attempt to reference an array element that has not been assigned a value will result in an exception.

The TYPE IS TABLE OF ... INDEX BY statement is used to define an associative array type.

TYPE <assoctype> IS TABLE OF { <datatype> | <rectype> | <objtype> }
 INDEX BY { BINARY_INTEGER | PLS_INTEGER | VARCHAR2(<n>) };

assoctype is an identifier assigned to the array type. datatype is a scalar data type such as VARCHAR2 or NUMBER . rectype is a previously
defined record type. objtype is a previously defined object type. n is the maximum length of a character key.

In order to make use of the array, a variable must be declared with that array type. The following is the syntax for declaring an array variable.

<array> <assoctype>

array is an identifier assigned to the associative array. assoctype is the identifier of a previously defined array type.

An element of the array is referenced using the following syntax.

<array>(<n>)[<.field>]

array is the identifier of a previously declared array. n is the key value, type-compatible with the data type given in the INDEX BY clause. If the array
type of array is defined from a record type or object type, then [.field] must reference an individual field within the record type or attribute within
the object type from which the array type is defined. Alternatively, the entire record can be referenced by omitting [.field] .

The following example reads the first ten employee names from the emp table, stores them in an array, then displays the results from the array.

DECLARE
 TYPE emp_arr_typ IS TABLE OF VARCHAR2(10) INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j));
 END LOOP;
END;

The above example produces the following output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1062

SMITH
ALLEN
WARD
JONES
MARTIN
BLAKE
CLARK
SCOTT
KING
TURNER

The previous example is now modified to use a record type in the array definition.

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The following is the output from this anonymous block.

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The emp%ROWTYPE attribute could be used to define emp_arr_typ instead of using the emp_rec_typ record type as shown in the following.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1063

DECLARE
 TYPE emp_arr_typ IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i).empno := r_emp.empno;
 emp_arr(i).ename := r_emp.ename;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The results are the same as in the prior example.

Instead of assigning each field of the record individually, a record level assignment can be made from r_emp to emp_arr .

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_arr_typ IS TABLE OF emp_rec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(j).empno || ' ' ||
 emp_arr(j).ename);
 END LOOP;
END;

The key of an associative array can be character data as shown in the following example.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1064

DECLARE
 TYPE job_arr_typ IS TABLE OF NUMBER INDEX BY VARCHAR2(9);
 job_arr job_arr_typ;
BEGIN
 job_arr('ANALYST') := 100;
 job_arr('CLERK') := 200;
 job_arr('MANAGER') := 300;
 job_arr('SALESMAN') := 400;
 job_arr('PRESIDENT') := 500;
 DBMS_OUTPUT.PUT_LINE('ANALYST : ' || job_arr('ANALYST'));
 DBMS_OUTPUT.PUT_LINE('CLERK : ' || job_arr('CLERK'));
 DBMS_OUTPUT.PUT_LINE('MANAGER : ' || job_arr('MANAGER'));
 DBMS_OUTPUT.PUT_LINE('SALESMAN : ' || job_arr('SALESMAN'));
 DBMS_OUTPUT.PUT_LINE('PRESIDENT: ' || job_arr('PRESIDENT'));
END;

ANALYST : 100
CLERK : 200
MANAGER : 300
SALESMAN : 400
PRESIDENT: 500

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1065

16.10.2 Nested Tables

A nested table is a type of collection that associates a positive integer with a value. A nested table has the following characteristics:

A nested table type must be defined after which nested table variables can be declared of that nested table type. Data manipulation occurs using the
nested table variable, or simply, “table” for short.
When a nested table variable is declared, the nested table initially does not exist (it is a null collection). The null table must be initialized with a
constructor. You can also initialize the table by using an assignment statement where the right-hand side of the assignment is an initialized table of
the same type. Note:Note: Initialization of a nested table is mandatory in Oracle, but optional in SPL.
The key is a positive integer.
The constructor establishes the number of elements in the table. The EXTEND method adds additional elements to the table. See Collection
Methods for information on collection methods. Note:Note: Usage of the constructor to establish the number of elements in the table and usage of the
EXTEND method to add additional elements to the table are mandatory in Oracle, but optional in SPL.

The table can be sparse - there may be gaps in the assignment of values to keys.
An attempt to reference a table element beyond its initialized or extended size will result in a SUBSCRIPT_BEYOND_COUNT exception.

The TYPE IS TABLE statement is used to define a nested table type within the declaration section of an SPL program.

TYPE <tbltype> IS TABLE OF { <datatype> | <rectype> | <objtype> };

tbltype is an identifier assigned to the nested table type. datatype is a scalar data type such as VARCHAR2 or NUMBER . rectype is a
previously defined record type. objtype is a previously defined object type.

NoteNote

You can use the CREATE TYPE command to define a nested table type that is available to all SPL programs in the database. See the Database
Compatibility for Oracle Developers SQL Guide for more information about the CREATE TYPE command.

In order to make use of the table, a variable must be declared of that nested table type. The following is the syntax for declaring a table variable.

<table> <tbltype>

table is an identifier assigned to the nested table. tbltype is the identifier of a previously defined nested table type.

A nested table is initialized using the nested table type’s constructor.

<tbltype> ([{ <expr1> | NULL } [, { <expr2> | NULL }] [, ...]])

tbltype is the identifier of the nested table type’s constructor, which has the same name as the nested table type. expr1, expr2, … are
expressions that are type-compatible with the element type of the table. If NULL is specified, the corresponding element is set to null. If the parameter list
is empty, then an empty nested table is returned, which means there are no elements in the table. If the table is defined from an object type, then exprn
must return an object of that object type. The object can be the return value of a function or the object type’s constructor, or the object can be an element
of another nested table of the same type.

If a collection method other than EXISTS is applied to an uninitialized nested table, a COLLECTION_IS_NULL exception is thrown. See Collection
Methods for information on collection methods.

The following is an example of a constructor for a nested table:

DECLARE
 TYPE nested_typ IS TABLE OF CHAR(1);
 v_nested nested_typ := nested_typ('A','B');

An element of the table is referenced using the following syntax.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1066

<table>(<n>)[<.element>]

table is the identifier of a previously declared table. n is a positive integer. If the table type of table is defined from a record type or object type, then
[.element] must reference an individual field within the record type or attribute within the object type from which the nested table type is defined.

Alternatively, the entire record or object can be referenced by omitting [.element] .

The following is an example of a nested table where it is known that there will be four elements.

DECLARE
 TYPE dname_tbl_typ IS TABLE OF VARCHAR2(14);
 dname_tbl dname_tbl_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_tbl := dname_tbl_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_tbl(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_tbl(j));
 END LOOP;
END;

The above example produces the following output:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

The following example reads the first ten employee names from the emp table, stores them in a nested table, then displays the results from the table. The
SPL code is written to assume that the number of employees to be returned is not known beforehand.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1067

DECLARE
 TYPE emp_rec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR2(10)
);
 TYPE emp_tbl_typ IS TABLE OF emp_rec_typ;
 emp_tbl emp_tbl_typ;
 CURSOR emp_cur IS SELECT empno, ename FROM emp WHERE ROWNUM <= 10;
 i INTEGER := 0;
BEGIN
 emp_tbl := emp_tbl_typ();
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_tbl.EXTEND;
 emp_tbl(i) := r_emp;
 END LOOP;
 FOR j IN 1..10 LOOP
 DBMS_OUTPUT.PUT_LINE(emp_tbl(j).empno || ' ' ||
 emp_tbl(j).ename);
 END LOOP;
END;

Note the creation of an empty table with the constructor emp_tbl_typ() as the first statement in the executable section of the anonymous block. The
EXTEND collection method is then used to add an element to the table for each employee returned from the result set. See Extend for information on
EXTEND .

The following is the output.

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER

The following example shows how a nested table of an object type can be used. First, an object type is created with attributes for the department name and
location.

CREATE TYPE dept_obj_typ AS OBJECT (
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

The following anonymous block defines a nested table type whose element consists of the dept_obj_typ object type. A nested table variable is
declared, initialized, and then populated from the dept table. Finally, the elements from the nested table are displayed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1068

DECLARE
 TYPE dept_tbl_typ IS TABLE OF dept_obj_typ;
 dept_tbl dept_tbl_typ;
 CURSOR dept_cur IS SELECT dname, loc FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dept_tbl := dept_tbl_typ(
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL),
 dept_obj_typ(NULL,NULL)
);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dept_tbl(i).dname := r_dept.dname;
 dept_tbl(i).loc := r_dept.loc;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME LOC');
 DBMS_OUTPUT.PUT_LINE('---------- ----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(RPAD(dept_tbl(j).dname,14) || ' ' ||
 dept_tbl(j).loc);
 END LOOP;
END;

The parameters comprising the nested table’s constructor, dept_tbl_typ , are calls to the object type’s constructor dept_obj_typ. The following is
the output from the anonymous block:

DNAME LOC
---------- ----------
ACCOUNTING NEW YORK
OPERATIONS BOSTON
RESEARCH DALLAS
SALES CHICAGO

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1069

16.10.3 Varrays

A varray or variable-size array is a type of collection that associates a positive integer with a value. In many respects, it is similar to a nested table.

A varray has the following characteristics:

A varray type must be defined along with a maximum size limit. After the varray type is defined, varray variables can be declared of that varray type.
Data manipulation occurs using the varray variable, or simply, “varray” for short. The number of elements in the varray cannot exceed the maximum
size limit established in the varray type definition.
When a varray variable is declared, the varray initially does not exist (it is a null collection). The null varray must be initialized with a constructor.
You can also initialize the varray by using an assignment statement where the right-hand side of the assignment is an initialized varray of the same
type.
The key is a positive integer.
The constructor establishes the number of elements in the varray, which must not exceed the maximum size limit. The EXTEND method can add
additional elements to the varray up to the maximum size limit. See Collection Methods for information on collection methods.
Unlike a nested table, a varray cannot be sparse - there are no gaps in the assignment of values to keys.
An attempt to reference a varray element beyond its initialized or extended size, but within the maximum size limit will result in a
SUBSCRIPT_BEYOND_COUNT exception.

An attempt to reference a varray element beyond the maximum size limit or extend a varray beyond the maximum size limit will result in a
SUBSCRIPT_OUTSIDE_LIMIT exception.

The TYPE IS VARRAY statement is used to define a varray type within the declaration section of an SPL program.

TYPE <varraytype> IS { VARRAY | VARYING ARRAY }(<maxsize>)
 OF { <datatype> | <objtype> };

varraytype is an identifier assigned to the varray type. datatype is a scalar data type such as VARCHAR2 or NUMBER . maxsize is the maximum
number of elements permitted in varrays of that type. objtype is a previously defined object type.

The CREATE TYPE command can be used to define a varray type that is available to all SPL programs in the database. In order to make use of the varray,
a variable must be declared of that varray type. The following is the syntax for declaring a varray variable:

<varray> <varraytype>

varray is an identifier assigned to the varray. varraytype is the identifier of a previously defined varray type.

A varray is initialized using the varray type’s constructor.

<varraytype> ([{ <expr1> | NULL } [, { <expr2> | NULL }]
 [, ...]])

varraytype is the identifier of the varray type’s constructor, which has the same name as the varray type. expr1, expr2, … are expressions that
are type-compatible with the element type of the varray. If NULL is specified, the corresponding element is set to null. If the parameter list is empty, then
an empty varray is returned, which means there are no elements in the varray. If the varray is defined from an object type, then exprn must return an
object of that object type. The object can be the return value of a function or the return value of the object type’s constructor. The object can also be an
element of another varray of the same varray type.

If a collection method other than EXISTS is applied to an uninitialized varray, a COLLECTION_IS_NULL exception is thrown. See Collection Methods
for information on collection methods.

The following is an example of a constructor for a varray:

DECLARE
 TYPE varray_typ IS VARRAY(2) OF CHAR(1);
 v_varray varray_typ := varray_typ('A','B');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1070

An element of the varray is referenced using the following syntax.

<varray>(<n>)[<.element>]

varray is the identifier of a previously declared varray. n is a positive integer. If the varray type of varray is defined from an object type, then
[.element] must reference an attribute within the object type from which the varray type is defined. Alternatively, the entire object can be referenced

by omitting [.element].

The following is an example of a varray where it is known that there will be four elements.

DECLARE
 TYPE dname_varray_typ IS VARRAY(4) OF VARCHAR2(14);
 dname_varray dname_varray_typ;
 CURSOR dept_cur IS SELECT dname FROM dept ORDER BY dname;
 i INTEGER := 0;
BEGIN
 dname_varray := dname_varray_typ(NULL, NULL, NULL, NULL);
 FOR r_dept IN dept_cur LOOP
 i := i + 1;
 dname_varray(i) := r_dept.dname;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('DNAME');
 DBMS_OUTPUT.PUT_LINE('----------');
 FOR j IN 1..i LOOP
 DBMS_OUTPUT.PUT_LINE(dname_varray(j));
 END LOOP;
END;

The above example produces the following output:

DNAME

ACCOUNTING
OPERATIONS
RESEARCH
SALES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1071

16.11 Collection Methods

Collection methods are functions and procedures that provide useful information about a collection that can aid in the processing of data in the collection.
The following sections discuss the collection methods supported by Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1072

16.11.1 COUNT

COUNT is a method that returns the number of elements in a collection. The syntax for using COUNT is as follows:

<collection>.COUNT

collection is the name of a collection.

For a varray, COUNT always equals LAST .

The following example shows that an associative array can be sparsely populated (i.e., there are “gaps” in the sequence of assigned elements). COUNT
includes only the elements that have been assigned a value.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

The following output shows that there are five populated elements included in COUNT .

COUNT: 5

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1073

16.11.2 DELETE

The DELETE method deletes entries from a collection. You can call the DELETE method in three different ways.

Use the first form of the DELETE method to remove all entries from a collection:

<collection>.DELETE

Use the second form of the DELETE method to remove the specified entry from a collection:

<collection>.DELETE(<subscript>)

Use the third form of the DELETE method to remove the entries that are within the range specified by first_subscript and last_subscript
(including the entries for the first_subscript and the last_subscript) from a collection.

<collection>.DELETE(<first_subscript>, <last_subscript>)

If first_subscript and last_subscript refer to non-existent elements, elements that are in the range between the specified subscripts are
deleted. If first_subscript is greater than last_subscript , or if you specify a value of NULL for one of the arguments, DELETE has no
effect.

Note that when you delete an entry, the subscript remains in the collection; you can re-use the subscript with an alternate entry. If you specify a subscript
that does not exist in the call to the DELETE method, DELETE does not raise an exception.

The following example demonstrates using the DELETE method to remove the element with subscript 0 from the collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
 v_results VARCHAR2(50);
 v_sub NUMBER;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.DELETE(0);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 v_sub := sparse_arr.FIRST;
 WHILE v_sub IS NOT NULL LOOP
 IF sparse_arr(v_sub) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(v_sub) || ' ';
 END IF;
 v_sub := sparse_arr.NEXT(v_sub);
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 4
Results: -100 -10 10 100

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1074

COUNT indicates that before the DELETE method, there were 5 elements in the collection; after the DELETE method was invoked, the collection
contains 4 elements.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1075

16.11.3 EXISTS

The EXISTS method verifies that a subscript exists within a collection. EXISTS returns TRUE if the subscript exists; if the subscript does not exist,
EXISTS returns FALSE . The method takes a single argument; the subscript that you are testing for. The syntax is:

<collection>.EXISTS(<subscript>)

collection is the name of the collection.

subscript is the value that you are testing for. If you specify a value of NULL, EXISTS returns false .

The following example verifies that subscript number 10 exists within the associative array:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('The index exists: ' ||
 CASE WHEN sparse_arr.exists(10) = TRUE THEN 'true' ELSE 'false' END);
END;

The index exists: true

Some collection methods raise an exception if you call them with a subscript that does not exist within the specified collection. Rather than raising an
error, the EXISTS method returns a value of FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1076

16.11.4 EXTEND

The EXTEND method increases the size of a collection. There are three variations of the EXTEND method. The first variation appends a single NULL
element to a collection; the syntax for the first variation is:

<collection>.EXTEND

collection is the name of a collection.

The following example demonstrates using the EXTEND method to append a single, null element to a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 6
Results: -100 -10 0 10 100 NULL

COUNT indicates that before the EXTEND method, there were 5 elements in the collection; after the EXTEND method was invoked, the collection
contains 6 elements.

The second variation of the EXTEND method appends a specified number of elements to the end of a collection.

<collection>.EXTEND(<count>)

collection is the name of a collection.

count is the number of null elements added to the end of the collection.

The following example demonstrates using the EXTEND method to append multiple null elements to a collection:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1077

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8
Results: -100 -10 0 10 100 NULL NULL NULL

COUNT indicates that before the EXTEND method, there were 5 elements in the collection; after the EXTEND method was invoked, the collection
contains 8 elements.

The third variation of the EXTEND method appends a specified number of copies of a particular element to the end of a collection.

<collection>.EXTEND(<count>, <index_number>)

collection is the name of a collection.

count is the number of elements added to the end of the collection.

index_number is the subscript of the element that is being copied to the collection.

The following example demonstrates using the EXTEND method to append multiple copies of the second element to the collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.EXTEND(3, 2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 8
Results: -100 -10 0 10 100 -10 -10 -10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1078

COUNT indicates that before the EXTEND method, there were 5 elements in the collection; after the EXTEND method was invoked, the collection
contains 8 elements.

NoteNote

The EXTEND method cannot be used on a null or empty collection.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1079

16.11.5 FIRST

FIRST is a method that returns the subscript of the first element in a collection. The syntax for using FIRST is as follows:

<collection>.FIRST

collection is the name of a collection.

The following example displays the first element of the associative array.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('FIRST element: ' || sparse_arr(sparse_arr.FIRST));
END;

FIRST element: -100

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1080

16.11.6 LAST

LAST is a method that returns the subscript of the last element in a collection. The syntax for using LAST is as follows:

<collection>.LAST

collection is the name of a collection.

The following example displays the last element of the associative array.

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('LAST element: ' || sparse_arr(sparse_arr.LAST));
END;

LAST element: 100

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1081

16.11.7 LIMIT

LIMIT is a method that returns the maximum number of elements permitted in a collection. LIMIT is applicable only to varrays. The syntax for using
LIMIT is as follows:

<collection>.LIMIT

collection is the name of a collection.

For an initialized varray, LIMIT returns the maximum size limit determined by the varray type definition. If the varray is uninitialized (that is, it is a null
varray), an exception is thrown.

For an associative array or an initialized nested table, LIMIT returns NULL . If the nested table is uninitialized (that is, it is a null nested table), an
exception is thrown.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1082

16.11.8 NEXT

NEXT is a method that returns the subscript that follows a specified subscript. The method takes a single argument; the subscript that you are testing
for.

<collection>.NEXT(<subscript>)

collection is the name of the collection.

If the specified subscript is less than the first subscript in the collection, the function returns the first subscript. If the subscript does not have a successor,
NEXT returns NULL . If you specify a NULL subscript, PRIOR does not return a value.

The following example demonstrates using NEXT to return the subscript that follows subscript 10 in the associative array, sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('NEXT element: ' || sparse_arr.next(10));
END;

NEXT element: 100

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1083

16.11.9 PRIOR

The PRIOR method returns the subscript that precedes a specified subscript in a collection. The method takes a single argument; the subscript that
you are testing for. The syntax is:

<collection>.PRIOR(<subscript>)

collection is the name of the collection.

If the subscript specified does not have a predecessor, PRIOR returns NULL . If the specified subscript is greater than the last subscript in the collection,
the method returns the last subscript. If you specify a NULL subscript, PRIOR does not return a value.

The following example returns the subscript that precedes subscript 100 in the associative array, sparse_arr:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER INDEX BY BINARY_INTEGER;
 sparse_arr sparse_arr_typ;
BEGIN
 sparse_arr(-100) := -100;
 sparse_arr(-10) := -10;
 sparse_arr(0) := 0;
 sparse_arr(10) := 10;
 sparse_arr(100) := 100;
 DBMS_OUTPUT.PUT_LINE('PRIOR element: ' || sparse_arr.prior(100));
END;

PRIOR element: 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1084

16.11.10 TRIM

The TRIM method removes an element or elements from the end of a collection. The syntax for the TRIM method is:

<collection>.TRIM[(<count>)]

collection is the name of a collection.

count is the number of elements removed from the end of the collection. Advanced Server will return an error if count is less than 0 or greater than
the number of elements in the collection.

The following example demonstrates using the TRIM method to remove an element from the end of a collection:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
END;

COUNT: 5
COUNT: 4

COUNT indicates that before the TRIM method, there were 5 elements in the collection; after the TRIM method was invoked, the collection contains
4 elements.

You can also specify the number of elements to remove from the end of the collection with the TRIM method:

DECLARE
 TYPE sparse_arr_typ IS TABLE OF NUMBER;
 sparse_arr sparse_arr_typ := sparse_arr_typ(-100,-10,0,10,100);
 v_results VARCHAR2(50);
BEGIN
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 sparse_arr.TRIM(2);
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || sparse_arr.COUNT);
 FOR i IN sparse_arr.FIRST .. sparse_arr.LAST LOOP
 IF sparse_arr(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || sparse_arr(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
COUNT: 3
Results: -100 -10 0

COUNT indicates that before the TRIM method, there were 5 elements in the collection; after the TRIM method was invoked, the collection contains
3 elements.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1085

16.12 Working with Collections

Collection operators allow you to transform, query and manipulate the contents of a collection.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1086

16.12.1 TABLE()

Use the TABLE() function to transform the members of an array into a set of rows. The signature is:

TABLE(<collection_value>)

Where:

collection_value

collection_value is an expression that evaluates to a value of collection type.

The TABLE() function expands the nested contents of a collection into a table format. You can use the TABLE() function anywhere you use a regular
table expression.

The TABLE() function returns a SETOF ANYELEMENT (a set of values of any type). For example, if the argument passed to this function is an array of
dates, TABLE() will return a SETOF dates . If the argument passed to this function is an array of paths, TABLE() will return a SETOF
paths .

You can use the TABLE() function to expand the contents of a collection into table form:

postgres=# SELECT * FROM TABLE(monthly_balance(445.00, 980.20, 552.00));

 monthly_balance

 445.00
 980.20
 552.00
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1087

16.12.2 Using the MULTISET UNION Operator

The MULTISET UNION operator combines two collections to form a third collection. The signature is:

<coll_1> MULTISET UNION [ALL | DISTINCT | UNIQUE] <coll_2>

Where coll_1 and coll_2 specify the names of the collections to combine.

Include the ALL keyword to specify that duplicate elements (elements that are present in both coll_1 and coll_2) should be represented in the
result, once for each time they are present in the original collections. This is the default behavior of MULTISET UNION .

Include the DISTINCT or UNIQUE keyword to specify that duplicate elements should be included in the result only once. The DISTINCT and
UNIQUE keywords are synonymous.

The following example demonstrates using the MULTISET UNION operator to combine two collections (collection_1 and collection_2) into a
third collection (collection_3) :

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION ALL collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 30 40

The resulting collection includes one entry for each element in collection_1 and collection_2 . If the DISTINCT keyword is used, the results
are as follows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1088

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30);
 collection_2 := int_arr_typ(30,40);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 4
Results: 10 20 30 40

The resulting collection includes only those members with distinct values. Note in the following example that the MULTISET UNION DISTINCT
operator also removes duplicate entries that are stored within the same collection:

DECLARE
 TYPE int_arr_typ IS TABLE OF NUMBER(2);
 collection_1 int_arr_typ;
 collection_2 int_arr_typ;
 collection_3 int_arr_typ;
 v_results VARCHAR2(50);
BEGIN
 collection_1 := int_arr_typ(10,20,30,30);
 collection_2 := int_arr_typ(40,50);
 collection_3 := collection_1 MULTISET UNION DISTINCT collection_2;
 DBMS_OUTPUT.PUT_LINE('COUNT: ' || collection_3.COUNT);
 FOR i IN collection_3.FIRST .. collection_3.LAST LOOP
 IF collection_3(i) IS NULL THEN
 v_results := v_results || 'NULL ';
 ELSE
 v_results := v_results || collection_3(i) || ' ';
 END IF;
 END LOOP;
 DBMS_OUTPUT.PUT_LINE('Results: ' || v_results);
END;

COUNT: 5
Results: 10 20 30 40 50

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1089

16.12.3 Using the FORALL Statement

Collections can be used to more efficiently process DML commands by passing all the values to be used for repetitive execution of a DELETE, INSERT ,
or UPDATE command in one pass to the database server rather than re-iteratively invoking the DML command with new values. The DML command to be
processed in such a manner is specified with the FORALL statement. In addition, one or more collections are given in the DML command where different
values are to be substituted each time the command is executed.

FORALL <index> IN <lower_bound> .. <upper_bound>
 { <insert_stmt> | <update_stmt> | <delete_stmt> };

index is the position in the collection given in the insert_stmt, update_stmt , or delete_stmt DML command that iterates from the integer
value given as lower_bound up to and including upper_bound.

If an exception occurs during any iteration of the FORALL statement, all updates that occurred since the start of the execution of the FORALL statement
are automatically rolled back. This behavior is not compatible with Oracle databases. Oracle allows explicit use of the COMMIT or ROLLBACK commands
to control whether or not to commit or roll back updates that occurred prior to the exception.

The FORALL statement creates a loop – each iteration of the loop increments the index variable (you typically use the index within the loop to select
a member of a collection). The number of iterations is controlled by the lower_bound .. upper_bound clause. The loop is executes once for each
integer between the lower_bound and upper_bound (inclusive) and the index is incremented by one for each iteration. For example:

FORALL i IN 2 .. 5

Creates a loop that executes four times – in the first iteration, the index (i) is set to the value 2 ; in the second iteration, the index is set to the value
3 , and so on. The loop executes for the value 5 and then terminates.

The following example creates a table (emp_copy) that is an empty copy of the emp table. The example declares a type (emp_tbl) that is an array
where each element in the array is of composite type, composed of the column definitions used to create the table, emp . The example also creates an
index on the emp_tbl type.

t_emp is an associative array, of type emp_tbl . The SELECT statement uses the BULK COLLECT INTO command to populate the t_emp array.
After the t_emp array is populated, the FORALL statement iterates through the values (i) in the t_emp array index and inserts a row for each record
into emp_copy .

CREATE TABLE emp_copy(LIKE emp);

DECLARE

 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;

 t_emp emp_tbl;

BEGIN
 SELECT * FROM emp BULK COLLECT INTO t_emp;

 FORALL i IN t_emp.FIRST .. t_emp.LAST
 INSERT INTO emp_copy VALUES t_emp(i);

END;

The following example uses a FORALL statement to update the salary of three employees:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1090

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_sal SAL_TBL;
BEGIN
 t_empno(1) := 9001;
 t_sal(1) := 3350.00;
 t_empno(2) := 9002;
 t_sal(2) := 2000.00;
 t_empno(3) := 9003;
 t_sal(3) := 4100.00;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 UPDATE emp SET sal = t_sal(i) WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+---------+-----+----------+---------+------+--------
 9001 | JONES | ANALYST | | | 3350.00 | | 40
 9002 | LARSEN | CLERK | | | 2000.00 | | 40
 9003 | WILSON | MANAGER | | | 4100.00 | | 40
(3 rows)

The following example deletes three employees in a FORALL statement:

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
BEGIN
 t_empno(1) := 9001;
 t_empno(2) := 9002;
 t_empno(3) := 9003;
 FORALL i IN t_empno.FIRST..t_empno.LAST
 DELETE FROM emp WHERE empno = t_empno(i);
END;

SELECT * FROM emp WHERE empno > 9000;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+-------+-----+-----+----------+-----+------+--------
(0 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1091

16.12.4 Using the BULK COLLECT Clause

SQL commands that return a result set consisting of a large number of rows may not be operating as efficiently as possible due to the constant context
switching that must occur between the database server and the client in order to transfer the entire result set. This inefficiency can be mitigated by using a
collection to gather the entire result set in memory which the client can then access. The BULK COLLECT clause is used to specify the aggregation of the
result set into a collection.

The BULK COLLECT clause can be used with the SELECT INTO, FETCH INTO and EXECUTE IMMEDIATE commands, and with the RETURNING
INTO clause of the DELETE, INSERT , and UPDATE commands. Each of these is illustrated in the following sections.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1092

16.12.4.1 SELECT BULK COLLECT

The BULK COLLECT clause can be used with the SELECT INTO statement as follows. (Refer to SELECT INTO for additional information on the
SELECT INTO statement.)

SELECT <select_expressions> BULK COLLECT INTO <collection>
 [, ...] FROM ...;

If a single collection is specified, then collection may be a collection of a single field, or it may be a collection of a record type. If more than one
collection is specified, then each collection must consist of a single field. select_expressions must match in number, order, and type-
compatibility all fields in the target collections.

The following example shows the use of the BULK COLLECT clause where the target collections are associative arrays consisting of a single field.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1093

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE job_tbl IS TABLE OF emp.job%TYPE INDEX BY BINARY_INTEGER;
 TYPE hiredate_tbl IS TABLE OF emp.hiredate%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 TYPE comm_tbl IS TABLE OF emp.comm%TYPE INDEX BY BINARY_INTEGER;
 TYPE deptno_tbl IS TABLE OF emp.deptno%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_job JOB_TBL;
 t_hiredate HIREDATE_TBL;
 t_sal SAL_TBL;
 t_comm COMM_TBL;
 t_deptno DEPTNO_TBL;
BEGIN
 SELECT empno, ename, job, hiredate, sal, comm, deptno BULK COLLECT
 INTO t_empno, t_ename, t_job, t_hiredate, t_sal, t_comm, t_deptno
 FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' ||
 RPAD(t_ename(i),8) || ' ' ||
 RPAD(t_job(i),10) || ' ' ||
 TO_CHAR(t_hiredate(i),'DD-MON-YY') || ' ' ||
 TO_CHAR(t_sal(i),'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_comm(i),0),'99,999.99') || ' ' ||
 t_deptno(i));
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

The following example produces the same result, but uses an associative array on a record type defined with the %ROWTYPE attribute.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1094

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 SELECT * BULK COLLECT INTO t_emp FROM emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1095

16.12.4.2 FETCH BULK COLLECT

The BULK COLLECT clause can be used with a FETCH statement. (See Fetching Rows From a Cursor for information on the FETCH statement.)
Instead of returning a single row at a time from the result set, the FETCH BULK COLLECT will return all rows at once from the result set into the
specified collection unless restricted by the LIMIT clause.

FETCH <name> BULK COLLECT INTO <collection> [, ...] [LIMIT <n>];

If a single collection is specified, then collection may be a collection of a single field, or it may be a collection of a record type. If more than one
collection is specified, then each collection must consist of a single field. The expressions in the SELECT list of the cursor identified by name must
match in number, order, and type-compatibility all fields in the target collections. If LIMIT n is specified, the number of rows returned into the collection
on each FETCH will not exceed n .

The following example uses the FETCH BULK COLLECT statement to retrieve rows into an associative array.

DECLARE
 TYPE emp_tbl IS TABLE OF emp%ROWTYPE INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
 CURSOR emp_cur IS SELECT * FROM emp;
BEGIN
 OPEN emp_cur;
 FETCH emp_cur BULK COLLECT INTO t_emp;
 CLOSE emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 RPAD(t_emp(i).job,10) || ' ' ||
 TO_CHAR(t_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(t_emp(i).comm,0),'99,999.99') || ' ' ||
 t_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 800.00 .00 20
7499 ALLEN SALESMAN 20-FEB-81 1,600.00 300.00 30
7521 WARD SALESMAN 22-FEB-81 1,250.00 500.00 30
7566 JONES MANAGER 02-APR-81 2,975.00 .00 20
7654 MARTIN SALESMAN 28-SEP-81 1,250.00 1,400.00 30
7698 BLAKE MANAGER 01-MAY-81 2,850.00 .00 30
7782 CLARK MANAGER 09-JUN-81 2,450.00 .00 10
7788 SCOTT ANALYST 19-APR-87 3,000.00 .00 20
7839 KING PRESIDENT 17-NOV-81 5,000.00 .00 10
7844 TURNER SALESMAN 08-SEP-81 1,500.00 .00 30
7876 ADAMS CLERK 23-MAY-87 1,100.00 .00 20
7900 JAMES CLERK 03-DEC-81 950.00 .00 30
7902 FORD ANALYST 03-DEC-81 3,000.00 .00 20
7934 MILLER CLERK 23-JAN-82 1,300.00 .00 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1096

16.12.4.3 EXECUTE IMMEDIATE BULK COLLECT

The BULK COLLECT clause can be used with a EXECUTE IMMEDIATE statement to specify a collection to receive the returned rows.

EXECUTE IMMEDIATE '<sql_expression>;'
 BULK COLLECT INTO <collection> [,...]
 [USING {[<bind_type>] <bind_argument>} [, ...]}];

collection specifies the name of a collection.

bind_type specifies the parameter mode of the bind_argument .

A bind_type of IN specifies that the bind_argument contains a value that is passed to the sql_expression .
A bind_type of OUT specifies that the bind_argument receives a value from the sql_expression .
A bind_type of IN OUT specifies that the bind_argument is passed to sql_expression , and then stores the value returned by
sql_expression .

bind_argument specifies a parameter that contains a value that is either passed to the sql_expression (specified with a bind_type of IN), or
that receives a value from the sql_expression (specified with a bind_type of OUT), or both (specified with a bind_type of IN OUT).

If a single collection is specified, then collection may be a collection of a single field, or a collection of a record type; if more than one collection is
specified, each collection must consist of a single field.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1097

16.12.4.4 RETURNING BULK COLLECT

The BULK COLLECT clause can be added to the RETURNING INTO clause of a DELETE, INSERT , or UPDATE command. (See Using the
RETURNING INTO Clause for information on the RETURNING INTO clause.)

{ <insert> | <update> | <delete> }
 RETURNING { * | <expr_1> [, <expr_2>] ...}
 BULK COLLECT INTO <collection> [, ...];

insert, update , and delete are the INSERT, UPDATE , and DELETE commands as described in INSERT, UPDATE, and DELETE, respectively. If
a single collection is specified, then collection may be a collection of a single field, or it may be a collection of a record type. If more than one
collection is specified, then each collection must consist of a single field. The expressions following the RETURNING keyword must match in
number, order, and type-compatibility all fields in the target collections. If * is specified, then all columns in the affected table are returned. (Note that
the use of * is an Advanced Server extension and is not compatible with Oracle databases.)

The clerkemp table created by copying the emp table is used in the remaining examples in this section as shown below.

CREATE TABLE clerkemp AS SELECT * FROM emp WHERE job = 'CLERK';

SELECT * FROM clerkemp;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-------+------+--------------------+---------+------+-------
-
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(4 rows)

The following example increases everyone’s salary by 1.5, stores the employees’ numbers, names, and new salaries in three associative arrays, and finally,
displays the contents of these arrays.

DECLARE
 TYPE empno_tbl IS TABLE OF emp.empno%TYPE INDEX BY BINARY_INTEGER;
 TYPE ename_tbl IS TABLE OF emp.ename%TYPE INDEX BY BINARY_INTEGER;
 TYPE sal_tbl IS TABLE OF emp.sal%TYPE INDEX BY BINARY_INTEGER;
 t_empno EMPNO_TBL;
 t_ename ENAME_TBL;
 t_sal SAL_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_empno, t_ename, t_sal;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_empno.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_empno(i) || ' ' || RPAD(t_ename(i),8) ||
 ' ' || TO_CHAR(t_sal(i),'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1098

The following example performs the same functionality as the previous example, but uses a single collection defined with a record type to store the
employees’ numbers, names, and new salaries.

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 sal emp.sal%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 t_emp EMP_TBL;
BEGIN
 UPDATE clerkemp SET sal = sal * 1.5 RETURNING empno, ename, sal
 BULK COLLECT INTO t_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- -------- ');
 FOR i IN 1..t_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(t_emp(i).empno || ' ' ||
 RPAD(t_emp(i).ename,8) || ' ' ||
 TO_CHAR(t_emp(i).sal,'99,999.99'));
 END LOOP;
END;

EMPNO ENAME SAL
----- ------- --------
7369 SMITH 1,200.00
7876 ADAMS 1,650.00
7900 JAMES 1,425.00
7934 MILLER 1,950.00

The following example deletes all rows from the clerkemp table, and returns information on the deleted rows into an associative array, which is then
displayed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1099

DECLARE
 TYPE emp_rec IS RECORD (
 empno emp.empno%TYPE,
 ename emp.ename%TYPE,
 job emp.job%TYPE,
 hiredate emp.hiredate%TYPE,
 sal emp.sal%TYPE,
 comm emp.comm%TYPE,
 deptno emp.deptno%TYPE
);
 TYPE emp_tbl IS TABLE OF emp_rec INDEX BY BINARY_INTEGER;
 r_emp EMP_TBL;
BEGIN
 DELETE FROM clerkemp RETURNING empno, ename, job, hiredate, sal,
 comm, deptno BULK COLLECT INTO r_emp;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME JOB HIREDATE ' ||
 'SAL ' || 'COMM DEPTNO');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '-------- ' || '-------- ------');
 FOR i IN 1..r_emp.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(r_emp(i).empno || ' ' ||
 RPAD(r_emp(i).ename,8) || ' ' ||
 RPAD(r_emp(i).job,10) || ' ' ||
 TO_CHAR(r_emp(i).hiredate,'DD-MON-YY') || ' ' ||
 TO_CHAR(r_emp(i).sal,'99,999.99') || ' ' ||
 TO_CHAR(NVL(r_emp(i).comm,0),'99,999.99') || ' ' ||
 r_emp(i).deptno);
 END LOOP;
END;

EMPNO ENAME JOB HIREDATE SAL COMM DEPTNO
----- ------- --------- --------- -------- -------- ------
7369 SMITH CLERK 17-DEC-80 1,200.00 .00 20
7876 ADAMS CLERK 23-MAY-87 1,650.00 .00 20
7900 JAMES CLERK 03-DEC-81 1,425.00 .00 30
7934 MILLER CLERK 23-JAN-82 1,950.00 .00 10

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1100

16.12.5 Errors and Messages

Use the DBMS_OUTPUT.PUT_LINE statement to report messages.

DBMS_OUTPUT.PUT_LINE (<message>);

message is any expression evaluating to a string.

This example displays the message on the user’s output display:

DBMS_OUTPUT.PUT_LINE('My name is John');

The special variables SQLCODE and SQLERRM contain a numeric code and a text message, respectively, that describe the outcome of the last SQL
command issued. If any other error occurs in the program such as division by zero, these variables contain information pertaining to the error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1101

16.13 Triggers

This chapter describes Advanced Server triggers. As with procedures and functions, triggers are written in the SPL language.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1102

16.13.1 Overview

A trigger is a named SPL code block that is associated with a table and stored in the database. When a specified event occurs on the associated table, the
SPL code block is executed. The trigger is said to be fired when the code block is executed.

The event that causes a trigger to fire can be any combination of an insert, update, or deletion carried out on the table, either directly or indirectly. If the
table is the object of a SQL INSERT, UPDATE, DELETE , or TRUNCATE command the trigger is directly fired assuming that the corresponding insert,
update, delete, or truncate event is defined as a triggering event. The events that fire the trigger are defined in the CREATE TRIGGER command.

A trigger can be fired indirectly if a triggering event occurs on the table as a result of an event initiated on another table. For example, if a trigger is defined
on a table containing a foreign key defined with the ON DELETE CASCADE clause and a row in the parent table is deleted, all children of the parent
would be deleted as well. If deletion is a triggering event on the child table, deletion of the children will cause the trigger to fire.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1103

16.13.2 Types of Triggers

Advanced Server supports both row-level and statement-level triggers. A row-level trigger fires once for each row that is affected by a triggering event. For
example, if deletion is defined as a triggering event on a table and a single DELETE command is issued that deletes five rows from the table, then the
trigger will fire five times, once for each row.

In contrast, a statement-level trigger fires once per triggering statement regardless of the number of rows affected by the triggering event. In the prior
example of a single DELETE command deleting five rows, a statement-level trigger would fire only once.

The sequence of actions can be defined regarding whether the trigger code block is executed before or after the triggering statement, itself, in the case of
statement-level triggers; or before or after each row is affected by the triggering statement in the case of row-level triggers.

In a before row-level trigger, the trigger code block is executed before the triggering action is carried out on each affected row. In a before statement-level
trigger, the trigger code block is executed before the action of the triggering statement is carried out.

In an after row-level trigger, the trigger code block is executed after the triggering action is carried out on each affected row. In an after statement-level
trigger, the trigger code block is executed after the action of the triggering statement is carried out.

In a compound trigger, a statement-level and a row-level trigger can be defined in a single trigger and can be fired at more than one timing point see,
Compound Triggers for information about compound triggers.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1104

16.13.3 Creating Triggers

The CREATE TRIGGER command defines and names a trigger that will be stored in the database.

NameName

CREATE TRIGGER -- define a simple trigger.

SynopsisSynopsis

CREATE [OR REPLACE] TRIGGER <name>
 { BEFORE | AFTER | INSTEAD OF }
 { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [FOR EACH ROW]
 [WHEN <condition>]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 <declaration>; [, ...]]
 BEGIN
 <statement>; [, ...]
 [EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN
 <statement>; [, ...] } [, ...]
]
 END

NameName

CREATE TRIGGER -- define a compound trigger.

SynopsisSynopsis

CREATE [OR REPLACE] TRIGGER <name>
 FOR { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new>. } ...]
 [WHEN <condition>]
 COMPOUND TRIGGER
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 <compound_trigger_definition>
 END

Where private_declaration is an identifier of a private variable that can be accessed by any procedure or function. There can be zero, one, or more
private variables. private_declaration can be any of the following:

Variable Declaration
Record Declaration
Collection Declaration
REF CURSOR and Cursor Variable Declaration
TYPE Definitions for Records, Collections, and REF CURSORs

Exception

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1105

Object Variable Declaration

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name] ;

Where procedure_body :=

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...]] THEN <statement>; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN <statement>; }
 [...]
]

Where compound_trigger_definition is:

{ compound_trigger_event } { IS | AS }
 compound_trigger_body
END [compound_trigger_event] [...]

Where compound_trigger_event:=

[BEFORE STATEMENT | BEFORE EACH ROW | AFTER EACH ROW | AFTER STATEMENT | INSTEAD OF EACH ROW]

Where compound_trigger_body:=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1106

[<declaration>;] [, ...]
BEGIN
 <statement>; [...]
[EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN <statement>; }
 [...]
]

DescriptionDescription

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER will either create a new trigger, or replace an existing definition.

If you are using the CREATE TRIGGER keywords to create a new trigger, the name of the new trigger must not match any existing trigger defined on the
same table. New triggers will be created in the same schema as the table on which the triggering event is defined.

If you are updating the definition of an existing trigger, use the CREATE OR REPLACE TRIGGER keywords.

When you use syntax compatible with Oracle databases to create a trigger, the trigger runs as a SECURITY DEFINER function.

ParametersParameters

name

The name of the trigger to create.

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSTEAD OF

INSTEAD OF trigger modifies an updatable view; the trigger will execute to update the underlying table(s) appropriately. The INSTEAD OF trigger is
executed for each row of the view that is updated or modified.

INSERT | UPDATE | DELETE | TRUNCATE

Defines the triggering event.

table

The name of the table or view on which the triggering event occurs.

condition

condition is a Boolean expression that determines if the trigger will actually be executed; if condition evaluates to TRUE , the trigger will fire.

If the simple trigger definition includes the FOR EACH ROW keywords, the WHEN clause can refer to columns of the old and/or new row values by
writing OLD.column_name or NEW.column_name respectively. INSERT triggers cannot refer to OLD and DELETE triggers cannot refer to
NEW .

If the compound trigger definition includes a statement-level trigger having a WHEN clause, then the trigger is executed without evaluating the
expression in the WHEN clause. Similarly, if a compound trigger definition includes a row-level trigger having a WHEN clause, then the trigger is
executed if the expression evaluates to TRUE .

If the trigger includes the INSTEAD OF keywords, it may not include a WHEN clause. A WHEN clause cannot contain subqueries.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1107

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows, but restricted in that old may only be replaced by an identifier named old or any
equivalent that is saved in all lowercase (for example, REFERENCING OLD AS old, REFERENCING OLD AS OLD , or REFERENCING OLD AS
"old") . Also, new may only be replaced by an identifier named new or any equivalent that is saved in all lowercase (for example, REFERENCING
NEW AS new, REFERENCING NEW AS NEW , or REFERENCING NEW AS "new") .

Either one, or both phrases OLD AS old and NEW AS new may be specified in the REFERENCING clause (for example, REFERENCING NEW AS
New OLD AS Old) . This clause is not compatible with Oracle databases in that identifiers other than old or new may not be used.

FOR EACH ROW

Determines whether the trigger should be fired once for every row affected by the triggering event, or just once per SQL statement. If specified, the trigger
is fired once for every affected row (row-level trigger), otherwise the trigger is a statement-level trigger.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the trigger as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If subprogram declarations are included, they must be declared after all other variable, type,
and REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is considered an SPL statement unto itself. Thus, the trigger body may
contain nested blocks.

exception

An exception condition name such as NO_DATA_FOUND, OTHERS , etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1108

16.13.4 Trigger Variables

In the trigger code block, several special variables are available for use.

NEW

NEW is a pseudo-record name that refers to the new table row for insert and update operations in row-level triggers. This variable is not applicable in
statement-level triggers and in delete operations of row-level triggers.

Its usage is: :NEW.column where column is the name of a column in the table on which the trigger is defined.

The initial content of :NEW.column is the value in the named column of the new row to be inserted or of the new row that is to replace the old one when
used in a before row-level trigger. When used in an after row-level trigger, this value has already been stored in the table since the action has already
occurred on the affected row.

In the trigger code block, :NEW.column can be used like any other variable. If a value is assigned to :NEW.column , in the code block of a before row-
level trigger, the assigned value will be used in the new inserted or updated row.

OLD

OLD is a pseudo-record name that refers to the old table row for update and delete operations in row-level triggers. This variable is not applicable in
statement-level triggers and in insert operations of row-level triggers.

Its usage is: :OLD.column where column is the name of a column in the table on which the trigger is defined.

The initial content of :OLD.column is the value in the named column of the row to be deleted or of the old row that is to be replaced by the new one
when used in a before row-level trigger. When used in an after row-level trigger, this value is no longer stored in the table since the action has already
occurred on the affected row.

In the trigger code block, :OLD.column can be used like any other variable. Assigning a value to :OLD.column , has no effect on the action of the
trigger.

INSERTING

INSERTING is a conditional expression that returns TRUE if an insert operation fired the trigger, otherwise it returns FALSE .

UPDATING

UPDATING is a conditional expression that returns TRUE if an update operation fired the trigger, otherwise it returns FALSE .

DELETING

DELETING is a conditional expression that returns TRUE if a delete operation fired the trigger, otherwise it returns FALSE .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1109

16.13.5 Transactions and Exceptions

A trigger is always executed as part of the same transaction within which the triggering statement is executing. When no exceptions occur within the
trigger code block, the effects of any triggering commands within the trigger are committed if and only if the transaction containing the triggering
statement is committed. Therefore, if the transaction is rolled back, the effects of any triggering commands within the trigger are also rolled back.

If an exception does occur within the trigger code block, but it is caught and handled in an exception section, the effects of any triggering commands within
the trigger are still rolled back nonetheless. The triggering statement itself, however, is not rolled back unless the application forces a roll back of the
encapsulating transaction.

If an unhandled exception occurs within the trigger code block, the transaction that encapsulates the trigger is aborted and rolled back. Therefore, the
effects of any triggering commands within the trigger and the triggering statement, itself are all rolled back.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1110

16.13.6 Compound Triggers

Advanced Server has added compatible syntax to support compound triggers. A compound trigger combines all the triggering timings under one trigger
body that can be invoked at one or more timing points. A timing point is a point in time related to a triggering statement (an INSERT, UPDATE,
DELETE or TRUNCATE statement that modifies data). The supported timing points are:

BEFORE STATEMENT : Before the triggering statement executes.
BEFORE EACH ROW : Before each row that the triggering statement affects.
AFTER EACH ROW : After each row that the triggering statement affects.
AFTER STATEMENT : After the triggering statement executes.
INSTEAD OF EACH ROW : Trigger fires once for every row affected by the triggering statement.

A compound trigger may include any combination of timing points defined in a single trigger.

The optional declaration section in a compound trigger allows you to declare trigger-level variables and subprograms. The content of the declaration is
accessible to all timing points referenced by the trigger definition. The variables and subprograms created by the declaration persist only for the duration of
the triggering statement.

A compound trigger contains a declaration, followed by a PL block for each timing point:

CREATE OR REPLACE TRIGGER compound_trigger_name
FOR INSERT OR UPDATE OR DELETE ON table_name
COMPOUND TRIGGER
 -- Global Declaration Section (optional)
 -- Variables declared here can be used inside any timing-point blocks.

 BEFORE STATEMENT IS
 BEGIN
 NULL;
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 NULL;
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 NULL;
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 NULL;
 END AFTER STATEMENT;
END compound_trigger_name;
/
Trigger created.

NoteNote

It is not mandatory to have all the four timing blocks; you can create a compound trigger for any of the required timing-points.

A Compound Trigger has the following restrictions:

A compound trigger body is comprised of a compound trigger block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1111

A compound trigger can be defined on a table or a view.
Exceptions are non-transferable to other timing-point section and must be handled separately in that section only by each compound trigger block.
If a GOTO statement is specified in a timing-point section, then the target of the GOTO statement must also be specified in the same timing-point
section.
:OLD and :NEW variable identifiers cannot exist in the declarative section, the BEFORE STATEMENT section, or the AFTER STATEMENT

section.
:NEW values can only be modified by the BEFORE EACH ROW block.

The sequence of compound trigger timing-point execution is specific, but if a simple trigger exists within the same timing-point then the simple
trigger is fired first, followed by the firing of compound triggers.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1112

16.13.7 Trigger Examples

The following sections illustrate an example of each type of trigger.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1113

16.13.7.1 Before Statement-Level Trigger

The following is an example of a simple before statement-level trigger that displays a message prior to an insert operation on the emp table.

CREATE OR REPLACE TRIGGER emp_alert_trig
 BEFORE INSERT ON emp
BEGIN
 DBMS_OUTPUT.PUT_LINE('New employees are about to be added');
END;

The following INSERT is constructed so that several new rows are inserted upon a single execution of the command. For each row that has an employee
id between 7900 and 7999, a new row is inserted with an employee id incremented by 1000. The following are the results of executing the command when
three new rows are inserted.

INSERT INTO emp (empno, ename, deptno) SELECT empno + 1000, ename, 40
 FROM emp WHERE empno BETWEEN 7900 AND 7999;
New employees are about to be added

SELECT empno, ename, deptno FROM emp WHERE empno BETWEEN 8900 AND 8999;

 EMPNO ENAME DEPTNO
---------- ---------- ----------
 8900 JAMES 40
 8902 FORD 40
 8934 MILLER 40

The message, New employees are about to be added , is displayed once by the firing of the trigger even though the result is the addition of
three new rows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1114

16.13.7.2 After Statement-Level Trigger

The following is an example of an after statement-level trigger. Whenever an insert, update, or delete operation occurs on the emp table, a row is added to
the empauditlog table recording the date, user, and action.

CREATE TABLE empauditlog (
 audit_date DATE,
 audit_user VARCHAR2(20),
 audit_desc VARCHAR2(20)
);
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(20);
BEGIN
 IF INSERTING THEN
 v_action := 'Added employee(s)';
 ELSIF UPDATING THEN
 v_action := 'Updated employee(s)';
 ELSIF DELETING THEN
 v_action := 'Deleted employee(s)';
 END IF;
 INSERT INTO empauditlog VALUES (SYSDATE, USER,
 v_action);
END;

In the following sequence of commands, two rows are inserted into the emp table using two INSERT commands. The sal and comm columns of both
rows are updated with one UPDATE command. Finally, both rows are deleted with one DELETE command.

INSERT INTO emp VALUES (9001,'SMITH','ANALYST',7782,SYSDATE,NULL,NULL,10);

INSERT INTO emp VALUES (9002,'JONES','CLERK',7782,SYSDATE,NULL,NULL,10);

UPDATE emp SET sal = 4000.00, comm = 1200.00 WHERE empno IN (9001, 9002);

DELETE FROM emp WHERE empno IN (9001, 9002);

SELECT TO_CHAR(AUDIT_DATE,'DD-MON-YY HH24:MI:SS') AS "AUDIT DATE",
 audit_user, audit_desc FROM empauditlog ORDER BY 1 ASC;

AUDIT DATE AUDIT_USER AUDIT_DESC
------------------ -------------------- --------------------
31-MAR-05 14:59:48 SYSTEM Added employee(s)
31-MAR-05 15:00:07 SYSTEM Added employee(s)
31-MAR-05 15:00:19 SYSTEM Updated employee(s)
31-MAR-05 15:00:34 SYSTEM Deleted employee(s)

The contents of the empauditlog table show how many times the trigger was fired - once each for the two inserts, once for the update (even though two
rows were changed) and once for the deletion (even though two rows were deleted).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1115

16.13.7.3 Before Row-Level Trigger

The following example is a before row-level trigger that calculates the commission of every new employee belonging to department 30 that is inserted into
the emp table.

CREATE OR REPLACE TRIGGER emp_comm_trig
 BEFORE INSERT ON emp
 FOR EACH ROW
BEGIN
 IF :NEW.deptno = 30 THEN
 :NEW.comm := :NEW.sal * .4;
 END IF;
END;

The listing following the addition of the two employees shows that the trigger computed their commissions and inserted it as part of the new employee
rows.

INSERT INTO emp VALUES (9005,'ROBERS','SALESMAN',7782,SYSDATE,3000.00,NULL,30);

INSERT INTO emp VALUES (9006,'ALLEN','SALESMAN',7782,SYSDATE,4500.00,NULL,30);

SELECT * FROM emp WHERE empno IN (9005, 9006);

 EMPNO ENAME JOB MGR HIREDATE SAL COMM DEPTNO
------ ------ -------- ------ ---------- --------- ---------- -------------
 9005 ROBERS SALESMAN 7782 01-APR-05 3000 1200 30
 9006 ALLEN SALESMAN 7782 01-APR-05 4500 1800 30

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1116

16.13.7.4 After Row-Level Trigger

The following example is an after row-level trigger. When a new employee row is inserted, the trigger adds a new row to the jobhist table for that
employee. When an existing employee is updated, the trigger sets the enddate column of the latest jobhist row (assumed to be the one with a null
enddate) to the current date and inserts a new jobhist row with the employee’s new information.

Finally, trigger adds a row to the empchglog table with a description of the action.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1117

CREATE TABLE empchglog (
 chg_date DATE,
 chg_desc VARCHAR2(30)
);
CREATE OR REPLACE TRIGGER emp_chg_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH ROW
DECLARE
 v_empno emp.empno%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_action VARCHAR2(7);
 v_chgdesc jobhist.chgdesc%TYPE;
BEGIN
 IF INSERTING THEN
 v_action := 'Added';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, 'New Hire');
 ELSIF UPDATING THEN
 v_action := 'Updated';
 v_empno := :NEW.empno;
 v_deptno := :NEW.deptno;
 v_chgdesc := '';
 IF NVL(:OLD.ename, '-null-') != NVL(:NEW.ename, '-null-') THEN
 v_chgdesc := v_chgdesc || 'name, ';
 END IF;
 IF NVL(:OLD.job, '-null-') != NVL(:NEW.job, '-null-') THEN
 v_chgdesc := v_chgdesc || 'job, ';
 END IF;
 IF NVL(:OLD.sal, -1) != NVL(:NEW.sal, -1) THEN
 v_chgdesc := v_chgdesc || 'salary, ';
 END IF;
 IF NVL(:OLD.comm, -1) != NVL(:NEW.comm, -1) THEN
 v_chgdesc := v_chgdesc || 'commission, ';
 END IF;
 IF NVL(:OLD.deptno, -1) != NVL(:NEW.deptno, -1) THEN
 v_chgdesc := v_chgdesc || 'department, ';
 END IF;
 v_chgdesc := 'Changed ' || RTRIM(v_chgdesc, ', ');
 UPDATE jobhist SET enddate = SYSDATE WHERE empno = :OLD.empno
 AND enddate IS NULL;
 INSERT INTO jobhist VALUES (:NEW.empno, SYSDATE, NULL,
 :NEW.job, :NEW.sal, :NEW.comm, :NEW.deptno, v_chgdesc);
 ELSIF DELETING THEN
 v_action := 'Deleted';
 v_empno := :OLD.empno;
 v_deptno := :OLD.deptno;
 END IF;

 INSERT INTO empchglog VALUES (SYSDATE,
 v_action || ' employee # ' || v_empno);
END;

In the first sequence of commands shown below, two employees are added using two separate INSERT commands and then both are updated using a
single UPDATE command. The contents of the jobhist table shows the action of the trigger for each affected row - two new hire entries for the two
new employees and two changed commission records for the updated commissions on the two employees. The empchglog table also shows the trigger
was fired a total of four times, once for each action on the two rows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1118

INSERT INTO emp VALUES (9003,'PETERS','ANALYST',7782,SYSDATE,5000.00,NULL,40);

INSERT INTO emp VALUES (9004,'AIKENS','ANALYST',7782,SYSDATE,4500.00,NULL,40);

UPDATE emp SET comm = sal * 1.1 WHERE empno IN (9003, 9004);

SELECT * FROM jobhist WHERE empno IN (9003, 9004);

 EMPNO STARTDATE ENDDATE JOB SAL COMM DEPTNO CHGDESC
---------- --------- --------- --------- ---------- ---------- ---------- -------------
 9003 31-MAR-05 31-MAR-05 ANALYST 5000 40 New Hire
 9004 31-MAR-05 31-MAR-05 ANALYST 4500 40 New Hire
 9003 31-MAR-05 ANALYST 5000 5500 40 Changed commission
 9004 31-MAR-05 ANALYST 4500 4950 40 Changed commission

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004

Finally, both employees are deleted with a single DELETE command. The empchglog table now shows the trigger was fired twice, once for each
deleted employee.

DELETE FROM emp WHERE empno IN (9003, 9004);

SELECT * FROM empchglog;

CHG_DATE CHG_DESC
--------- ------------------------------
31-MAR-05 Added employee # 9003
31-MAR-05 Added employee # 9004
31-MAR-05 Updated employee # 9003
31-MAR-05 Updated employee # 9004
31-MAR-05 Deleted employee # 9003
31-MAR-05 Deleted employee # 9004

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1119

16.13.7.5 INSTEAD OF Trigger

The following example shows an INSTEAD OF trigger for inserting new employee row into the emp_vw view. The CREATE VIEW statement creates
the emp_vw view by joining the two tables. The trigger adds the corresponding new rows into the emp and dept table respectively for a specific
employee.

CREATE VIEW emp_vw AS SELECT * FROM emp e JOIN dept d USING(deptno);
CREATE VIEW

CREATE OR REPLACE TRIGGER empvw_instead_of_trig
 INSTEAD OF INSERT ON emp_vw
 FOR EACH ROW
DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_deptno emp.deptno%TYPE;
 v_dname dept.dname%TYPE;
 v_loc dept.loc%TYPE;
 v_action VARCHAR2(7);
BEGIN
 v_empno := :NEW.empno;
 v_ename := :New.ename;
 v_deptno := :NEW.deptno;
 v_dname := :NEW.dname;
 v_loc := :NEW.loc;
 INSERT INTO emp(empno, ename, deptno) VALUES(v_empno, v_ename, v_deptno);
 INSERT INTO dept(deptno, dname, loc) VALUES(v_deptno, v_dname, v_loc);
END;
CREATE TRIGGER

Now, insert the values into the emp_vw view. The insert action inserts a new row and produces the following output:

INSERT INTO emp_vw (empno, ename, deptno, dname, loc) VALUES(1234, 'ASHTON', 50, 'IT', 'NEW JERSEY');
INSERT 0 1

SELECT empno, ename, deptno FROM emp WHERE deptno = 50;
 empno | ename | deptno
-------+--------+--------
 1234 | ASHTON | 50
(1 row)

SELECT * FROM dept WHERE deptno = 50;
 deptno | dname | loc
--------+-------+------------
 50 | IT | NEW JERSEY
(1 row)

Similarly, if you specify UPDATE or DELETE statement, the trigger will perform the appropriate actions for UPDATE or DELETE events.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1120

16.13.7.6 Compound Triggers

The following example of a compound trigger records a change to the employee salary by defining a compound trigger (named hr_trigger) on the
emp table.

First, create a table named emp .

CREATE TABLE emp(EMPNO INT, ENAME TEXT, SAL INT, DEPTNO INT);
CREATE TABLE

Then, create a compound trigger named hr_trigger . The trigger utilizes each of the four timing-points to modify the salary with an INSERT ,
UPDATE , or DELETE statement. In the global declaration section, the initial salary is declared as 10,000 .

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;

 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || var_sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || var_sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

INSERT the record into table emp .

INSERT INTO emp (EMPNO, ENAME, SAL, DEPTNO) VALUES(1111,'SMITH', 10000, 20);

The INSERT statement produces the following output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1121

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 15000 for a specific employee number.

UPDATE emp SET SAL = 15000 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
UPDATE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-------+--------
 1111 | SMITH | 15000 | 20
(1 row)

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
DELETE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-----+--------
(0 rows)

The TRUNCATE statement removes all the records from the emp table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1122

CREATE OR REPLACE TRIGGER hr_trigger
 FOR TRUNCATE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;
 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

The TRUNCATE statement produces the following output:

TRUNCATE emp;
Before Statement: 11000
After statement: 12000
TRUNCATE TABLE

NoteNote

The TRUNCATE statement may be used only at a BEFORE STATEMENT or AFTER STATEMENT timing-point.

The following example creates a compound trigger named hr_trigger on the emp table with a WHEN condition that checks and prints employee
salary whenever a INSERT , UPDATE , or DELETE statement affects the emp table. The database evaluates the WHEN condition for a row-level
trigger, and the trigger is executed once per row if the WHEN condition evaluates to TRUE . The statement-level trigger is executed irrespective of the
WHEN condition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1123

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 REFERENCING NEW AS new OLD AS old
 WHEN (old.sal > 5000 OR new.sal < 8000)
 COMPOUND TRIGGER

 BEFORE STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Statement');
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Statement');
 END AFTER STATEMENT;

END hr_trigger;

Insert the record into table emp .

INSERT INTO emp(EMPNO, ENAME, SAL, DEPTNO) VALUES(1111, 'SMITH', 1600, 20);

The INSERT statement produces the following output:

Before Statement
Before Each Row: 1600
After Each Row: 1600
After Statement
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 7500 .

UPDATE emp SET SAL = 7500 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement
Before Each Row: 1600 7500
After Each Row: 1600 7500
After Statement
UPDATE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+------+--------
 1111 | SMITH | 7500 | 20
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1124

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement
Before Each Row: 7500
After Each Row: 7500
After Statement
DELETE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+-----+--------
(0 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1125

16.14 Packages

Advanced Server provides a collection of packages that provide compatibility with Oracle packages.

A package is a named collection of functions, procedures, variables, cursors, user-defined record types, and records that are referenced using a common
qualifier – the package identifier. Packages have the following characteristics:

Packages provide a convenient means of organizing the functions and procedures that perform a related purpose. Permission to use the package
functions and procedures is dependent upon one privilege granted to the entire package. All of the package programs must be referenced with a
common name.
Certain functions, procedures, variables, types, etc. in the package can be declared as public. Public entities are visible and can be referenced by
other programs that are given EXECUTE privilege on the package. For public functions and procedures, only their signatures are visible - the
program names, parameters if any, and return types of functions. The SPL code of these functions and procedures is not accessible to others,
therefore applications that utilize a package are dependent only upon the information available in the signature – not in the procedural logic itself.
Other functions, procedures, variables, types, etc. in the package can be declared as private. Private entities can be referenced and used by function
and procedures within the package, but not by other external applications. Private entities are for use only by programs within the package.
Function and procedure names can be overloaded within a package. One or more functions/procedures can be defined with the same name, but with
different signatures. This provides the capability to create identically named programs that perform the same job, but on different types of input.

For more information about the package support provided by Advanced Server, see the Database Compatibility for Oracle Developers Built-in Package
Guide, available at:

https://www.enterprisedb.com/docs

For a list of built-in packages, see the Table of Contents, of "Built-In Packages" of the Database Compatibility for Oracle Developers Built-in Package Guide.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1126

https://www.enterprisedb.com/docs

16.15 Object Types and Objects

This chapter discusses how object-oriented programming techniques can be exploited in SPL. Object-oriented programming as seen in programming
languages such as Java and C++ centers on the concept of objects. An object is a representation of a real-world entity such as a person, place, or thing. The
generic description or definition of a particular object such as a person for example, is called an object type. Specific people such as “Joe” or “Sally” are
said to be objects of object type, person, or equivalently, instances of the object type, person, or simply, person objects.

NoteNote

The terms “database objects” and “objects” that have been used in this document up to this point should not be confused with an object
type and object as used in this chapter. The previous usage of these terms relates to the entities that can be created in a database such as
tables, views, indexes, users, etc. Within the context of this chapter, object type and object refer to specific data structures supported by
the SPL programming language to implement object-oriented concepts.

In Oracle, the term abstract data type (ADT) is used to describe object types in PL/SQL. The SPL implementation of object types is intended
to be compatible with Oracle abstract data types.

Advanced Server has not yet implemented support for some features of object-oriented programming languages. This chapter documents
only those features that have been implemented.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1127

16.15.1 Basic Object Concepts

An object type is a description or definition of some entity. This definition of an object type is characterized by two components:

Attributes – fields that describe particular characteristics of an object instance. For a person object, examples might be name, address, gender, date
of birth, height, weight, eye color, occupation, etc.
Methods – programs that perform some type of function or operation on, or related to an object. For a person object, examples might be calculating
the person’s age, displaying the person’s attributes, changing the values assigned to the person’s attributes, etc.

The following sections elaborate on some basic object concepts.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1128

16.15.1.1 Attributes

Every object type must contain at least one attribute. The data type of an attribute can be any of the following:

A base data type such as NUMBER, VARCHAR2 , etc.
Another object type
A globally defined collection type (created by the CREATE TYPE command) such as a nested table or varray

An attribute gets its initial value (which may be null) when an object instance is initially created. Each object instance has its own set of attribute values.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1129

16.15.1.2 Methods

Methods are SPL procedures or functions defined within an object type. Methods can be categorized into three general types:

Member Methods – procedures or functions that operate within the context of an object instance. Member methods have access to, and can change
the attributes of the object instance on which they are operating.
Static Methods – procedures or functions that operate independently of any particular object instance. Static methods do not have access to, and
cannot change the attributes of an object instance.
Constructor Methods – functions used to create an instance of an object type. A default constructor method is always provided when an object type
is defined.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1130

16.15.1.3 Overloading Methods

In an object type it is permissible to define two or more identically named methods of the same type (this is, either a procedure or function), but with
different signatures. Such methods are referred to as overloaded methods.

A method’s signature consists of the number of formal parameters, the data types of its formal parameters, and their order.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1131

16.15.2 Object Type Components

Object types are created and stored in the database by using the following two constructs of the SPL language:

The object type specification - This is the public interface specifying the attributes and method signatures of the object type.
The object type body - This contains the implementation of the methods specified in the object type specification.

The following sections describe the commands used to create the object type specification and the object type body.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1132

16.15.2.1 Object Type Specification Syntax

The following is the syntax of the object type specification:

CREATE [OR REPLACE] TYPE <name>
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ <attribute> { <datatype> | <objtype> | <collecttype> } }
 [, ...]
 [<method_spec>] [, ...]
 [<constructor>] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...;

where method_spec is the following:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]
 <subprogram_spec>

where subprogram_spec is the following:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
 RETURN <return_type>
}

where constructor is the following:

CONSTRUCTOR FUNCTION <func_name>
 [([<parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
RETURN <return_type>;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1133

NoteNote

The OR REPLACE option cannot be currently used to add, delete, or modify the attributes of an existing object type. Use the DROP
TYPE command to first delete the existing object type. The OR REPLACE option can be used to add, delete, or modify the methods in an
existing object type.

The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command can be used to change the data type of an attribute in an
existing object type. However, the ALTER TYPE command cannot add or delete attributes in the object type.

name is an identifier (optionally schema-qualified) assigned to the object type.

If the AUTHID clause is omitted or DEFINER is specified, the rights of the object type owner are used to determine access privileges to database objects.
If CURRENT_USER is specified, the rights of the current user executing a method in the object are used to determine access privileges.

attribute is an identifier assigned to an attribute of the object type.

datatype is a base data type.

objtype is a previously defined object type.

collecttype is a previously defined collection type.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] FINAL specifies whether or not a subtype can be derived from this object
type. FINAL , which is the default, means that no subtypes can be derived from this object type. Specify NOT FINAL if you want to allow subtypes to be
defined under this object type.

NoteNote

Even though the specification of NOT FINAL is accepted in the CREATE TYPE command, SPL does not currently support the creation of
subtypes.

Following the closing parenthesis of the CREATE TYPE definition, [NOT] INSTANTIABLE specifies whether or not an object instance can be
created of this object type. INSTANTIABLE , which is the default, means that an instance of this object type can be created. Specify NOT
INSTANTIABLE if this object type is to be used only as a parent “template” from which other specialized subtypes are to be defined. If NOT
INSTANTIABLE is specified, then NOT FINAL must be specified as well. If any method in the object type contains the NOT INSTANTIABLE qualifier,
then the object type, itself, must be defined with NOT INSTANTIABLE and NOT FINAL .

NoteNote

Even though the specification of NOT INSTANTIABLE is accepted in the CREATE TYPE command, SPL does not currently support the
creation of subtypes.

method_spec denotes the specification of a member method or static method.

Prior to the definition of a method, [NOT] FINAL specifies whether or not the method can be overridden in a subtype. NOT FINAL is the default
meaning the method can be overridden in a subtype.

Prior to the definition of a method specify OVERRIDING if the method overrides an identically named method in a supertype. The overriding method must
have the same number of identically named method parameters with the same data types and parameter modes, in the same order, and the same return
type (if the method is a function) as defined in the supertype.

Prior to the definition of a method, [NOT] INSTANTIABLE specifies whether or not the object type definition provides an implementation for the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1134

Prior to the definition of a method, [NOT] INSTANTIABLE specifies whether or not the object type definition provides an implementation for the
method. If INSTANTIABLE is specified, then the CREATE TYPE BODY command for the object type must specify the implementation of the method. If
NOT INSTANTIABLE is specified, then the CREATE TYPE BODY command for the object type must not contain the implementation of the method. In

this latter case, it is assumed a subtype contains the implementation of the method, overriding the method in this object type. If there are any NOT
INSTANTIABLE methods in the object type, then the object type definition itself, must specify NOT INSTANTIABLE and NOT FINAL following the
closing parenthesis of the object type specification. The default is INSTANTIABLE .

subprogram_spec denotes the specification of a procedure or function and begins with the specification of either MEMBER or STATIC . A member
subprogram must be invoked with respect to a particular object instance while a static subprogram is not invoked with respect to any object instance.

proc_name is an identifier of a procedure. If the SELF parameter is specified, name is the object type name given in the CREATE TYPE command.
If specified, parm1, parm2, … are the formal parameters of the procedure. datatype1, datatype2, … are the data types of parm1, parm2,
… respectively. IN, IN OUT , and OUT are the possible parameter modes for each formal parameter. If none are specified, the default is IN .
value1, value2, … are default values that may be specified for IN parameters.

Include the CONSTRUCTOR FUNCTION keyword and function definition to define a constructor function.

func_name is an identifier of a function. If specified, parm1, parm2, … are the formal parameters of the function. datatype1, datatype2,
… are the data types of parm1, parm2, … respectively. IN, IN OUT , and OUT are the possible parameter modes for each formal parameter. If
none are specified, the default is IN . value1, value2, … are default values that may be specified for IN parameters. return_type is the data
type of the value the function returns.

The following points should be noted about an object type specification:

There must be at least one attribute defined in the object type.

There may be none, one, or more methods defined in the object type.

A static method cannot be overridden (OVERRIDING and STATIC cannot be specified together in method_spec).

A static method must be instantiable (NOT INSTANTIABLE and STATIC cannot be specified together in method_spec).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1135

16.15.2.2 Object Type Body Syntax

The following is the syntax of the object type body:

CREATE [OR REPLACE] TYPE BODY <name>
 { IS | AS }
 <method_spec> [...]
 [<constructor>] [...]
END;

where method_spec is the following:

subprogram_spec

and subprogram_spec is the following:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
 END;
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
 RETURN <return_type>
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
 END;

where constructor is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1136

CONSTRUCTOR FUNCTION <func_name>
 [([<parm1> [IN | IN OUT | OUT] <datatype1>
 [DEFAULT <value1>]]
 [, <parm2> [IN | IN OUT | OUT] <datatype2>
 [DEFAULT <value2>]
] ...)
]
RETURN <return_type>;
{ IS | AS }
[<declarations>]
BEGIN
 <statement>; ...
[EXCEPTION
 WHEN ... THEN
 <statement>; ...]
END;

name is an identifier (optionally schema-qualified) assigned to the object type.

method_spec denotes the implementation of an instantiable method that was specified in the CREATE TYPE command.

If INSTANTIABLE was specified or omitted in method_spec of the CREATE TYPE command, then there must be a method_spec for this method
in the CREATE TYPE BODY command.

If NOT INSTANTIABLE was specified in method_spec of the CREATE TYPE command, then there must be no method_spec for this method in
the CREATE TYPE BODY command.

subprogram_spec denotes the specification of a procedure or function and begins with the specification of either MEMBER or STATIC . The same
qualifier must be used as was specified in subprogram_spec of the CREATE TYPE command.

proc_name is an identifier of a procedure specified in the CREATE TYPE command. The parameter declarations have the same meaning as described
for the CREATE TYPE command, and must be specified in the CREATE TYPE BODY command in the same manner as specified in the CREATE TYPE
command.

Include the CONSTRUCTOR FUNCTION keyword and function definition to define a constructor function.

func_name is an identifier of a function specified in the CREATE TYPE command. The parameter declarations have the same meaning as described for
the CREATE TYPE command, and must be specified in the CREATE TYPE BODY command in the same manner as specified in the CREATE TYPE
command. return_type is the data type of the value the function returns and must match return_type given in the CREATE TYPE command.

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure or function as an autonomous transaction.

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statement is an SPL program statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1137

16.15.3 Creating Object Types

You can use the CREATE TYPE command to create an object type specification, and the CREATE TYPE BODY command to create an object type body.
This section provides some examples using the CREATE TYPE and CREATE TYPE BODY commands.

The first example creates the addr_object_type object type that contains only attributes and no methods:

CREATE OR REPLACE TYPE addr_object_type AS OBJECT
(
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Since there are no methods in this object type, an object type body is not required. This example creates a composite type, which allows you to treat related
objects as a single attribute.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1138

16.15.3.1 Member Methods

A member method is a function or procedure that is defined within an object type and can only be invoked through an instance of that type. Member
methods have access to, and can change the attributes of, the object instance on which they are operating.

The following object type specification creates the emp_obj_typ object type:

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT
(
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP,
 MEMBER PROCEDURE display_emp(SELF IN OUT emp_obj_typ)
);

Object type emp_obj_typ contains a member method named display_emp . display_emp uses a SELF parameter, which passes the object
instance on which the method is invoked.

A SELF parameter is a parameter whose data type is that of the object type being defined. SELF always refers to the instance that is invoking the
method. A SELF parameter is the first parameter in a member procedure or function regardless of whether it is explicitly declared in the parameter list.

The following code snippet defines an object type body for emp_obj_typ:

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

You can also use the SELF parameter in an object type body. To illustrate how the SELF parameter would be used in the CREATE TYPE BODY
command, the preceding object type body could be written as follows:

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || SELF.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || SELF.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || SELF.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || SELF.addr.city || ', ' ||
 SELF.addr.state || ' ' || LPAD(SELF.addr.zip,5,'0'));
 END;
END;

Both versions of the emp_obj_typ body are completely equivalent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1139

16.15.3.2 Static Methods

Like a member method, a static method belongs to a type. A static method, however, is invoked not by an instance of the type, but by using the name of the
type. For example, to invoke a static function named get_count , defined within the emp_obj_type type , you can write:

emp_obj_type.get_count();

A static method does not have access to, and cannot change the attributes of an object instance, and does not typically work with an instance of the type.

The following object type specification includes a static function get_dname and a member procedure display_dept:

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
 deptno NUMBER(2),
 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

The object type body for dept_obj_typ defines a static function named get_dname and a member procedure named display_dept:

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
 STATIC FUNCTION get_dname(p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNTING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;
 RETURN v_dname;
 END;

 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_typ.get_dname(SELF.deptno));
 END;
END;

Within the static function get_dname , there can be no references to SELF . Since a static function is invoked independently of any object instance, it
has no implicit access to any object attribute.

Member procedure display_dept can access the deptno attribute of the object instance passed in the SELF parameter. It is not necessary to
explicitly declare the SELF parameter in the display_dept parameter list.

The last DBMS_OUTPUT.PUT_LINE statement in the display_dept procedure includes a call to the static function get_dname (qualified by its
object type name dept_obj_typ).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1140

16.15.3.3 Constructor Methods

A constructor method is a function that creates an instance of an object type, typically by assigning values to the members of the object. An object type
may define several constructors to accomplish different tasks. A constructor method is a member function (invoked with a SELF parameter) whose name
matches the name of the type.

For example, if you define a type named address , each constructor is named address . You may overload a constructor by creating one or more
different constructor functions with the same name, but with different argument types.

The SPL compiler will provide a default constructor for each object type. The default constructor is a member function whose name matches the name of
the type and whose argument list matches the type members (in order). For example, given an object type such as:

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The SPL compiler will provide a default constructor with the following signature:

CONSTRUCTOR FUNCTION address
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2)
)

The body of the default constructor simply sets each member to NULL .

To create a custom constructor, declare the constructor function (using the keyword constructor) in the CREATE TYPE command and define the
construction function in the CREATE TYPE BODY command. For example, you may wish to create a custom constructor for the address type which
computes the city and state given a street_address and postal_code:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1141

CREATE TYPE address AS OBJECT
(
 street_address VARCHAR2(40),
 postal_code VARCHAR2(10),
 city VARCHAR2(40),
 state VARCHAR2(2),

 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
)
CREATE TYPE BODY address AS
 CONSTRUCTOR FUNCTION address
 (
 street_address VARCHAR2,
 postal_code VARCHAR2
) RETURN self AS RESULT
 IS
 BEGIN
 self.street_address := street_address;
 self.postal_code := postal_code;
 self.city := postal_code_to_city(postal_code);
 self.state := postal_code_to_state(postal_code);
 RETURN;
 END;
END;

To create an instance of an object type, you invoke one of the constructor methods for that type. For example:

DECLARE
 cust_addr address := address('100 Main Street', 02203');
BEGIN
 DBMS_OUTPUT.PUT_LINE(cust_addr.city); -- displays Boston
 DBMS_OUTPUT.PUT_LINE(cust_addr.state); -- displays MA
END;

Custom constructor functions are typically used to compute member values when given incomplete information. The preceding example computes the
values for city and state when given a postal code.

Custom constructor functions are also used to enforce business rules that restrict the state of an object. For example, if you define an object type to
represent a payment , you can use a custom constructor to ensure that no object of type payment can be created with an amount that is NULL ,
negative, or zero. The default constructor would set payment.amount to NULL so you must create a custom constructor (whose signature matches the
default constructor) to prohibit NULL amounts.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1142

16.15.4 Creating Object Instances

To create an instance of an object type, you must first declare a variable of the object type, and then initialize the declared object variable. The syntax for
declaring an object variable is:

<object> <obj_type>

object is an identifier assigned to the object variable.

obj_type is the identifier of a previously defined object type.

After declaring the object variable, you must invoke a constructor method to initialize the object with values. Use the following syntax to invoke the
constructor method:

[NEW] <obj_type> ({<expr1> | NULL} [, {<expr2> | NULL}] [, ...])

obj_type is the identifier of the object type’s constructor method; the constructor method has the same name as the previously declared object type.

expr1, expr2, … are expressions that are type-compatible with the first attribute of the object type, the second attribute of the object type, etc. If an
attribute is of an object type, then the corresponding expression can be NULL , an object initialization expression, or any expression that returns that
object type.

The following anonymous block declares and initializes a variable:

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ (9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
END;

The variable (v_emp) is declared with a previously defined object type named EMP_OBJ_TYPE . The body of the block initializes the variable using the
emp_obj_typ and addr_obj_type constructors.

You can include the NEW keyword when creating a new instance of an object in the body of a block. The NEW keyword invokes the object constructor
whose signature matches the arguments provided.

The following example declares two variables, named mgr and emp . The variables are both of EMP_OBJ_TYPE . The mgr object is initialized in the
declaration, while the emp object is initialized to NULL in the declaration, and assigned a value in the body.

DECLARE
 mgr EMP_OBJ_TYPE := (9002,'SMITH');
 emp EMP_OBJ_TYPE;
BEGIN
 emp := NEW EMP_OBJ_TYPE (9003,'RAY');
END;

NoteNote

In Advanced Server, the following alternate syntax can be used in place of the constructor method.

[ROW] ({ <expr1> | NULL } [, { <expr2> | NULL }] [, ...])

ROW is an optional keyword if two or more terms are specified within the parenthesis-enclosed, comma-delimited list. If only one term is specified, then

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1143

ROW is an optional keyword if two or more terms are specified within the parenthesis-enclosed, comma-delimited list. If only one term is specified, then
specification of the ROW keyword is mandatory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1144

16.15.5 Referencing an Object

Once an object variable is created and initialized, individual attributes can be referenced using dot notation of the form:

<object>.<attribute>

object is the identifier assigned to the object variable. attribute is the identifier of an object type attribute.

If attribute , itself, is of an object type, then the reference must take the form:

<object>.<attribute>.<attribute_inner>

attribute_inner is an identifier belonging to the object type to which attribute references in its definition of object .

The following example expands upon the previous anonymous block to display the values assigned to the emp_obj_typ object.

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ(9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || v_emp.empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_emp.ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || v_emp.addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || v_emp.addr.city || ', ' ||
 v_emp.addr.state || ' ' || LPAD(v_emp.addr.zip,5,'0'));
END;

The following is the output from this anonymous block.

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

Methods are called in a similar manner as attributes.

Once an object variable is created and initialized, member procedures or functions are called using dot notation of the form:

<object>.<prog_name>

object is the identifier assigned to the object variable. prog_name is the identifier of the procedure or function.

Static procedures or functions are not called utilizing an object variable. Instead the procedure or function is called utilizing the object type name:

<object_type>.<prog_name>

object_type is the identifier assigned to the object type. prog_name is the identifier of the procedure or function.

The results of the previous anonymous block can be duplicated by calling the member procedure display_emp:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1145

DECLARE
 v_emp EMP_OBJ_TYP;
BEGIN
 v_emp := emp_obj_typ(9001,'JONES',
 addr_obj_typ('123 MAIN STREET','EDISON','NJ',08817));
 v_emp.display_emp;
END;

The following is the output from this anonymous block.

Employee No : 9001
Name : JONES
Street : 123 MAIN STREET
City/State/Zip: EDISON, NJ 08817

The following anonymous block creates an instance of dept_obj_typ and calls the member procedure display_dept:

DECLARE
 v_dept DEPT_OBJ_TYP := dept_obj_typ (20);
BEGIN
 v_dept.display_dept;
END;

The following is the output from this anonymous block.

Dept No : 20
Dept Name : RESEARCH

The static function defined in dept_obj_typ can be called directly by qualifying it by the object type name as follows:

BEGIN
 DBMS_OUTPUT.PUT_LINE(dept_obj_typ.get_dname(20));
END;

RESEARCH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1146

16.15.6 Dropping an Object Type

The syntax for deleting an object type is as follows.

DROP TYPE <objtype>;

objtype is the identifier of the object type to be dropped. If the definition of objtype contains attributes that are themselves object types or
collection types, these nested object types or collection types must be dropped last.

If an object type body is defined for the object type, the DROP TYPE command deletes the object type body as well as the object type specification. In
order to recreate the complete object type, both the CREATE TYPE and CREATE TYPE BODY commands must be reissued.

The following example drops the emp_obj_typ and the addr_obj_typ object types created earlier in this chapter. emp_obj_typ must be
dropped first since it contains addr_obj_typ within its definition as an attribute.

DROP TYPE emp_obj_typ;
DROP TYPE addr_obj_typ;

The syntax for deleting an object type body, but not the object type specification is as follows.

DROP TYPE BODY <objtype>;

The object type body can be recreated by issuing the CREATE TYPE BODY command.

The following example drops only the object type body of the dept_obj_typ.

DROP TYPE BODY dept_obj_typ;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1147

17 Database Compatibility for Oracle Developers SQL Guide

This guide provides a summary of the SQL commands compatible with Oracle databases that are supported by Advanced Server. The SQL commands in this
section will work on both an Oracle database and an Advanced Server database.

Note the following points:

Advanced Server supports other commands that are not listed here. These commands may have no Oracle equivalent or they may provide the similar
or same functionality as an Oracle SQL command, but with different syntax.
The SQL commands in this section do not necessarily represent the full syntax, options, and functionality available for each command. In most
cases, syntax, options, and functionality that are not compatible with Oracle databases have been omitted from the command description and
syntax.
The Advanced Server documentation set documents command functionality that may not be compatible with Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1148

17.1 ALTER DIRECTORY

NameName

ALTER DIRECTORY -- change the owner of a directory created using CREATE DIRECTORY command.

SynopsisSynopsis

ALTER DIRECTORY <name> OWNER TO <rolename>

DescriptionDescription

The ALTER DIRECTORY ...OWNER TO command changes the owner of a directory. You must have the superuser privilege to execute this command;
the new owner of the directory must also have the superuser privilege.

ParametersParameters

name

The name of the directory to be altered.

rolename

The name of an owner that will own the directory.

ExamplesExamples

The following example demonstrates changing ownership; bob and carol are superusers. bob is a current owner of directory EMPDIR :

SELECT * FROM all_directories where directory_name = 'EMPDIR' order
by 1,2,3;
 owner | directory_name | directory_path
-------+----------------+----------------
 bob | EMPDIR | /path
(1 row)

To alter the ownership of directory EMPDIR to carol :

ALTER DIRECTORY EMPDIR OWNER TO carol;
ALTER DIRECTORY

SELECT * FROM all_directories where directory_name = 'EMPDIR' order by
1,2,3;
 owner | directory_name | directory_path
-------+----------------+----------------
 carol | EMPDIR | /path
(1 row)

The ownership of a directory is altered and granted to carol .

See AlsoSee Also

CREATE DIRECTORY, DROP DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1149

17.2 ALTER INDEX

NameName

ALTER INDEX -- modify an existing index.

SynopsisSynopsis

Advanced Server supports three variations of the ALTER INDEX command compatible with Oracle databases. Use the first variation to rename an index:

ALTER INDEX <name> RENAME TO <new_name>

Use the second variation of the ALTER INDEX command to rebuild an index:

ALTER INDEX <name> REBUILD

Use the third variation of the ALTER INDEX command to set the PARALLEL or NOPARALLEL clause:

ALTER INDEX <name> { NOPARALLEL | PARALLEL [<integer>] }

DescriptionDescription

ALTER INDEX changes the definition of an existing index. The RENAME clause changes the name of the index. The REBUILD clause reconstructs an
index, replacing the old copy of the index with an updated version based on the index's table.

The REBUILD clause invokes the PostgreSQL REINDEX command; for more information about using the REBUILD clause, see the PostgreSQL core
documentation at:

https://www.postgresql.org/docs/current/static/sql-reindex.html

The PARALLEL clause sets the degree of parallelism for an index that can be used to parallelize the rebuilding of an index.

The NOPARALLEL clause resets parallelism to use default values; reloptions will show the parallel_workers parameter as 0 .

ALTER INDEX has no effect on stored data.

ParametersParameters

name

The name (possibly schema-qualified) of an existing index.

new_name

New name for the index.

PARALLEL

Include the PARALLEL clause to specify a degree of parallelism; set the parallel_workers parameter equal to the degree of parallelism for the
rebuilding of an index. If you specify PARALLEL but no degree of parallelism is provided, the server enforces default parallelism.

NOPARALLEL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1150

https://www.postgresql.org/docs/current/static/sql-reindex.html

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism (the number of parallel_workers used when rebuilding an index).

ExamplesExamples

To change the name of an index from name_idx to empname_idx :

ALTER INDEX name_idx RENAME TO empname_idx;

To rebuild an index named empname_idx :

ALTER INDEX empname_idx REBUILD;

The following example sets the degree of parallelism on an empname_idx index to 7:

ALTER INDEX empname_idx PARALLEL 7;

See AlsoSee Also

CREATE INDEX, DROP INDEX

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1151

17.3 ALTER PROCEDURE

NameName

ALTER PROCEDURE

SynopsisSynopsis

ALTER PROCEDURE <procedure_name> <options> [RESTRICT]

DescriptionDescription

Use the ALTER PROCEDURE statement to specify that a procedure is a SECURITY INVOKER or SECURITY DEFINER .

ParametersParameters

procedure_name

procedure_name specifies the (possibly schema-qualified) name of a stored procedure.

options may be:

[EXTERNAL] SECURITY DEFINER

Specify SECURITY DEFINER to instruct the server to execute the procedure with the privileges of the user that created the procedure. The
EXTERNAL keyword is accepted for compatibility, but ignored.

[EXTERNAL] SECURITY INVOKER

Specify SECURITY INVOKER to instruct the server to execute the procedure with the privileges of the user that is invoking the procedure. The
EXTERNAL keyword is accepted for compatibility, but ignored.

The RESTRICT keyword is accepted for compatibility, but ignored.

ExamplesExamples

The following command specifies that the update_balance procedure should execute with the privileges of the user invoking the procedure:

ALTER PROCEDURE update_balance SECURITY INVOKER;

See AlsoSee Also

CREATE PROCEDURE, DROP PROCEDURE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1152

17.4 ALTER PROFILE

NameName

ALTER PROFILE -- alter an existing profile.

SynopsisSynopsis

ALTER PROFILE <profile_name> RENAME TO <new_name>;

ALTER PROFILE <profile_name>
 LIMIT {<parameter value>}[...];

DescriptionDescription

Use the ALTER PROFILE command to modify a user-defined profile; Advanced Server supports two forms of the command:

Use ALTER PROFILE…RENAME TO to change the name of a profile.
Use ALTER PROFILE…LIMIT to modify the limits associated with a profile.

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by Advanced Server, or use ALTER
PROFILE…RENAME TO to change the name of a profile.

ParametersParameters

profile_name

The name of the profile.

new_name

new_name specifies the new name of the profile.

parameter

parameter specifies the attribute limited by the profile.

value

value specifies the parameter limit.

Advanced Server supports the value shown below for each parameter :

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user may make before the server locks the user out of their account for
the length of time specified by PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED – the connecting user may make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that has been locked because of
FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1153

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.
UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may be used before the user is prompted to provide a new password.
Include the PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE_TIME clause to specify the number of days that will pass after the
password expires before connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the password will expire on the day specified
by the default value of PASSWORD_GRACE_TIME , and the user will not be allowed to execute any command until a new password is provided. Supported
values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the
grace period expires, a user will be allowed to connect, but will not be allowed to execute any command until they update their expired password.
Supported values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a password. The PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. The PASSWORD_REUSE_TIME
and PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

An INTEGER value greater than or equal to 0 .
DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password to be allowed for use or not. If you specify the value as TRUE , the system allows
a user to change the password by specifying a hash computed encrypted password on the client side. However, if you specify the value as FALSE , then a
password must be specified in a plain-text form in order to be validated effectively, else an error will be thrown if a server receives an encrypted password.
Supported values are:

A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT – the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1154

NoteNote

The PASSWORD_ALLOW_HASHED is not an Oracle-compatible parameter.

ExamplesExamples

The following example modifies a profile named acctg_profile :

ALTER PROFILE acctg_profile
 LIMIT FAILED_LOGIN_ATTEMPTS 3 PASSWORD_LOCK_TIME 1;

acctg_profile will count failed connection attempts when a login role attempts to connect to the server. The profile specifies that if a user has not
authenticated with the correct password in three attempts, the account will be locked for one day.

The following example changes the name of acctg_profile to payables_profile :

ALTER PROFILE acctg_profile RENAME TO payables_profile;

See AlsoSee Also

CREATE PROFILE, DROP PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1155

17.5 ALTER QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE SQL command. This syntax can be used in association with the
DBMS_AQADM package.

NameName

ALTER QUEUE -- allows a superuser or a user with the aq_administrator_role privilege to modify the attributes of a queue.

SynopsisSynopsis

This command is available in four forms. The first form of this command changes the name of a queue.

ALTER QUEUE <queue_name> RENAME TO <new_name>

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue.

RENAME TO

Include the RENAME TO clause and a new name for the queue to rename the queue.

new_name

New name for the queue.

The second form of the ALTER QUEUE command modifies the attributes of the queue:

ALTER QUEUE <queue_name> SET [({ <option_name option_value>) } [,SET <option_name>]]

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue.

Include the SET clause and option_name/option_value pairs to modify the attributes of the queue:

option_name option_value

The name of the option or options to be associated with the new queue and the corresponding value of the option. If you provide duplicate option names,
the server will return an error.

If option_name is retries , provide an integer that represents the number of times a dequeue may be attempted.
If option_name is retrydelay , provide a double-precision value that represents the delay in seconds.
If option_name is retention , provide a double-precision value that represents the retention time in seconds.

Use the third form of the ALTER QUEUE command to enable or disable enqueuing and/or dequeuing on a particular queue:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1156

ALTER QUEUE <queue_name> ACCESS { START | STOP } [FOR { enqueue | dequeue }] [NOWAIT]

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ACCESS

Include the ACCESS keyword to enable or disable enqueuing and/or dequeuing on a particular queue.

START | STOP

Use the START and STOP keywords to indicate the desired state of the queue.

FOR enqueue|dequeue

Use the FOR clause to indicate if you are specifying the state of enqueueing or dequeueing activity on the specified queue.

NOWAIT

Include the NOWAIT keyword to specify that the server should not wait for the completion of outstanding transactions before changing the state of the
queue. The NOWAIT keyword can only be used when specifying an ACCESS value of STOP . The server will return an error if NOWAIT is specified with
an ACCESS value of START .

Use the fourth form to ADD or DROP callback details for a particular queue.

ALTER QUEUE <queue_name> { ADD | DROP } CALL TO <location_name> [WITH <callback_option>]

ParametersParameters

queue_name

The name (optionally schema-qualified) of an existing queue.

ADD | DROP

Include the ADD or DROP keywords to enable add or remove callback details for a queue.

location_name

location_name specifies the name of the callback procedure.

callback_option

callback_option can be context ; specify a RAW value when including this clause.

ExamplesExamples

The following example changes the name of a queue from work_queue_east to work_order :

ALTER QUEUE work_queue_east RENAME TO work_order;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1157

The following example modifies a queue named work_order , setting the number of retries to 100 , the delay between retries to 2 seconds, and the
length of time that the queue will retain dequeued messages to 10 seconds:

ALTER QUEUE work_order SET (retries 100, retrydelay 2, retention 10);

The following commands enable enqueueing and dequeueing in a queue named work_order :

ALTER QUEUE work_order ACCESS START;
ALTER QUEUE work_order ACCESS START FOR enqueue;
ALTER QUEUE work_order ACCESS START FOR dequeue;

The following commands disable enqueueing and dequeueing in a queue named work_order :

ALTER QUEUE work_order ACCESS STOP NOWAIT;
ALTER QUEUE work_order ACCESS STOP FOR enqueue;
ALTER QUEUE work_order ACCESS STOP FOR dequeue;

See AlsoSee Also

CREATE QUEUE, DROP QUEUE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1158

17.6 ALTER QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the ALTER QUEUE SQL command. This syntax can be used in association with the
DBMS_AQADM package.

NameName

ALTER QUEUE TABLE -- modify an existing queue table.

SynopsisSynopsis

Use ALTER QUEUE TABLE to change the name of an existing queue table:

ALTER QUEUE TABLE <name> RENAME TO <new_name>

DescriptionDescription

ALTER QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to change the name of an existing queue table.

ParametersParameters

name

The name (optionally schema-qualified) of an existing queue table.

new_name

New name for the queue table.

ExamplesExamples

To change the name of a queue table from wo_table_east to work_order_table :

ALTER QUEUE TABLE wo_queue_east RENAME TO work_order_table;

See AlsoSee Also

CREATE QUEUE TABLE, DROP QUEUE TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1159

17.7 ALTER ROLE… IDENTIFIED BY

NameName

ALTER ROLE -- change the password associated with a database role.

SynopsisSynopsis

ALTER ROLE <role_name> IDENTIFIED BY <password>
 [REPLACE <prev_password>]

DescriptionDescription

A role without the CREATEROLE privilege may use this command to change their own password. An unprivileged role must include the REPLACE clause
and their previous password if PASSWORD_VERIFY_FUNCTION is not NULL in their profile. When the REPLACE clause is used by a non-superuser,
the server will compare the password provided to the existing password and raise an error if the passwords do not match.

A database superuser can use this command to change the password associated with any role. If a superuser includes the REPLACE clause, the clause is
ignored; a non-matching value for the previous password will not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a superuser must issue this command. A role with the
CREATEROLE attribute can use this command to change the password associated with a role that is not a superuser.

ParametersParameters

role_name

The name of the role whose password is to be altered.

password

The role’s new password.

prev_password

The role’s previous password.

ExamplesExamples

To change a role’s password:

ALTER ROLE john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1160

17.8 ALTER ROLE - Managing Database Link and DBMS_RLS Privileges

Advanced Server includes extra syntax (not offered by Oracle) for the ALTER ROLE command. This syntax can be useful when assigning privileges related
to creating and dropping database links compatible with Oracle databases, and fine-grained access control (using DBMS_RLS).

CREATE DATABASE LINKCREATE DATABASE LINK

A user who holds the CREATE DATABASE LINK privilege may create a private database link. The following ALTER ROLE command grants privileges
to an Advanced Server role that allow the specified role to create a private database link:

ALTER ROLE role_name
 WITH [CREATEDBLINK | CREATE DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEDBLINK | NO CREATE DATABASE LINK]

NoteNote

The CREATEDBLINK and NOCREATEDBLINK keywords should be considered deprecated syntax; we recommend using the CREATE
DATABASE LINK and NO CREATE DATABASE LINK syntax options.

CREATE PUBLIC DATABASE LINKCREATE PUBLIC DATABASE LINK

A user who holds the CREATE PUBLIC DATABASE LINK privilege may create a public database link. The following ALTER ROLE command grants
privileges to an Advanced Server role that allow the specified role to create a public database link:

ALTER ROLE role_name
 WITH [CREATEPUBLICDBLINK | CREATE PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT CREATE PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOCREATEPUBLICDBLINK | NO CREATE PUBLIC DATABASE LINK]

NoteNote

The CREATEPUBLICDBLINK and NOCREATEPUBLICDBLINK keywords should be considered deprecated syntax; we recommend using the
CREATE PUBLIC DATABASE LINK and NO CREATE PUBLIC DATABASE LINK syntax options.

DROP PUBLIC DATABASE LINKDROP PUBLIC DATABASE LINK

A user who holds the DROP PUBLIC DATABASE LINK privilege may drop a public database link. The following ALTER ROLE command grants

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1161

A user who holds the DROP PUBLIC DATABASE LINK privilege may drop a public database link. The following ALTER ROLE command grants
privileges to an Advanced Server role that allow the specified role to drop a public database link:

ALTER ROLE role_name
 WITH [DROPPUBLICDBLINK | DROP PUBLIC DATABASE LINK]

This command is the functional equivalent of:

GRANT DROP PUBLIC DATABASE LINK to role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NODROPPUBLICDBLINK | NO DROP PUBLIC DATABASE LINK]

NoteNote

The DROPPUBLICDBLINK and NODROPPUBLICDBLINK keywords should be considered deprecated syntax; we recommend using the DROP
PUBLIC DATABASE LINK and NO DROP PUBLIC DATABASE LINK syntax options.

EXEMPT ACCESS POLICYEXEMPT ACCESS POLICY

A user who holds the EXEMPT ACCESS POLICY privilege is exempt from fine-grained access control (DBMS_RLS) policies. A user who holds these
privileges will be able to view or modify any row in a table constrained by a DBMS_RLS policy. The following ALTER ROLE command grants privileges to
an Advanced Server role that exempt the specified role from any defined DBMS_RLS policies:

ALTER ROLE role_name
 WITH [POLICYEXEMPT | EXEMPT ACCESS POLICY]

This command is the functional equivalent of:

GRANT EXEMPT ACCESS POLICY TO role_name

Use the following command to revoke the privilege:

ALTER ROLE role_name
 WITH [NOPOLICYEXEMPT | NO EXEMPT ACCESS POLICY]

NoteNote

The POLICYEXEMPT and NOPOLICYEXEMPT keywords should be considered deprecated syntax; we recommend using the EXEMPT
ACCESS POLICY and NO EXEMPT ACCESS POLICY syntax options.

See AlsoSee Also

CREATE ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1162

17.9 ALTER SEQUENCE

NameName

ALTER SEQUENCE -- change the definition of a sequence generator.

SynopsisSynopsis

ALTER SEQUENCE <name> [INCREMENT BY <increment>]
 [MINVALUE <minvalue>] [MAXVALUE <maxvalue>]
 [CACHE <cache> | NOCACHE] [CYCLE]

DescriptionDescription

ALTER SEQUENCE changes the parameters of an existing sequence generator. Any parameter not specifically set in the ALTER SEQUENCE command
retains its prior setting.

ParametersParameters

name

The name (optionally schema-qualified) of a sequence to be altered.

increment

The clause INCREMENT BY increment is optional. A positive value will make an ascending sequence, a negative one a descending sequence. If
unspecified, the old increment value will be maintained.

minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. If not specified, the current minimum value will be

maintained. Note that the key words, NO MINVALUE , may be used to set this behavior back to the defaults of 1 and -263-1 for ascending and descending
sequences, respectively, however, this term is not compatible with Oracle databases.

maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If not specified, the current maximum value will be

maintained. Note that the key words, NO MAXVALUE , may be used to set this behavior back to the defaults of 263-1 and -1 for ascending and descending
sequences, respectively, however, this term is not compatible with Oracle databases.

cache

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated and stored in memory for faster access. The minimum
value is 1 (only one value can be generated at a time, i.e., NOCACHE). If unspecified, the old cache value will be maintained.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been reached by an ascending or descending sequence
respectively. If the limit is reached, the next number generated will be the minvalue or maxvalue , respectively. If not specified, the old cycle behavior
will be maintained. Note that the key words, NO CYCLE , may be used to alter the sequence so that it does not recycle, however, this term is not
compatible with Oracle databases.

NotesNotes

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1163

To avoid blocking of concurrent transactions that obtain numbers from the same sequence, ALTER SEQUENCE is never rolled back; the changes take
effect immediately and are not reversible.

ALTER SEQUENCE will not immediately affect NEXTVAL results in backends, other than the current one, that have pre-allocated (cached) sequence
values. They will use up all cached values prior to noticing the changed sequence parameters. The current backend will be affected immediately.

ExamplesExamples

Change the increment and cache value of sequence, serial .

ALTER SEQUENCE serial INCREMENT BY 2 CACHE 5;

See AlsoSee Also

CREATE SEQUENCE, DROP SEQUENCE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1164

17.10 ALTER SESSION

NameName

ALTER SESSION -- change a runtime parameter.

SynopsisSynopsis

ALTER SESSION SET <name> = <value>

DescriptionDescription

The ALTER SESSION command changes runtime configuration parameters. ALTER SESSION only affects the value used by the current session. Some
of these parameters are provided solely for compatibility with Oracle syntax and have no effect whatsoever on the runtime behavior of Advanced Server.
Others will alter a corresponding Advanced Server database server runtime configuration parameter.

ParametersParameters

name

Name of a settable runtime parameter. Available parameters are listed below.

value

New value of parameter.

Configuration ParametersConfiguration Parameters

The following configuration parameters can be modified using the ALTER SESSION command:

NLS_DATE_FORMAT (string)

Sets the display format for date and time values as well as the rules for interpreting ambiguous date input values. Has the same effect as setting the
Advanced Server datestyle runtime configuration parameter.

NLS_LANGUAGE (string)

Sets the language in which messages are displayed. Has the same effect as setting the Advanced Server lc_messages runtime configuration
parameter.

NLS_LENGTH_SEMANTICS (string)

Valid values are BYTE and CHAR . The default is BYTE . This parameter is provided for syntax compatibility only and has no effect in the Advanced
Server.

OPTIMIZER_MODE (string)

Sets the default optimization mode for queries. Valid values are ALL_ROWS , CHOOSE , FIRST_ROWS , FIRST_ROWS_10 ,
FIRST_ROWS_100 , and FIRST_ROWS_1000 . The default is CHOOSE . This parameter is implemented in Advanced Server.

QUERY_REWRITE_ENABLED (string)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1165

QUERY_REWRITE_ENABLED (string)

Valid values are TRUE , FALSE , and FORCE . The default is FALSE . This parameter is provided for syntax compatibility only and has no effect in
Advanced Server.

QUERY_REWRITE_INTEGRITY (string)

Valid values are ENFORCED , TRUSTED , and STALE_TOLERATED . The default is ENFORCED . This parameter is provided for syntax
compatibility only and has no effect in Advanced Server.

ExamplesExamples

Set the language to U.S. English in UTF-8 encoding. Note that in this example, the value, en_US.UTF-8 , is in the format that must be specified for
Advanced Server. This form is not compatible with Oracle databases.

ALTER SESSION SET NLS_LANGUAGE = 'en_US.UTF-8';

Set the date display format.

ALTER SESSION SET NLS_DATE_FORMAT = 'dd/mm/yyyy';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1166

17.11 ALTER SYNONYM

Name

ALTER SYNONYM -- change ownership of synonym object

Synopsis

ALTER SYNONYM <syn_name> OWNER TO <new_owner>

Description

The ALTER SYNONYM command changes owner of the synonym.

Examples

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1167

-- create user t1 and t2
edb=# create user t1;
CREATE ROLE
edb=# create user t2;
CREATE ROLE

-- grant all the privileges to user t1 and t2 on public schema
edb=# GRANT ALL PRIVILEGES ON SCHEMA public TO GROUP t1;
GRANT
edb=# GRANT ALL PRIVILEGES ON SCHEMA public TO GROUP t2;
GRANT

-- connect to the database as user t1 and create the table
edb=# \c - t1
You are now connected to database "edb" as user "t1".
edb=> create table t(n int);
CREATE TABLE

-- create a synonym for table t
edb=> create public synonym x for t;
CREATE SYNONYM

-- check the owner of the synonym x is t1
edb=# select * from all_synonyms;
 owner | schema_name | objid | synonym_name | table_owner | table_schema_name | table_name | db_link
-------+-------------+-------+--------------+-------------+-------------------+------------+---------
 T1 | PUBLIC | 16390 | X | T1 | PUBLIC | T |

-- connect the database as user edb and change the owner of the synonym x to user t2
edb=> \c - edb
You are now connected to database "edb" as user "edb".
edb=# alter synonym x owner to t2;

-- check the owner of the synonym x is changed to t2
edb=# select * from all_synonyms;
 owner | schema_name | objid | synonym_name | table_owner | table_schema_name | table_name | db_link
-------+-------------+-------+--------------+-------------+-------------------+------------+---------
 T2 | PUBLIC | 16390 | X | T1 | PUBLIC | T |

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1168

17.12 ALTER TABLE

NameName

ALTER TABLE -- change the definition of a table.

SynopsisSynopsis

ALTER TABLE <name>
 action [, ...]
ALTER TABLE <name>
 RENAME COLUMN <column> TO <new_column>
ALTER TABLE <name>
 RENAME TO <new_name>
ALTER TABLE <name>
 { NOPARALLEL | PARALLEL [<integer>] }

where action is one of:

ADD <column type> [<column_constraint> [...]]
DROP COLUMN <column>
ADD <table_constraint>
DROP CONSTRAINT <constraint_name> [CASCADE]

DescriptionDescription

ALTER TABLE changes the definition of an existing table. There are several subforms:

ADD column type

This form adds a new column to the table using the same syntax as CREATE TABLE .

DROP COLUMN

This form drops a column from a table. Indexes and table constraints involving the column will be automatically dropped as well.

ADD table_constraint

This form adds a new constraint to a table; for details, see CREATE TABLE.

DROP CONSTRAINT

This form drops constraints on a table. Currently, constraints on tables are not required to have unique names, so there may be more than one
constraint matching the specified name. All matching constraints will be dropped.

RENAME

The RENAME forms change the name of a table (or an index, sequence, or view) or the name of an individual column in a table. There is no effect on the
stored data.

The PARALLEL clause sets the degree of parallelism for a table. The NOPARALLEL clause resets the values to their defaults; reloptions will show
the parallel_workers parameter as 0 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1169

A superuser has permission to create a trigger on any user's table but a user can create a trigger only on the table they own. However, when the ownership
of a table is changed, the ownership of the trigger's implicit objects is updated when they are matched with a table owner owning a trigger.

You can use ALTER TRIGGER ...ON AUTHORIZATION command to alter a trigger's implicit object owner, for information, see ALTER TRIGGER.

You must own the table to use ALTER TABLE .

ParametersParameters

name

The name (possibly schema-qualified) of an existing table to alter.

column

Name of a new or existing column.

new_column

New name for an existing column.

new_name

New name for the table.

type

Data type of the new column.

table_constraint

New table constraint for the table.

constraint_name

Name of an existing constraint to drop.

CASCADE

Automatically drop objects that depend on the dropped constraint.

PARALLEL

Specify PARALLEL to select a degree of parallelism; you can also specify the degree of parallelism by setting the parallel_workers parameter
when performing a parallel scan on a table. If you specify PARALLEL without including a degree of parallelism, the index will use default parallelism.

NOPARALLEL

Specify NOPARALLEL to reset parallelism to default values.

integer

The integer indicates the degree of parallelism, which is the number of parallel_workers used in the parallel operation to perform a parallel
scan on a table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1170

NotesNotes

When you invoke ADD COLUMN , all existing rows in the table are initialized with the column’s default value (null if no DEFAULT clause is specified).
Adding a column with a non-null default will require the entire table to be rewritten. This may take a significant amount of time for a large table; and it will
temporarily require double the disk space. Adding a CHECK or NOT NULL constraint requires scanning the table to verify that existing rows meet the
constraint.

The DROP COLUMN form does not physically remove the column, but simply makes it invisible to SQL operations. Subsequent insert and update
operations in the table will store a null value for the column. Thus, dropping a column is quick but it will not immediately reduce the on-disk size of your
table, as the space occupied by the dropped column is not reclaimed. The space will be reclaimed over time as existing rows are updated.

Changing any part of a system catalog table is not permitted. Refer to CREATE TABLE for a further description of valid parameters.

ExamplesExamples

To add a column of type VARCHAR2 to a table:

ALTER TABLE emp ADD address VARCHAR2(30);

To drop a column from a table:

ALTER TABLE emp DROP COLUMN address;

To rename an existing column:

ALTER TABLE emp RENAME COLUMN address TO city;

To rename an existing table:

ALTER TABLE emp RENAME TO employee;

To add a check constraint to a table:

ALTER TABLE emp ADD CONSTRAINT sal_chk CHECK (sal > 500);

To remove a check constraint from a table:

ALTER TABLE emp DROP CONSTRAINT sal_chk;

To reset the degree of parallelism to 0 on the emp table:

ALTER TABLE emp NOPARALLEL;

The following example creates a table named dept , and then alters the dept table to define and enable a unique key on the dname column. The
constraint dept_dname_uq identifies the dname column as a unique key. The USING_INDEX clause creates an index on a table dept with the
index statement specified to enable the unique constraint.

CREATE TABLE dept (
 deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1171

ALTER TABLE dept
 ADD CONSTRAINT dept_dname_uq UNIQUE(dname)
 USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept (dname));

The following example creates a table named emp , and then alters the emp table to define and enable a primary key on the ename column. The
emp_ename_pk constraint identifies the column ename as a primary key of the emp table. The USING_INDEX clause creates an index on a table
emp with the index statement specified to enable the primary constraint.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER(7,2),
 deptno NUMBER(2)
);

ALTER TABLE emp
 ADD CONSTRAINT emp_ename_pk PRIMARY KEY (ename)
 USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename));

See AlsoSee Also

CREATE TABLE, DROP TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1172

17.13 ALTER TRIGGER

NameName

ALTER TRIGGER -- change the definition of a trigger.

SynopsisSynopsis

Advanced Server supports three variations of the ALTER TRIGGER command. Use the first variation to change the name of a given trigger without
changing the trigger definition.

ALTER TRIGGER <name> ON <table_name> RENAME TO <new_name>

Use the second variation of the ALTER TRIGGER command if the trigger is dependent on an extension; if the extension is dropped the trigger will
automatically be dropped as well.

ALTER TRIGGER <name> ON <table_name> DEPENDS ON EXTENSION <extension_name>

Use the third variation of the ALTER TRIGGER command to change the ownership of a trigger's object.

ALTER TRIGGER <name> ON <table_name> AUTHORIZATION <rolespec>

For information about using non-compatible implementations of the ALTER TRIGGER command that are supported by Advanced Server, see the
PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/sql-altertrigger.html

DescriptionDescription

ALTER TRIGGER changes the properties of existing trigger. You must own the table on which the trigger acts to be allowed to change its properties.

To alter an owner of the trigger's implicit object you can use the ALTER TRIGGER ...ON AUTHORIZATION command. You must have the privilege to
execute ALTER TRIGGER ...ON AUTHORIZATION command to assign the trigger's implicit object ownership to a user after authorization.

ParametersParameters

name

The name of the trigger to be altered.

table_name

The name of a table on which trigger acts.

rolespec

The rolespec determines an owner of trigger objects.

ExamplesExamples

The following example includes user bob and carol as superusers. The user bob owns a table emp and user carol owns a trigger named
emp_sal_trig , which is created on table emp :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1173

https://www.postgresql.org/docs/current/sql-altertrigger.html

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
 relname | relowner
---------+----------
 emp | bob
(1 row)

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
 proname | proowner
-------------------+----------
 emp_sal_trig_emp | carol
(1 row)

To alter the ownership of table emp from user bob to a new owner edb :

ALTER TABLE emp OWNER TO edb;
ALTER TABLE

SELECT relname, relowner::regrole FROM pg_class WHERE relname = 'emp';
 relname | relowner
---------+----------
 emp | edb
(1 row)

The table ownership is changed from user bob to an owner edb but the trigger ownership of emp_sal_trig is not altered and owned by user
carol . Now alter the trigger emp_sal_trig on table emp and grant authorization to an owner edb :

ALTER TRIGGER emp_sal_trig ON emp AUTHORIZATION edb;
ALTER TRIGGER

SELECT proname, proowner::regrole FROM pg_proc WHERE oid = (SELECT tgfoid
FROM pg_trigger WHERE tgname = 'emp_sal_trig') ORDER BY oid;
 proname | proowner
------------------+----------
 emp_sal_trig_emp | edb
(1 row)

The trigger ownership emp_sal_trig on table emp is altered and granted to an owner edb .

See AlsoSee Also

CREATE TRIGGER, DROP TRIGGER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1174

17.14 ALTER TABLESPACE

NameName

ALTER TABLESPACE -- change the definition of a tablespace.

SynopsisSynopsis

ALTER TABLESPACE <name> RENAME TO <newname>

DescriptionDescription

ALTER TABLESPACE changes the definition of a tablespace.

ParametersParameters

name

The name of an existing tablespace.

newname

The new name of the tablespace. The new name cannot begin with pg_ , as such names are reserved for system tablespaces.

ExamplesExamples

Rename tablespace empspace to employee_space :

ALTER TABLESPACE empspace RENAME TO employee_space;

See AlsoSee Also

DROP TABLESPACE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1175

17.15 ALTER USER… IDENTIFIED BY

NameName

ALTER USER -- change a database user account.

SynopsisSynopsis

ALTER USER <role_name> IDENTIFIED BY <password> REPLACE <prev_password>

DescriptionDescription

A role without the CREATEROLE privilege may use this command to change their own password. An unprivileged role must include the REPLACE clause
and their previous password if PASSWORD_VERIFY_FUNCTION is not NULL in their profile. When the REPLACE clause is used by a non-superuser,
the server will compare the password provided to the existing password and raise an error if the passwords do not match.

A database superuser can use this command to change the password associated with any role. If a superuser includes the REPLACE clause, the clause is
ignored; a non-matching value for the previous password will not throw an error.

If the role for which the password is being changed has the SUPERUSER attribute, then a superuser must issue this command. A role with the
CREATEROLE attribute can use this command to change the password associated with a role that is not a superuser.

ParametersParameters

role_name

The name of the role whose password is to be altered.

password

The role’s new password.

prev_password

The role’s previous password.

ExamplesExamples

Change a user password:

ALTER USER john IDENTIFIED BY xyRP35z REPLACE 23PJ74a;

See AlsoSee Also

CREATE USER, DROP USER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1176

17.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES

NameName

ALTER USER|ROLE

SynopsisSynopsis

ALTER USER|ROLE <name> [[WITH] option[…]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| PASSWORD SET AT '<timestamp>'
| LOCK TIME '<timestamp>'
| STORE PRIOR PASSWORD {'<password>' '<timestamp>} [, ...]

For information about the administrative clauses of the ALTER USER or ALTER ROLE command that are supported by Advanced Server, see the
PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

Only a database superuser can use the ALTER USER|ROLE clauses that enforce profile management. The clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a role, or to change which pre-defined profile is
associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time, and unlock the role at the time
indicated by the PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the AT 'timestamp' keywords to specify a date/time when the password associated with the
role will expire. If you omit the AT 'timestamp' keywords, the password will expire immediately.

Include the PASSWORD SET AT 'timestamp' keywords to set the password modification date to the time specified.

Include the STORE PRIOR PASSWORD {'password' 'timestamp} [, ...] clause to modify the password history, adding the new
password and the time the password was set.

Each login role may only have one profile. To discover the profile that is currently associated with a login role, query the profile column of the
DBA_USERS view.

ParametersParameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1177

https://www.postgresql.org/docs/current/static/sql-commands.html

The name of the role with which the specified profile will be associated.

password

The password associated with the role.

profile_name

The name of the profile that will be associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value for timestamp , enclose the value in single-quotes.

NotesNotes

For information about the Postgres-compatible clauses of the ALTER USER or ALTER ROLE command, see the PostgreSQL core documentation
available at:

https://www.postgresql.org/docs/current/static/sql-alterrole.html

ExamplesExamples

The following command uses the ALTER USER… PROFILE command to associate a profile named acctg with a user named john :

ALTER USER john PROFILE acctg_profile;

The following command uses the ALTER ROLE… PROFILE command to associate a profile named acctg with a user named john :

ALTER ROLE john PROFILE acctg_profile;

See AlsoSee Also

CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1178

https://www.postgresql.org/docs/current/static/sql-alterrole.html

17.17 CALL

NameName

CALL

SynopsisSynopsis

CALL <procedure_name> '('[<argument_list>]')'

DescriptionDescription

Use the CALL statement to invoke a procedure. To use the CALL statement, you must have EXECUTE privileges on the procedure that the CALL
statement is invoking.

ParametersParameters

procedure_name

procedure_name is the (optionally schema-qualified) procedure name.

argument_list

argument_list specifies a comma-separated list of arguments required by the procedure. Note that each member of argument_list corresponds
to a formal argument expected by the procedure. Each formal argument may be an IN parameter, an OUT parameter, or an INOUT parameter.

NoteNote: You must specify an OUT parameter in the CALL statement when calling a package function; the OUT parameter will act as an INOUT parameter
during package overloading.

ExamplesExamples

The CALL statement may take one of several forms, depending on the arguments required by the procedure:

CALL update_balance();
CALL update_balance(1,2,3);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1179

17.18 COMMENT

NameName

COMMENT -- define or change the comment of an object.

SynopsisSynopsis

COMMENT ON
{
 TABLE <table_name> |
 COLUMN <table_name.column_name>
} IS '<text>'

DescriptionDescription

COMMENT stores a comment about a database object. To modify a comment, issue a new COMMENT command for the same object. Only one comment
string is stored for each object. To remove a comment, specify the empty string (two consecutive single quotes with no intervening space) for text .
Comments are automatically dropped when the object is dropped.

ParametersParameters

table_name

The name of the table to be commented. The table name may be schema-qualified.

table_name.column_name

The name of a column within table_name to be commented. The table name may be schema-qualified.

text

The new comment.

NotesNotes

There is presently no security mechanism for comments: any user connected to a database can see all the comments for objects in that database (although
only superusers can change comments for objects that they don’t own). Do not put security-critical information in a comment.

ExamplesExamples

Attach a comment to the table emp :

COMMENT ON TABLE emp IS 'Current employee information';

Attach a comment to the empno column of the emp table:

COMMENT ON COLUMN emp.empno IS 'Employee identification number';

Remove these comments:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1180

COMMENT ON TABLE emp IS '';
COMMENT ON COLUMN emp.empno IS '';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1181

17.19 COMMIT

NameName

COMMIT -- commit the current transaction.

SynopsisSynopsis

COMMIT [WORK]

DescriptionDescription

COMMIT commits the current transaction. All changes made by the transaction become visible to others and are guaranteed to be durable if a crash
occurs.

ParametersParameters

WORK

Optional key word - has no effect.

NotesNotes

Use ROLLBACK to abort a transaction. Issuing COMMIT when not inside a transaction does no harm.

NoteNote

Executing a COMMIT in a plpgsql procedure will throw an error if there is an Oracle-style SPL procedure on the runtime stack.

ExamplesExamples

To commit the current transaction and make all changes permanent:

COMMIT;

See AlsoSee Also

ROLLBACK, ROLLBACK TO SAVEPOINT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1182

17.20 CREATE DATABASE

NameName

CREATE DATABASE -- create a new database.

SynopsisSynopsis

CREATE DATABASE <name>

DescriptionDescription

CREATE DATABASE creates a new database.

To create a database, you must be a superuser or have the special CREATEDB privilege. Normally, the creator becomes the owner of the new database.
Non-superusers with CREATEDB privilege can only create databases owned by them.

The new database will be created by cloning the standard system database template1 .

ParametersParameters

name

The name of the database to be created.

NotesNotes

CREATE DATABASE cannot be executed inside a transaction block.

Errors along the line of “could not initialize database directory” are most likely related to insufficient permissions on the data directory, a full disk, or other
file system problems.

ExamplesExamples

To create a new database:

CREATE DATABASE employees;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1183

17.21 CREATE PUBLIC DATABASE LINK

Name

CREATE [PUBLIC] DATABASE LINK -- create a new database link.

Synopsis

CREATE [PUBLIC] DATABASE LINK <name>
 CONNECT TO { CURRENT_USER |
 <username> IDENTIFIED BY '<password>'}
 USING { postgres_fdw '<fdw_connection_string>' |
 [oci] '<oracle_connection_string>' }

Description

CREATE DATABASE LINK creates a new database link. A database link is an object that allows a reference to a table or view in a remote database
within a DELETE , INSERT , SELECT or UPDATE command. A database link is referenced by appending @dblink to the table or view name
referenced in the SQL command where dblink is the name of the database link.

Database links can be public or private. A public database link is one that can be used by any user. A private database link can be used only by the database
link’s owner. Specification of the PUBLIC option creates a public database link. If omitted, a private database link is created.

When the CREATE DATABASE LINK command is given, the database link name and the given connection attributes are stored in the Advanced Server
system table named, pg_catalog.edb_dblink . When using a given database link, the database containing the edb_dblink entry defining this
database link is called the local database. The server and database whose connection attributes are defined within the edb_dblink entry is called the
remote database. You can use edb_dblink_oci to access remote Oracle tables and views using any SELECT , INSERT , UPDATE , or DELETE
statement.

A SQL command containing a reference to a database link must be issued while connected to the local database. When the SQL command is executed, the
appropriate authentication and connection is made to the remote database to access the table or view to which the @dblink reference is appended.

Oracle compatibilityOracle compatibility

For EDB Postgres Advanced Server 13, the CREATE DATABASE LINK command has been tested and certified with all the minor versions for
use with Oracle versions 10g Release 2, 11g Release 2, 12c Release 1, 18c Release 1, 19c, 21c, and 23.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1184

NoteNote

A database link cannot be used to access a remote database within a standby database server. Standby database servers are used for high
availability, load balancing, and replication.

For information about high availability, load balancing, and replication for Postgres database servers, see thePostgreSQL core documentation.

The edb_dblink_oci.rescans GUC can be set to SCROLL or SERIALIZABLE at the server level in postgresql.conf file. It
can also be set at session level using the SET command, but the setting will not be applied to existing dblink connections due to dblink
connection caching.

When executing SELECT on LOB data of more than 4000 characters, it is advisable to use
edb_dblink_oci.rescans=serializable to free up the temporary PGA memory and avoid exceeding the
PGA_AGGREGATE_LIMIT .

The edb_dblink_oci supports both types of rescans: SCROLL and SERIALIZABLE . By default it is set to SERIALIZABLE . When set to
SERIALIZABLE , edb_dblink_oci uses the SERIALIZABLE transaction isolation level on the Oracle side, which corresponds to PostgreSQL’s
REPEATABLE READ .

This is necessary as a single PostgreSQL statement can lead to multiple Oracle queries and thereby uses a serializable isolation level to provide
consistent results.
A serialization failure may occur due to a table modification concurrent with long-running DML transactions (for example ADD , UPDATE , or
DELETE statements). If such a failure occurs, the OCI reports ORA-08177: can't serialize access for this transaction , and

the application must retry the transaction.
A SCROLL rescan will be quick, but with each iteration will reset the current row position to 1 . A SERIALIZABLE rescan has performance
benefits over a SCROLL rescan.

Parameters

PUBLIC

Create a public database link that can be used by any user. If omitted, then the database link is private and can only be used by the database link’s owner.

name

The name of the database link.

username

The username to be used for connecting to the remote database.

CURRENT_USER

Include CURRENT_USER to specify that Advanced Server should use the user mapping associated with the role that is using the link when establishing a
connection to the remote server.

password

The password for username .

postgres_fdw

Specifies foreign data wrapper postgres_fdw as the connection to a remote Advanced Server database. If postgres_fdw has not been installed on

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1185

https://www.postgresql.org/docs/current/static/high-availability.html

Specifies foreign data wrapper postgres_fdw as the connection to a remote Advanced Server database. If postgres_fdw has not been installed on
the database, use the CREATE EXTENSION command to install postgres_fdw . For more information, see the CREATE EXTENSION command in
the PostgreSQL Core documentation at: https://www.postgresql.org/docs/current/static/sql-createextension.html

fdw_connection_string

Specify the connection information for the postgres_fdw foreign data wrapper.

oci

Specifies a connection to a remote Oracle database. This is Advanced Server’s default behavior.

oracle_connection_string

Specify the connection information for an oci connection.

NoteNote

To create a non-public database link you must have the CREATE DATABASE LINK privilege. To create a public database link you must have
the CREATE PUBLIC DATABASE LINK privilege.

Setting up an Oracle Instant Client for oci-dblink

In order to use oci-dblink, an Oracle instant client must be downloaded and installed on the host running the Advanced Server database in which the
database link is to be created.

An instant client can be downloaded from the following site:

http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

Oracle Instant Client for Linux

The following instructions apply to Linux hosts running Advanced Server.

Be sure the libaio library (the Linux-native asynchronous I/O facility) has already been installed on the Linux host running Advanced Server.

The libaio library can be installed with the following command:

yum install libaio

If the Oracle instant client that you've downloaded does not include the file specifically named libclntsh.so without a version number suffix, you
must create a symbolic link named libclntsh.so that points to the downloaded version of the library file. Navigate to the instant client directory and
execute the following command:

ln -s libclntsh.so.version libclntsh.so

Where version is the version number of the libclntsh.so library. For example:

ln -s libclntsh.so.12.1 libclntsh.so

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1186

https://www.postgresql.org/docs/current/static/sql-createextension.html
http://www.oracle.com/technetwork/database/features/instant-client/index-097480.html

When you are executing a SQL command that references a database link to a remote Oracle database, Advanced Server must know where the Oracle
instant client library resides on the Advanced Server host.

The LD_LIBRARY_PATH environment variable must include the path to the Oracle client installation directory containing the libclntsh.so file. For
example, assuming the installation directory containing libclntsh.so is /tmp/instantclient :

export LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH

Alternatively, you can also set the value of the oracle_home configuration parameter in the postgresql.conf file. So, the oracle_home
configuration parameter is an alternative to the LD_LIBRARY_PATH environment variable. For more details on the oracle_home configuration
parameter, see configuration paramters.

The ORACLE_HOME environment variable is must to be set and should include the path to the Oracle home directory. For example,

export ORACLE_HOME=/opt/product/version/dbhomeXE

NoteNote

Either the LD_LIBRARY_PATH or the oracle_home configuration parameter must be set along with the ORACLE_HOME environment
variable before the pg_ctl utility is executed to start or restart Advanced Server.

If you are running the current session as the user account (for example, enterprisedb) that will directly invoke pg_ctl to start or restart Advanced
Server, then be sure to set either the LD_LIBRARY_PATH environment variable or the oracle_home configuration parameter and the
ORACLE_HOME environment variable before invoking pg_ctl .

You can set the LD_LIBRARY_PATH and the ORACLE_HOME environment variable within the .bash_profile file under the home directory of the
enterprisedb user account (that is, set LD_LIBRARY_PATH and ORACLE_HOME within file ~enterprisedb/.bash_profile). This ensures

that LD_LIBRARY_PATH and ORACLE_HOME will be set when you log in as enterprisedb .

If you are using a Linux service script with the systemctl or service command to start or restart Advanced Server, you must set
LD_LIBRARY_PATH and ORACLE_HOME so it is in effect when the script invokes the pg_ctl utility.

For example, to set an environment variable for Advanced Server, you can create a file named /etc/systemd/system/edb-as-13.service ;
include /lib/systemd/system/edb-as-13.service within the file.

Assuming the LD_LIBRARY_PATH=/tmp/instantclient you can now include the environment variable by specifying:

[Service]
Environment=LD_LIBRARY_PATH=/tmp/instantclient:$LD_LIBRARY_PATH
Environment=ORACLE_HOME=/tmp/instantclient

Then, use the following command to reload systemd :

systemctl daemon-reload

Then, restart the Advanced Server service with the following command:

systemctl restart edb-as-13

The particular script file that needs to be modified to include the LD_LIBRARY_PATH setting depends upon the Advanced Server version, the Linux
system on which it was installed, and whether it was installed with the graphical installer or an RPM package.

See the appropriate version of the EDB Postgres Advanced Server Installation Guide to determine the service script that affects the startup environment.
The installation guides can be found at the following location:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1187

EDB docs website

Oracle Instant Client for Windows

The following instructions apply to Windows hosts running Advanced Server.

When you are executing a SQL command that references a database link to a remote Oracle database, Advanced Server must know where the Oracle
instant client library resides on the Advanced Server host.

Set the Windows PATH system environment variable to include the Oracle client installation directory that contains the oci.dll file.

As an alternative you, can set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the
oracle_home configuration parameter will override the Windows PATH environment variable.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the Windows directory that contains oci.dll for lib_directory . For example:

oracle_home = 'C:/tmp/instantclient_10_2'

After setting the PATH environment variable or the oracle_home configuration parameter, you must restart the server for the changes to take effect.
Restart the server from the Windows Services console.

NoteNote

If tnsnames.ora is configured in failover mode, and a client:server failure occurs, the client connection will be established with a secondary
server (usually a backup server). Later, when the primary server resumes, the client will retain their connection to a secondary server until a new
session is established. The new client connections will automatically be established with the primary server. If the primary and secondary servers
are out-of-sync, then there is a possibility that the clients that have established a connection to the secondary server and the clients which later
connected to the primary server can see a different database view.

Examples

Creating an oci-dblink Database Link

The following example demonstrates using the CREATE DATABASE LINK command to create a database link (named chicago) that connects an
instance of Advanced Server to an Oracle server via an oci-dblink connection. The connection information tells Advanced Server to log in to Oracle as user
admin , whose password is mypassword . Including the oci option tells Advanced Server that this is an oci-dblink connection; the connection string,
'//127.0.0.1/acctg' specifies the server address and name of the database.

CREATE DATABASE LINK chicago
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING oci '//127.0.0.1/acctg';

NoteNote

You can specify a hostname in the connection string (in place of an IP address).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1188

Creating a postgres_fdw Database Link

The following example demonstrates using the CREATE DATABASE LINK command to create a database link (named bedford) that connects an
instance of Advanced Server to another Advanced Server instance via a postgres_fdw foreign data wrapper connection. The connection information
tells Advanced Server to log in as user admin , whose password is mypassword . Including the postgres_fdw option tells Advanced Server that this
is a postgres_fdw connection; the connection string, 'host=127.0.0.1 port=5444 dbname=marketing' specifies the server address and
name of the database.

CREATE DATABASE LINK bedford
 CONNECT TO admin IDENTIFIED BY 'mypassword'
 USING postgres_fdw 'host=127.0.0.1 port=5444 dbname=marketing';

NoteNote

You can specify a hostname in the connection string (in place of an IP address).

Using a Database Link

The following examples demonstrate using a database link with Advanced Server to connect to an Oracle database. The examples assume that a copy of the
Advanced Server sample application’s emp table has been created in an Oracle database and a second Advanced Server database cluster with the sample
application is accepting connections at port 5443 .

Create a public database link named, oralink , to an Oracle database named, xe , located at 127.0.0.1 on port 1521 . Connect to the Oracle
database with username, edb , and password, password .

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

Issue a SELECT command on the emp table in the Oracle database using database link, oralink .

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

Create a private database link named, fdwlink , to the Advanced Server database named, edb , located on host 192.168.2.22 running on port
5444 . Connect to the Advanced Server database with username, enterprisedb , and password, password .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1189

CREATE DATABASE LINK fdwlink CONNECT TO enterprisedb IDENTIFIED BY
'password' USING postgres_fdw 'host=192.168.2.22 port=5444 dbname=edb';

Display attributes of database links, oralink and fdwlink , from the local edb_dblink system table:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+--------------+--
 oralink | edb | //127.0.0.1:1521/xe
 fdwlink | enterprisedb |
(2 rows)

Perform a join of the emp table from the Oracle database with the dept table from the Advanced Server database:

SELECT d.deptno, d.dname, e.empno, e.ename, e.job, e.sal, e.comm FROM
emp@oralink e, dept@fdwlink d WHERE e.deptno = d.deptno ORDER BY 1, 3;

 deptno | dname | empno | ename | job | sal | comm
--------+------------+-------+--------+-----------+------+------
 10 | ACCOUNTING | 7782 | CLARK | MANAGER | 2450 |
 10 | ACCOUNTING | 7839 | KING | PRESIDENT | 5000 |
 10 | ACCOUNTING | 7934 | MILLER | CLERK | 1300 |
 20 | RESEARCH | 7369 | SMITH | CLERK | 800 |
 20 | RESEARCH | 7566 | JONES | MANAGER | 2975 |
 20 | RESEARCH | 7788 | SCOTT | ANALYST | 3000 |
 20 | RESEARCH | 7876 | ADAMS | CLERK | 1100 |
 20 | RESEARCH | 7902 | FORD | ANALYST | 3000 |
 30 | SALES | 7499 | ALLEN | SALESMAN | 1600 | 300
 30 | SALES | 7521 | WARD | SALESMAN | 1250 | 500
 30 | SALES | 7654 | MARTIN | SALESMAN | 1250 | 1400
 30 | SALES | 7698 | BLAKE | MANAGER | 2850 |
 30 | SALES | 7844 | TURNER | SALESMAN | 1500 | 0
 30 | SALES | 7900 | JAMES | CLERK | 950 |
(14 rows)

Pushdown for an oci Database Link

When the oci-dblink is used to execute SQL statements on a remote Oracle database, there are certain circumstances where pushdown of the processing
occurs on the foreign server.

Pushdown refers to the occurrence of processing on the foreign (that is, the remote) server instead of the local client where the SQL statement was issued.
Pushdown can result in performance improvement since the data is processed on the remote server before being returned to the local client.

Pushdown applies to statements with the standard SQL join operations (inner join, left outer join, right outer join, and full outer join). Pushdown still occurs
even when a sort is specified on the resulting data set.

In order for pushdown to occur, certain basic conditions must be met. The tables involved in the join operation must belong to the same foreign server and
use the identical connection information to the foreign server (that is, the same database link defined with the CREATE DATABASE LINK command).

In order to determine if pushdown is to be used for a SQL statement, display the execution plan by using the EXPLAIN command.

For information about the EXPLAIN command, see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/sql-explain.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1190

https://www.postgresql.org/docs/current/static/sql-explain.html

The following examples use the database link created as shown by the following:

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//192.168.2.23:1521/xe';

The following example shows the execution plan of an inner join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d, emp@oralink e WHERE d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) INNER JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 INNER
JOIN emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno ASC NULLS LAST
(4 rows)

Note that the INNER JOIN operation occurs under the Foreign Scan section. The output of this join is the following:

deptno | dname | empno | ename
-------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
(14 rows)

The following shows the execution plan of a left outer join:

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp@oralink e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Foreign Scan
 Output: d.deptno, d.dname, e.empno, e.ename
 Relations: (_dblink_dept_1 d) LEFT JOIN (_dblink_emp_2 e)
 Remote Query: SELECT r1.deptno, r1.dname, r2.empno, r2.ename FROM (dept r1 LEFT JOIN
emp r2 ON ((r1.deptno = r2.deptno))) ORDER BY r1.deptno ASC NULLS LAST, r2.empno ASC NULLS LAST
(4 rows)

The output of this join is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1191

deptno | dname | empno | ename
-------+------------+-------+--------
 10 | ACCOUNTING | 7782 | CLARK
 10 | ACCOUNTING | 7839 | KING
 10 | ACCOUNTING | 7934 | MILLER
 20 | RESEARCH | 7369 | SMITH
 20 | RESEARCH | 7566 | JONES
 20 | RESEARCH | 7788 | SCOTT
 20 | RESEARCH | 7876 | ADAMS
 20 | RESEARCH | 7902 | FORD
 30 | SALES | 7499 | ALLEN
 30 | SALES | 7521 | WARD
 30 | SALES | 7654 | MARTIN
 30 | SALES | 7698 | BLAKE
 30 | SALES | 7844 | TURNER
 30 | SALES | 7900 | JAMES
 40 | OPERATIONS | |
(15 rows)

The following example shows a case where the entire processing is not pushed down because the emp joined table resides locally instead of on the same
foreign server.

EXPLAIN (verbose,costs off) SELECT d.deptno, d.dname, e.empno, e.ename FROM
dept@oralink d LEFT OUTER JOIN emp e ON d.deptno = e.deptno ORDER BY 1, 3;

 QUERY PLAN
--
 Sort
 Output: d.deptno, d.dname, e.empno, e.ename
 Sort Key: d.deptno, e.empno
 -> Hash Left Join
 Output: d.deptno, d.dname, e.empno, e.ename
 Hash Cond: (d.deptno = e.deptno)
 -> Foreign Scan on _dblink_dept_1 d
 Output: d.deptno, d.dname, d.loc
 Remote Query: SELECT deptno, dname, NULL FROM dept
 -> Hash
 Output: e.empno, e.ename, e.deptno
 -> Seq Scan on public.emp e
 Output: e.empno, e.ename, e.deptno
(13 rows)

The output of this join is the same as the previous left outer join example.

Creating a Foreign Table from a Database Link

NoteNote

The procedure described in this section is not compatible with Oracle databases.

After you have created a database link, you can create a foreign table based upon this database link. The foreign table can then be used to access the
remote table referencing it with the foreign table name instead of using the database link syntax. Using the database link requires appending @dblink to
the table or view name referenced in the SQL command where dblink is the name of the database link.

This technique can be used for either an oci-dblink connection for remote Oracle access, or a postgres_fdw connection for remote Postgres access.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1192

The following example shows the creation of a foreign table to access a remote Oracle table.

First, create a database link as previously described. The following is the creation of a database link named oralink for connecting to the Oracle
database.

CREATE PUBLIC DATABASE LINK oralink CONNECT TO edb IDENTIFIED BY 'password'
USING '//127.0.0.1:1521/xe';

The following query shows the database link:

SELECT lnkname, lnkuser, lnkconnstr FROM pg_catalog.edb_dblink;

 lnkname | lnkuser | lnkconnstr
---------+---------+---------------------
 oralink | edb | //127.0.0.1:1521/xe
(1 row)

When you create the database link, Advanced Server creates a corresponding foreign server. The following query displays the foreign server:

SELECT srvname, srvowner, srvfdw, srvtype, srvoptions FROM
pg_foreign_server;

 srvname | srvowner | srvfdw | srvtype | srvoptions
---------+----------+--------+---------+-------------------------------
 oralink | 10 | 14005 | | {connstr=//127.0.0.1:1521/xe}
(1 row)

For more information about foreign servers, see the CREATE SERVER command in the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/sql-createserver.html

Create the foreign table as shown by the following:

CREATE FOREIGN TABLE emp_ora (
 empno NUMERIC(4),
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate TIMESTAMP WITHOUT TIME ZONE,
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2)
)
 SERVER oralink
 OPTIONS (table_name 'emp', schema_name 'edb'
);

Note the following in the CREATE FOREIGN TABLE command:

The name specified in the SERVER clause at the end of the CREATE FOREIGN TABLE command is the name of the foreign server, which is
oralink in this example as displayed in the srvname column from the query on pg_foreign_server .

The table name and schema name are specified in the OPTIONS clause by the table and schema options.
The column names specified in the CREATE FOREIGN TABLE command must match the column names in the remote table.
Generally, CONSTRAINT clauses may not be accepted or enforced on the foreign table as they are assumed to have been defined on the remote
table.

For more information about the CREATE FOREIGN TABLE command, see the PostgreSQL Core documentation at:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1193

https://www.postgresql.org/docs/current/static/sql-createserver.html

For more information about the CREATE FOREIGN TABLE command, see the PostgreSQL Core documentation at:

https://www.postgresql.org/docs/current/static/sql-createforeigntable.html

The following is a query on the foreign table:

SELECT * FROM emp_ora;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+---------+---------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800.00 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600.00 | 300.00 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250.00 | 500.00 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975.00 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250.00 | 1400.00 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850.00 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450.00 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000.00 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000.00 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500.00 | 0.00 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100.00 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950.00 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000.00 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300.00 | | 10
(14 rows)

In contrast, the following is a query on the same remote table, but using the database link instead of the foreign table:

SELECT * FROM emp@oralink;

 empno | ename | job | mgr | hiredate | sal | comm | deptno
-------+--------+-----------+------+--------------------+------+------+--------
 7369 | SMITH | CLERK | 7902 | 17-DEC-80 00:00:00 | 800 | | 20
 7499 | ALLEN | SALESMAN | 7698 | 20-FEB-81 00:00:00 | 1600 | 300 | 30
 7521 | WARD | SALESMAN | 7698 | 22-FEB-81 00:00:00 | 1250 | 500 | 30
 7566 | JONES | MANAGER | 7839 | 02-APR-81 00:00:00 | 2975 | | 20
 7654 | MARTIN | SALESMAN | 7698 | 28-SEP-81 00:00:00 | 1250 | 1400 | 30
 7698 | BLAKE | MANAGER | 7839 | 01-MAY-81 00:00:00 | 2850 | | 30
 7782 | CLARK | MANAGER | 7839 | 09-JUN-81 00:00:00 | 2450 | | 10
 7788 | SCOTT | ANALYST | 7566 | 19-APR-87 00:00:00 | 3000 | | 20
 7839 | KING | PRESIDENT | | 17-NOV-81 00:00:00 | 5000 | | 10
 7844 | TURNER | SALESMAN | 7698 | 08-SEP-81 00:00:00 | 1500 | 0 | 30
 7876 | ADAMS | CLERK | 7788 | 23-MAY-87 00:00:00 | 1100 | | 20
 7900 | JAMES | CLERK | 7698 | 03-DEC-81 00:00:00 | 950 | | 30
 7902 | FORD | ANALYST | 7566 | 03-DEC-81 00:00:00 | 3000 | | 20
 7934 | MILLER | CLERK | 7782 | 23-JAN-82 00:00:00 | 1300 | | 10
(14 rows)

NoteNote

For backward compatibility reasons, it is still possible to write USING libpq rather than USING postgres_fdw . However, the libpq
connector is missing many important optimizations which are present in the postgres_fdw connector. Therefore, the postgres_fdw
connector should be used whenever possible. The libpq option is deprecated and may be removed entirely in a future Advanced Server
release.

See Also

DROP DATABASE LINK

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1194

https://www.postgresql.org/docs/current/static/sql-createforeigntable.html

17.22 CREATE DIRECTORY

NameName

CREATE DIRECTORY -- create an alias for a file system directory path.

SynopsisSynopsis

CREATE DIRECTORY <name> AS '<pathname>'

DescriptionDescription

The CREATE DIRECTORY command creates an alias for a file system directory pathname. You must be a database superuser to use this command.

When the alias is specified as the appropriate parameter to the programs of the UTL_FILE package, the operating system files are created in, or accessed
from the directory corresponding to the given alias.

ParametersParameters

name

The directory alias name.

pathname

The fully-qualified directory path represented by the alias name. The CREATE DIRECTORY command does not create the operating system directory. The
physical directory must be created independently using the appropriate operating system commands.

NotesNotes

The operating system user id, enterprisedb , must have the appropriate read and/or write privileges on the directory if the UTL_FILE package is to
be used to create and/or read files using the directory.

The directory alias is stored in the pg_catalog.edb_dir system catalog table. Note that edb_dir is not a table compatible with Oracle databases.

The directory alias can also be viewed from the Oracle catalog views SYS.ALL_DIRECTORIES and SYS.DBA_DIRECTORIES , which are compatible
with Oracle databases.

Use the DROP DIRECTORY command to delete the directory alias. When a directory alias is deleted, the corresponding physical file system directory is
not affected. The file system directory must be deleted using the appropriate operating system commands.

In a Linux system, the directory name separator is a forward slash (/) .

In a Windows system, the directory name separator can be specified as a forward slash (/) or two consecutive backslashes (\\) .

ExamplesExamples

Create an alias named empdir for directory /tmp/empdir on Linux:

CREATE DIRECTORY empdir AS '/tmp/empdir';

Create an alias named empdir for directory C:\TEMP\EMPDIR on Windows:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1195

CREATE DIRECTORY empdir AS 'C:/TEMP/EMPDIR';

View all of the directory aliases:

SELECT * FROM pg_catalog.edb_dir;

dirname | dirowner | dirpath | diracl
--------+----------+----------------+--------
 empdir | 10 | C:/TEMP/EMPDIR |
(1 row)

View the directory aliases using a view compatible with Oracle databases:

SELECT * FROM SYS.ALL_DIRECTORIES;

 owner | directory_name | directory_path
--------------+----------------+----------------
 ENTERPRISEDB | EMPDIR | C:/TEMP/EMPDIR
(1 row)

See AlsoSee Also

ALTER DIRECTORY, DROP DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1196

17.23 CREATE FUNCTION

NameName

CREATE FUNCTION -- define a new function.

SynopsisSynopsis

CREATE [OR REPLACE] FUNCTION <name> [(<parameters>)]
 RETURN <data_type>
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET configuration_parameter
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

DescriptionDescription

CREATE FUNCTION defines a new function. CREATE OR REPLACE FUNCTION will either create a new function, or replace an existing definition.

If a schema name is included, then the function is created in the specified schema. Otherwise it is created in the current schema. The name of the new
function must not match any existing function with the same input argument types in the same schema. However, functions of different input argument
types may share a name (this is called overloading). (Overloading of functions is an Advanced Server feature - overloading of stored, standalone functions
is not compatible with Oracle databases.)

To update the definition of an existing function, use CREATE OR REPLACE FUNCTION . It is not possible to change the name or argument types of a
function this way (if you tried, you would actually be creating a new, distinct function). Also, CREATE OR REPLACE FUNCTION will not let you change
the return type of an existing function. To do that, you must drop and recreate the function. Also when using OUT parameters, you cannot change the
types of any OUT parameters except by dropping the function.

The user that creates the function becomes the owner of the function.

ParametersParameters

name

name is the identifier of the function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1197

name is the identifier of the function.

parameters

parameters is a list of formal parameters.

data_type

data_type is the data type of the value returned by the function’s RETURN statement.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the function; you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the function cannot modify the database and always reaches the same result when given the same argument values; it
does not do database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the
function with all-constant arguments can be immediately replaced with the function value.

STABLE indicates that the function cannot modify the database, and that within a single table scan, it will consistently return the same result for
the same argument values, but that its result could change across SQL statements. This is the appropriate selection for function that depend on
database lookups, parameter variables (such as the current time zone), etc.

VOLATILE indicates that the function value can change even within a single table scan, so no optimizations can be made. Please note that any
function that has side-effects must be classified volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC function cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the function with all-constant arguments can be immediately replaced with the function value.

[NOT] LEAKPROOF

A LEAKPROOF function has no side effects, and reveals no information about the values used to call the function.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally when some of its arguments are NULL . It is the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1198

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally when some of its arguments are NULL . It is the
author's responsibility to check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL whenever any of its arguments are NULL . If
these clauses are specified, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the function will execute with the privileges of the user that created it; this is the default. The key word EXTERNAL
is allowed for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the function will execute with the privileges of the user that calls it. The key word EXTERNAL is allowed
for SQL conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If the AUTHID clause is omitted or if AUTHID
DEFINER is specified, the rights of the function owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If AUTHID CURRENT_USER is specified, the
rights of the current user executing the function are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the function cannot be executed in parallel mode. The presence of such a function in a SQL statement forces a serial
execution plan. This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the function can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the function can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function returns
a set, this is the cost per returned row. Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner should expect the function to return. This is only allowed when
the function is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the function is entered, and then restored to its prior
value when the function exits. SET FROM CURRENT saves the session's current value of the parameter as the value to be applied when the function is
entered.

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside the function for the same variable are restricted to

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1199

If a SET clause is attached to a function, then the effects of a SET LOCAL command executed inside the function for the same variable are restricted to
the function; the configuration parameter's prior value is restored at function exit. An ordinary SET command (without LOCAL) overrides the SET
clause, much as it would do for a previous SET LOCAL command, with the effects of such a command persisting after procedure exit, unless the current
transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the function as an autonomous transaction.

NoteNote

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for Advanced Server and are not
supported by Oracle.

NotesNotes

Advanced Server allows function overloading; that is, the same name can be used for several different functions so long as they have distinct input (IN ,
IN OUT) argument data types.

ExamplesExamples

The function emp_comp takes two numbers as input and returns a computed value. The SELECT command illustrates use of the function.

CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMBER,
 p_comm NUMBER
) RETURN NUMBER
IS
BEGIN
 RETURN (p_sal + NVL(p_comm, 0)) * 24;
END;

SELECT ename "Name", sal "Salary", comm "Commission", emp_comp(sal, comm)
 "Total Compensation" FROM emp;

 Name | Salary | Commission | Total Compensation
--------+---------+------------+--------------------
 SMITH | 800.00 | | 19200.00
 ALLEN | 1600.00 | 300.00 | 45600.00
 WARD | 1250.00 | 500.00 | 42000.00
 JONES | 2975.00 | | 71400.00
 MARTIN | 1250.00 | 1400.00 | 63600.00
 BLAKE | 2850.00 | | 68400.00
 CLARK | 2450.00 | | 58800.00
 SCOTT | 3000.00 | | 72000.00
 KING | 5000.00 | | 120000.00
 TURNER | 1500.00 | 0.00 | 36000.00
 ADAMS | 1100.00 | | 26400.00
 JAMES | 950.00 | | 22800.00
 FORD | 3000.00 | | 72000.00
 MILLER | 1300.00 | | 31200.00
(14 rows)

Function sal_range returns a count of the number of employees whose salary falls in the specified range. The following anonymous block calls the
function a number of times using the arguments’ default values for the first two calls.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1200

CREATE OR REPLACE FUNCTION sal_range (
 p_sal_min NUMBER DEFAULT 0,
 p_sal_max NUMBER DEFAULT 10000
) RETURN INTEGER
IS
 v_count INTEGER;
BEGIN
 SELECT COUNT(*) INTO v_count FROM emp
 WHERE sal BETWEEN p_sal_min AND p_sal_max;
 RETURN v_count;
END;

BEGIN
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary: ' ||
 sal_range);
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary of at least '
 || '$2000.00: ' || sal_range(2000.00));
 DBMS_OUTPUT.PUT_LINE('Number of employees with a salary between '
 || '$2000.00 and $3000.00: ' || sal_range(2000.00, 3000.00));

END;

Number of employees with a salary: 14
Number of employees with a salary of at least $2000.00: 6
Number of employees with a salary between $2000.00 and $3000.00: 5

The following example demonstrates using the AUTHID CURRENT_USER clause and STRICT keyword in a function declaration:

CREATE OR REPLACE FUNCTION dept_salaries(dept_id int) RETURN NUMBER
 STRICT
 AUTHID CURRENT_USER
BEGIN
 RETURN QUERY (SELECT sum(salary) FROM emp WHERE deptno = id);
END;

Include the STRICT keyword to instruct the server to return NULL if any input parameter passed is NULL ; if a NULL value is passed, the function will
not execute.

The dept_salaries function executes with the privileges of the role that is calling the function. If the current user does not have sufficient privileges to
perform the SELECT statement querying the emp table (to display employee salaries), the function will report an error. To instruct the server to use the
privileges associated with the role that defined the function, replace the AUTHID CURRENT_USER clause with the AUTHID DEFINER clause.

Other Pragmas (declared within a package specification)Other Pragmas (declared within a package specification)

PRAGMA RESTRICT_REFERENCES

Advanced Server accepts but ignores syntax referencing PRAGMA RESTRICT_REFERENCES .

See AlsoSee Also

DROP FUNCTION

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1201

17.24 CREATE INDEX

NameName

CREATE INDEX -- define a new index.

SynopsisSynopsis

CREATE [UNIQUE] INDEX <name> ON <table>
 ({ <column> | (<expression>) | <constant> })
 [TABLESPACE <tablespace>]
 ({ NOPARALLEL | PARALLEL [<integer>] })

DescriptionDescription

CREATE INDEX constructs an index, name , on the specified table. Indexes are primarily used to enhance database performance (though inappropriate
use will result in slower performance).

The key field(s) for the index are specified as column names, constants, or as expressions written in parentheses. Multiple fields can be specified to create
multicolumn indexes.

An index field can be an expression computed from the values of one or more columns of the table row. This feature can be used to obtain fast access to
data based on some transformation of the basic data. For example, an index computed on UPPER(col) would allow the clause WHERE UPPER(col)
= 'JIM' to use an index.

Advanced Server provides the B-tree index method. The B-tree index method is an implementation of Lehman-Yao high-concurrency B-trees.

Indexes are not used for IS NULL clauses by default.

All functions and operators used in an index definition must be "immutable", that is, their results must depend only on their arguments and never on any
outside influence (such as the contents of another table or the current time). This restriction ensures that the behavior of the index is well-defined. To use a
user-defined function in an index expression remember to mark the function immutable when you create it.

If you create an index on a partitioned table, the CREATE INDEX command does propagate indexes to the table’s subpartitions.

The PARALLEL clause specifies the degree of parallelism used during the creation of an index. The NOPARALLEL clause resets the parallelism to the
default value; reloptions will show the parallel_workers parameter as 0 .

NoteNote

If you use the CREATE INDEX... PARALLEL command to create an index on a table whose definition included the PARALLEL clause (at
creation), the server will use the PARALLEL clause provided with the CREATE INDEX command when building a parallel index.

ParametersParameters

UNIQUE

Causes the system to check for duplicate values in the table when the index is created (if data already exist) and each time data is added. Attempts to insert
or update data which would result in duplicate entries will generate an error.

name

The name of the index to be created. No schema name can be included here; the index is always created in the same schema as its parent table.

table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1202

table

The name (possibly schema-qualified) of the table to be indexed.

column

The name of a column in the table.

expression

An expression based on one or more columns of the table. The expression usually must be written with surrounding parentheses, as shown in the syntax.
However, the parentheses may be omitted if the expression has the form of a function call.

constant

A constant value that can be used as an index key.

Normally, a row where all indexed columns are NULL is not included in an index. That means that the optimizer cannot use that index for certain queries. To
overcome this limitation, you can add a constant to the index, thereby forcing the index to never contain a row where all index columns are NULL.

tablespace

The tablespace in which to create the index. If not specified, default_tablespace is used, or the database’s default tablespace if
default_tablespace is an empty string.

PARALLEL

Specify PARALLEL to select a degree of parallelism; set parallel_workers parameter equal to the degree of parallelism to create a parallelized
index. Alternatively, if you specify PARALLEL but no degree of parallelism is listed, an index accepts default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of parallel_workers used in the parallel operation to perform a parallel scan
on an index.

NotesNotes

Up to 32 fields may be specified in a multicolumn index.

ExamplesExamples

To create a B-tree index on the column, ename , in the table, emp :

CREATE INDEX name_idx ON emp (ename);

To create the same index as above, but have it reside in the index_tblspc tablespace:

CREATE INDEX name_idx ON emp (ename) TABLESPACE index_tblspc;

You can include a constant value in the index definition (1) to create an index that never contains a row where all of the indexed columns are NULL :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1203

CREATE INDEX emp_dob_idx on emp (emp_dob, 1);

To create an index on name_idx in the table emp with degree of parallelism set to 7:

CREATE UNIQUE INDEX name_idx ON emp (ename) PARALLEL 7;

See AlsoSee Also

ALTER INDEX, DROP INDEX

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1204

17.25 CREATE MATERIALIZED VIEW

NameName

CREATE MATERIALIZED VIEW -- define a new materialized view.

SynopsisSynopsis

CREATE MATERIALIZED VIEW <name>
 [<build_clause>][<create_mv_refresh>] AS subquery

 Where <build_clause> is:

 BUILD {IMMEDIATE | DEFERRED}

 Where <create_mv_refresh> is:

 REFRESH [COMPLETE] [ON DEMAND]

DescriptionDescription

CREATE MATERIALIZED VIEW defines a view of a query that is not updated each time the view is referenced in a query. By default, the view is
populated when the view is created; you can include the BUILD DEFERRED keywords to delay the population of the view.

A materialized view may be schema-qualified; if you specify a schema name when invoking the CREATE MATERIALIZED VIEW command, the view will
be created in the specified schema. The view name must be distinct from the name of any other view, table, sequence, or index in the same schema.

ParametersParameters

name

The name (optionally schema-qualified) of a view to be created.

subquery

A SELECT statement that specifies the contents of the view. Refer to SELECT for more information about valid queries.

build_clause

Include a build_clause to specify when the view should be populated. Specify BUILD IMMEDIATE , or BUILD DEFERRED :

BUILD IMMEDIATE instructs the server to populate the view immediately. This is the default behavior.
BUILD DEFERRED instructs the server to populate the view at a later time (during a REFRESH operation).

create_mv_refresh

Include the create_mv_refresh clause to specify when the contents of a materialized view should be updated. The clause contains the REFRESH
keyword followed by COMPLETE and/or ON DEMAND , where:

COMPLETE instructs the server to discard the current content and reload the materialized view by executing the view's defining query when the
materialized view is refreshed.

ON DEMAND instructs the server to refresh the materialized view on demand by calling the DBMS_MVIEW package or by calling the Postgres
REFRESH MATERIALIZED VIEW statement. This is the default behavior.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1205

NotesNotes

Materialized views are read only - the server will not allow an INSERT , UPDATE , or DELETE on a view.

Access to tables referenced in the view is determined by permissions of the view owner; the user of a view must have permissions to call all functions used
by the view.

For more information about the Postgres REFRESH MATERIALIZED VIEW command, see the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

ExamplesExamples

The following statement creates a materialized view named dept_30 :

CREATE MATERIALIZED VIEW dept_30 BUILD IMMEDIATE AS SELECT * FROM emp WHERE deptno = 30;

The view contains information retrieved from the emp table about any employee that works in department 30 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1206

https://www.postgresql.org/docs/current/static/sql-refreshmaterializedview.html

17.26 CREATE PACKAGE

NameName

CREATE PACKAGE -- define a new package specification.

SynopsisSynopsis

CREATE [OR REPLACE] PACKAGE <name>
[AUTHID { DEFINER | CURRENT_USER }]
{ IS | AS }
 [<declaration>;] [, ...]
 [{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>]
 [, ...])];
 [PRAGMA RESTRICT_REFERENCES(<name>,
 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 |
 FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>]
 [, ...])]
 RETURN <rettype> [DETERMINISTIC];
 [PRAGMA RESTRICT_REFERENCES(<name>,
 { RNDS | RNPS | TRUST | WNDS | WNPS } [, ...]);]
 }
] [, ...]
 END [<name>]

DescriptionDescription

CREATE PACKAGE defines a new package specification. CREATE OR REPLACE PACKAGE will either create a new package specification, or replace
an existing specification.

If a schema name is included, then the package is created in the specified schema. Otherwise it is created in the current schema. The name of the new
package must not match any existing package in the same schema unless the intent is to update the definition of an existing package, in which case use
CREATE OR REPLACE PACKAGE .

The user that creates the procedure becomes the owner of the package.

ParametersParameters

name

The name (optionally schema-qualified) of the package to create.

DEFINER | CURRENT_USER

Specifies whether the privileges of the package owner (DEFINER) or the privileges of the current user executing a program in the package
(CURRENT_USER) are to be used to determine whether or not access is allowed to database objects referenced in the package. DEFINER is the default.

declaration

A public variable, type, cursor, or REF CURSOR declaration.

proc_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1207

The name of a public procedure.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

func_name

The name of a public function.

rettype

The return data type.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the procedure with all-constant arguments can be immediately replaced with the procedure value.

RNDS | RNPS | TRUST | WNDS | WNPS

The keywords are accepted for compatibility and ignored.

ExamplesExamples

The package specification, empinfo , contains three public components - a public variable, a public procedure, and a public function.

CREATE OR REPLACE PACKAGE empinfo
IS
 emp_name VARCHAR2(10);
 PROCEDURE get_name (
 p_empno NUMBER
);
 FUNCTION display_counter
 RETURN INTEGER;
END;

See AlsoSee Also

DROP PACKAGE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1208

17.27 CREATE PACKAGE BODY

NameName

CREATE PACKAGE BODY -- define a new package body.

SynopsisSynopsis

CREATE [OR REPLACE] PACKAGE BODY <name>
{ IS | AS }
 [declaration;] | [forward_declaration] [, ...]
 [{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST <execution_cost>]
 [ROWS <result_rows>]
 [SET <config_param> { TO <value> | = <value> | FROM CURRENT }]
 { IS | AS }
 <program_body>
 END [<proc_name>];
 |
 FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])]
 RETURN <rettype> [DETERMINISTIC]
 [STRICT]
 [LEAKPROOF]
 [PARALLEL { UNSAFE | RESTRICTED | SAFE }]
 [COST <execution_cost>]
 [ROWS <result_rows>]
 [SET <config_param> { TO <value> | = <value> | FROM CURRENT }]
 { IS | AS }
 <program_body>
 END [<func_name>];
 }
] [, ...]
 [BEGIN
 <statement>; [, ...]]
 END [<name>]

Where forward_declaration:=

[{ PROCEDURE <proc_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
] ;]
|
[{ FUNCTION <func_name>
 [(<argname> [IN | IN OUT | OUT] <argtype> [DEFAULT <value>] [, ...])
]
 RETURN <rettype> [DETERMINISTIC];]

DescriptionDescription

CREATE PACKAGE BODY defines a new package body. CREATE OR REPLACE PACKAGE BODY will either create a new package body, or replace an
existing body.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1209

If a schema name is included, then the package body is created in the specified schema. Otherwise it is created in the current schema. The name of the new
package body must match an existing package specification in the same schema. The new package body name must not match any existing package body in
the same schema unless the intent is to update the definition of an existing package body, in which case use CREATE OR REPLACE PACKAGE BODY .

ParametersParameters

name

The name (optionally schema-qualified) of the package body to create.

declaration

A private variable, type, cursor, or REF CURSOR declaration.

forward_declaration

The forward declaration of a procedure or function appears within a package body and is declared in advance of the actual body definition. In a block, you
can create multiple subprograms; if they invoke each other, each one requires a forward declaration. A subprogram must be declared before it can be
invoked. You can use a forward declaration to declare a subprogram without defining it. The forward declaration and its corresponding definition must
reside in the same block.

proc_name

The name of a public or private procedure. If proc_name exists in the package specification with an identical signature, then it is public, otherwise it is
private.

argname

The name of an argument.

IN | IN OUT | OUT

The argument mode.

argtype

The data type(s) of the program’s arguments.

DEFAULT value

Default value of an input argument.

STRICT

The STRICT keyword specifies that the function will not be executed if called with a NULL argument; instead the function will return NULL .

LEAKPROOF

The LEAKPROOF keyword specifies that the function will not reveal any information about arguments, other than through a return value.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the procedure or function cannot be executed in parallel mode. The presence of such a procedure or function forces a serial

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1210

When set to UNSAFE , the procedure or function cannot be executed in parallel mode. The presence of such a procedure or function forces a serial
execution plan. This is the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the procedure or function can be executed in parallel mode, but the execution is restricted to the parallel group leader.
If the qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the procedure or function can be executed in parallel mode with no restriction.

execution_cost

execution_cost specifies a positive number giving the estimated execution cost for the function, in units of cpu_operator_cost . If the function
returns a set, this is the cost per returned row. The default is 0.0025 .

result_rows

result_rows is the estimated number of rows that the query planner should expect the function to return. The default is 1000 .

SET

Use the SET clause to specify a parameter value for the duration of the function:

config_param specifies the parameter name.

value specifies the parameter value.

FROM CURRENT guarantees that the parameter value is restored when the function ends.

program_body

The pragma, declarations, and SPL statements that comprise the body of the function or procedure.

The pragma may be PRAGMA AUTONOMOUS_TRANSACTION to set the function or procedure as an autonomous transaction.

The declarations may include variable, type, REF CURSOR , or subprogram declarations. If subprogram declarations are included, they must be declared
after all other variable, type, and REF CURSOR declarations.

func_name

The name of a public or private function. If func_name exists in the package specification with an identical signature, then it is public, otherwise it is
private.

rettype

The return data type.

DETERMINISTIC

Include DETERMINISTIC to specify that the function will always return the same result when given the same argument values. A DETERMINISTIC
function must not modify the database.

NoteNote: The DETERMINISTIC keyword is equivalent to the PostgreSQL IMMUTABLE option. If DETERMINISTIC is specified for a public function in the
package body, it must also be specified for the function declaration in the package specification. For private functions, there is no function declaration in
the package specification.

statement

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1211

An SPL program statement. Statements in the package initialization section are executed once per session the first time the package is referenced.

NoteNote

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for Advanced Server and are not
supported by Oracle.

ExamplesExamples

The following is the package body for the empinfo package.

CREATE OR REPLACE PACKAGE BODY empinfo
IS
 v_counter INTEGER;
 PROCEDURE get_name (
 p_empno NUMBER
)
 IS
 BEGIN
 SELECT ename INTO emp_name FROM emp WHERE empno = p_empno;
 v_counter := v_counter + 1;
 END;
 FUNCTION display_counter
 RETURN INTEGER
 IS
 BEGIN
 RETURN v_counter;
 END;
BEGIN
 v_counter := 0;
 DBMS_OUTPUT.PUT_LINE('Initialized counter');
END;

The following two anonymous blocks execute the procedure and function in the empinfo package and display the public variable.

BEGIN
 empinfo.get_name(7369);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Initialized counter
Employee Name : SMITH
Number of queries: 1

BEGIN
 empinfo.get_name(7900);
 DBMS_OUTPUT.PUT_LINE('Employee Name : ' || empinfo.emp_name);
 DBMS_OUTPUT.PUT_LINE('Number of queries: ' || empinfo.display_counter);
END;

Employee Name : JAMES
Number of queries: 2

The following example demonstrates the use of a forward declaration within a package body. The example displays the name and number of employees
whose salary falls in the specified range.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1212

CREATE OR REPLACE PACKAGE empinfo IS
 FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER;
END empinfo;

CREATE OR REPLACE PACKAGE BODY empinfo IS
 FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER;
 PROCEDURE list_emp (p_sal_range INTEGER);

 FUNCTION emp_comp (p_sal_range INTEGER) RETURN INTEGER IS
 BEGIN
 dbms_output.put_line ('Employee details');
 return sal_range(p_sal_range);
 END;

 FUNCTION sal_range (p_sal_range INTEGER) RETURN INTEGER IS
 emp_cnt INTEGER;
 BEGIN
 select count(*) into emp_cnt from emp where sal <= p_sal_range;
 dbms_output.put_line('Number of employees in the salary range ' ||
p_sal_range|| ' is :'|| emp_cnt);
 list_emp(p_sal_range);
 return emp_cnt;
 END;

 PROCEDURE list_emp (p_sal_range IN INTEGER) IS
 BEGIN
 FOR i IN select ename from emp where sal <= p_sal_range
 LOOP
 dbms_output.put_line (i);
 END LOOP;
 END;

END empinfo;

SELECT empinfo.emp_comp(1500);
Employee details
Number of employees in the salary range 1500 is :7
(SMITH)
(WARD)
(MARTIN)
(TURNER)
(ADAMS)
(JAMES)
(MILLER)
emp_comp

 7
(1 row)

See AlsoSee Also

CREATE PACKAGE, DROP PACKAGE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1213

17.28 CREATE PROCEDURE

NameName

CREATE PROCEDURE -- define a new stored procedure.

SynopsisSynopsis

CREATE [OR REPLACE] PROCEDURE <name> [(<parameters>)]
 [
 IMMUTABLE
 | STABLE
 | VOLATILE
 | DETERMINISTIC
 | [NOT] LEAKPROOF
 | CALLED ON NULL INPUT
 | RETURNS NULL ON NULL INPUT
 | STRICT
 | [EXTERNAL] SECURITY INVOKER
 | [EXTERNAL] SECURITY DEFINER
 | AUTHID DEFINER
 | AUTHID CURRENT_USER
 | PARALLEL { UNSAFE | RESTRICTED | SAFE }
 | COST <execution_cost>
 | ROWS <result_rows>
 | SET <configuration_parameter>
 { TO <value> | = <value> | FROM CURRENT }
 ...]
{ IS | AS }
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 [<declarations>]
 BEGIN
 <statements>
 END [<name>];

DescriptionDescription

CREATE PROCEDURE defines a new stored procedure. CREATE OR REPLACE PROCEDURE will either create a new procedure, or replace an existing
definition.

If a schema name is included, then the procedure is created in the specified schema. Otherwise it is created in the current schema. The name of the new
procedure must not match any existing procedure with the same input argument types in the same schema. However, procedures of different input
argument types may share a name (this is called overloading). (Overloading of procedures is an Advanced Server feature - overloading of stored,
standalone procedures is not compatible with Oracle databases.)

To update the definition of an existing procedure, use CREATE OR REPLACE PROCEDURE . It is not possible to change the name or argument types of a
procedure this way (if you tried, you would actually be creating a new, distinct procedure). When using OUT parameters, you cannot change the types of
any OUT parameters except by dropping the procedure.

ParametersParameters

name

name is the identifier of the procedure.

parameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1214

parameters is a list of formal parameters.

declarations

declarations are variable, cursor, type, or subprogram declarations. If subprogram declarations are included, they must be declared after all other
variable, cursor, and type declarations.

statements

statements are SPL program statements (the BEGIN - END block may contain an EXCEPTION section).

IMMUTABLE

STABLE

VOLATILE

These attributes inform the query optimizer about the behavior of the procedure; you can specify only one choice. VOLATILE is the default behavior.

IMMUTABLE indicates that the procedure cannot modify the database and always reaches the same result when given the same argument values; it
does not do database lookups or otherwise use information not directly present in its argument list. If you include this clause, any call of the
procedure with all-constant arguments can be immediately replaced with the procedure value.

STABLE indicates that the procedure cannot modify the database, and that within a single table scan, it will consistently return the same result for
the same argument values, but that its result could change across SQL statements. This is the appropriate selection for procedures that depend on
database lookups, parameter variables (such as the current time zone), etc.

VOLATILE indicates that the procedure value can change even within a single table scan, so no optimizations can be made. Please note that any
function that has side-effects must be classified volatile, even if its result is quite predictable, to prevent calls from being optimized away.

DETERMINISTIC

DETERMINISTIC is a synonym for IMMUTABLE . A DETERMINISTIC procedure cannot modify the database and always reaches the same result when
given the same argument values; it does not do database lookups or otherwise use information not directly present in its argument list. If you include this
clause, any call of the procedure with all-constant arguments can be immediately replaced with the procedure value.

[NOT] LEAKPROOF

A LEAKPROOF procedure has no side effects, and reveals no information about the values used to call the procedure.

CALLED ON NULL INPUT

RETURNS NULL ON NULL INPUT

STRICT

CALLED ON NULL INPUT (the default) indicates that the procedure will be called normally when some of its arguments are NULL . It is the
author's responsibility to check for NULL values if necessary and respond appropriately.

RETURNS NULL ON NULL INPUT or STRICT indicates that the procedure always returns NULL whenever any of its arguments are NULL . If
these clauses are specified, the procedure is not executed when there are NULL arguments; instead a NULL result is assumed automatically.

[EXTERNAL] SECURITY DEFINER

SECURITY DEFINER specifies that the procedure will execute with the privileges of the user that created it; this is the default. The key word

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1215

SECURITY DEFINER specifies that the procedure will execute with the privileges of the user that created it; this is the default. The key word
EXTERNAL is allowed for SQL conformance, but is optional.

[EXTERNAL] SECURITY INVOKER

The SECURITY INVOKER clause indicates that the procedure will execute with the privileges of the user that calls it. The key word EXTERNAL is
allowed for SQL conformance, but is optional.

AUTHID DEFINER

AUTHID CURRENT_USER

The AUTHID DEFINER clause is a synonym for [EXTERNAL] SECURITY DEFINER . If the AUTHID clause is omitted or if AUTHID
DEFINER is specified, the rights of the procedure owner are used to determine access privileges to database objects.

The AUTHID CURRENT_USER clause is a synonym for [EXTERNAL] SECURITY INVOKER . If AUTHID CURRENT_USER is specified, the
rights of the current user executing the procedure are used to determine access privileges.

PARALLEL { UNSAFE | RESTRICTED | SAFE }

The PARALLEL clause enables the use of parallel sequential scans (parallel mode). A parallel sequential scan uses multiple workers to scan a relation in
parallel during a query in contrast to a serial sequential scan.

When set to UNSAFE , the procedure cannot be executed in parallel mode. The presence of such a procedure forces a serial execution plan. This is
the default setting if the PARALLEL clause is omitted.

When set to RESTRICTED , the procedure can be executed in parallel mode, but the execution is restricted to the parallel group leader. If the
qualification for any particular relation has anything that is parallel restricted, that relation won't be chosen for parallelism.

When set to SAFE , the procedure can be executed in parallel mode with no restriction.

COST execution_cost

execution_cost is a positive number giving the estimated execution cost for the procedure, in units of cpu_operator_cost . If the procedure
returns a set, this is the cost per returned row. Larger values cause the planner to try to avoid evaluating the function more often than necessary.

ROWS result_rows

result_rows is a positive number giving the estimated number of rows that the planner should expect the procedure to return. This is only allowed
when the procedure is declared to return a set. The default assumption is 1000 rows.

SET configuration_parameter { TO value | = value | FROM CURRENT }

The SET clause causes the specified configuration parameter to be set to the specified value when the procedure is entered, and then restored to its prior
value when the procedure exits. SET FROM CURRENT saves the session's current value of the parameter as the value to be applied when the procedure
is entered.

If a SET clause is attached to a procedure, then the effects of a SET LOCAL command executed inside the procedure for the same variable are restricted
to the procedure; the configuration parameter's prior value is restored at procedure exit. An ordinary SET command (without LOCAL) overrides the SET
clause, much as it would do for a previous SET LOCAL command, with the effects of such a command persisting after procedure exit, unless the current
transaction is rolled back.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the procedure as an autonomous transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1216

NoteNote

The STRICT , LEAKPROOF , PARALLEL , COST , ROWS and SET keywords provide extended functionality for Advanced Server and
are not supported by Oracle.
The IMMUTABLE , STABLE , STRICT , LEAKPROOF , COST , ROWS and PARALLEL { UNSAFE | RESTRICTED | SAFE }
attributes are only supported for EDB SPL procedures.
By default, stored procedures are created as SECURITY DEFINERS ; stored procedures defined in plpgsql are created as SECURITY
INVOKERS .

ExamplesExamples

The following procedure lists the employees in the emp table:

CREATE OR REPLACE PROCEDURE list_emp
IS
 v_empno NUMBER(4);
 v_ename VARCHAR2(10);
 CURSOR emp_cur IS
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME');
 DBMS_OUTPUT.PUT_LINE('----- -------');
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN emp_cur%NOTFOUND;
 DBMS_OUTPUT.PUT_LINE(v_empno || ' ' || v_ename);
 END LOOP;
 CLOSE emp_cur;
END;

EXEC list_emp;

EMPNO ENAME
----- -------
7369 SMITH
7499 ALLEN
7521 WARD
7566 JONES
7654 MARTIN
7698 BLAKE
7782 CLARK
7788 SCOTT
7839 KING
7844 TURNER
7876 ADAMS
7900 JAMES
7902 FORD
7934 MILLER

The following procedure uses IN OUT and OUT arguments to return an employee’s number, name, and job based upon a search using first, the given
employee number, and if that is not found, then using the given name. An anonymous block calls the procedure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1217

CREATE OR REPLACE PROCEDURE emp_job (
 p_empno IN OUT emp.empno%TYPE,
 p_ename IN OUT emp.ename%TYPE,
 p_job OUT emp.job%TYPE
)
IS
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 SELECT ename, job INTO v_ename, v_job FROM emp WHERE empno = p_empno;
 p_ename := v_ename;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee # ' || p_empno);
EXCEPTION
 WHEN NO_DATA_FOUND THEN
 BEGIN
 SELECT empno, job INTO v_empno, v_job FROM emp
 WHERE ename = p_ename;
 p_empno := v_empno;
 p_job := v_job;
 DBMS_OUTPUT.PUT_LINE('Found employee ' || p_ename);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN
 DBMS_OUTPUT.PUT_LINE('Could not find an employee with ' ||
 'number, ' || p_empno || ' nor name, ' || p_ename);
 p_empno := NULL;
 p_ename := NULL;
 p_job := NULL;
 END;
END;

DECLARE
 v_empno emp.empno%TYPE;
 v_ename emp.ename%TYPE;
 v_job emp.job%TYPE;
BEGIN
 v_empno := 0;
 v_ename := 'CLARK';
 emp_job(v_empno, v_ename, v_job);
 DBMS_OUTPUT.PUT_LINE('Employee No: ' || v_empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || v_ename);
 DBMS_OUTPUT.PUT_LINE('Job : ' || v_job);
END;

Found employee CLARK
Employee No: 7782
Name : CLARK
Job : MANAGER

The following example demonstrates using the AUTHID DEFINER and SET clauses in a procedure declaration. The update_salary procedure
conveys the privileges of the role that defined the procedure to the role that is calling the procedure (while the procedure executes):

CREATE OR REPLACE PROCEDURE update_salary(id INT, new_salary NUMBER)
 SET SEARCH_PATH = 'public' SET WORK_MEM = '1MB'
 AUTHID DEFINER IS
BEGIN
 UPDATE emp SET salary = new_salary WHERE emp_id = id;
END;

Include the SET clause to set the procedure's search path to public and the work memory to 1MB . Other procedures, functions and objects will not be

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1218

Include the SET clause to set the procedure's search path to public and the work memory to 1MB . Other procedures, functions and objects will not be
affected by these settings.

In this example, the AUTHID DEFINER clause temporarily grants privileges to a role that might otherwise not be allowed to execute the statements
within the procedure. To instruct the server to use the privileges associated with the role invoking the procedure, replace the AUTHID DEFINER clause
with the AUTHID CURRENT_USER clause.

See AlsoSee Also

DROP PROCEDURE, ALTER PROCEDURE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1219

17.29 CREATE PROFILE

NameName

CREATE PROFILE -- create a new profile.

SynopsisSynopsis

CREATE PROFILE <profile_name>
 [LIMIT {<parameter value>} ...];

DescriptionDescription

CREATE PROFILE creates a new profile. Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules
enforced by Advanced Server.

Advanced Server creates a default profile named DEFAULT . When you use the CREATE ROLE command to create a new role, the new role is
automatically associated with the DEFAULT profile. If you upgrade from a previous version of Advanced Server to Advanced Server 10, the upgrade
process will automatically create the roles in the upgraded version to the DEFAULT profile.

You must be a superuser to use CREATE PROFILE .

Include the LIMIT clause and one or more space-delimited parameter/value pairs to specify the rules enforced by Advanced Server.

ParametersParameters

profile_name

The name of the profile.

parameter

The password attribute that will be monitored by the rule.

value

The value the parameter must reach before an action is taken by the server.

Advanced Server supports the value shown below for each parameter :

FAILED_LOGIN_ATTEMPTS specifies the number of failed login attempts that a user may make before the server locks the user out of their account for
the length of time specified by PASSWORD_LOCK_TIME . Supported values are:

An INTEGER value greater than 0 .
DEFAULT - the value of FAILED_LOGIN_ATTEMPTS specified in the DEFAULT profile.
UNLIMITED – the connecting user may make an unlimited number of failed login attempts.

PASSWORD_LOCK_TIME specifies the length of time that must pass before the server unlocks an account that has been locked because of
FAILED_LOGIN_ATTEMPTS . Supported values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LOCK_TIME specified in the DEFAULT profile.

UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1220

UNLIMITED – the account is locked until it is manually unlocked by a database superuser.

PASSWORD_LIFE_TIME specifies the number of days that the current password may be used before the user is prompted to provide a new password.
Include the PASSWORD_GRACE_TIME clause when using the PASSWORD_LIFE_TIME clause to specify the number of days that will pass after the
password expires before connections by the role are rejected. If PASSWORD_GRACE_TIME is not specified, the password will expire on the day specified
by the default value of PASSWORD_GRACE_TIME , and the user will not be allowed to execute any command until a new password is provided. Supported
values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_LIFE_TIME specified in the DEFAULT profile.
UNLIMITED – The password does not have an expiration date.

PASSWORD_GRACE_TIME specifies the length of the grace period after a password expires until the user is forced to change their password. When the
grace period expires, a user will be allowed to connect, but will not be allowed to execute any command until they update their expired password.
Supported values are:

A NUMERIC value greater than or equal to 0. To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_GRACE_TIME specified in the DEFAULT profile.
UNLIMITED – The grace period is infinite.

PASSWORD_REUSE_TIME specifies the number of days a user must wait before re-using a password. The PASSWORD_REUSE_TIME and
PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

A NUMERIC value greater than or equal to 0 . To specify a fractional portion of a day, specify a decimal value. For example, use the value 4.5 to
specify 4 days, 12 hours.
DEFAULT - the value of PASSWORD_REUSE_TIME specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_REUSE_MAX specifies the number of password changes that must occur before a password can be reused. The PASSWORD_REUSE_TIME
and PASSWORD_REUSE_MAX parameters are intended to be used together. If you specify a finite value for one of these parameters while the other is
UNLIMITED , old passwords can never be reused. If both parameters are set to UNLIMITED there are no restrictions on password reuse. Supported

values are:

An INTEGER value greater than or equal to 0 .
DEFAULT - the value of PASSWORD_REUSE_MAX specified in the DEFAULT profile.
UNLIMITED – The password can be re-used without restrictions.

PASSWORD_VERIFY_FUNCTION specifies password complexity. Supported values are:

The name of a PL/SQL function.
DEFAULT - the value of PASSWORD_VERIFY_FUNCTION specified in the DEFAULT profile.
NULL

PASSWORD_ALLOW_HASHED specifies whether an encrypted password to be allowed for use or not. If you specify the value as TRUE , the system allows
a user to change the password by specifying a hash computed encrypted password on the client side. However, if you specify the value as FALSE , then a
password must be specified in a plain-text form in order to be validated effectively, else an error will be thrown if a server receives an encrypted password.
Supported values are:

A BOOLEAN value TRUE/ON/YES/1 or FALSE/OFF/NO/0 .
DEFAULT – the value of PASSWORD_ALLOW_HASHED specified in the DEFAULT profile.

NoteNote

The PASSWORD_ALLOW_HASHED is not an Oracle-compatible parameter.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1221

NotesNotes

Use DROP PROFILE command to remove the profile.

ExamplesExamples

The following command creates a profile named acctg . The profile specifies that if a user has not authenticated with the correct password in five
attempts, the account will be locked for one day:

CREATE PROFILE acctg LIMIT
 FAILED_LOGIN_ATTEMPTS 5
 PASSWORD_LOCK_TIME 1;

The following command creates a profile named sales . The profile specifies that a user must change their password every 90 days:

CREATE PROFILE sales LIMIT
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;

If the user has not changed their password before the 90 days specified in the profile has passed, they will be issued a warning at login. After a grace period
of 3 days, their account will not be allowed to invoke any commands until they change their password.

The following command creates a profile named accts . The profile specifies that a user cannot re-use a password within 180 days of the last use of the
password, and must change their password at least 5 times before re-using the password:

CREATE PROFILE accts LIMIT
 PASSWORD_REUSE_TIME 180
 PASSWORD_REUSE_MAX 5;

The following command creates a profile named resources ; the profile calls a user-defined function named password_rules that will verify that
the password provided meets their standards for complexity:

CREATE PROFILE resources LIMIT
 PASSWORD_VERIFY_FUNCTION password_rules;

See AlsoSee Also

ALTER PROFILE, DROP PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1222

17.30 CREATE QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE SQL command. This syntax can be used in association with
DBMS_AQADM .

NameName

CREATE QUEUE -- create a queue.

SynopsisSynopsis

Use CREATE QUEUE to define a new queue:

CREATE QUEUE <name> QUEUE TABLE <queue_table_name> [({ <option_name option_value>} [, ...])]

where option_name and the corresponding option_value can be:

TYPE [normal_queue | exception_queue]
RETRIES [INTEGER]
RETRYDELAY [DOUBLE PRECISION]
RETENTION [DOUBLE PRECISION]

DescriptionDescription

The CREATE QUEUE command allows a database superuser or any user with the system-defined aq_administrator_role privilege to create a new
queue in the current database.

If the name of the queue is schema-qualified, the queue is created in the specified schema. If a schema is not included in the CREATE QUEUE command,
the queue is created in the current schema. A queue may only be created in the schema in which the queue table resides. The name of the queue must be
unique from the name of any other queue in the same schema.

Use DROP QUEUE to remove a queue.

ParametersParameters

name

The name (optionally schema-qualified) of the queue to be created.

queue_table_name

The name of the queue table with which this queue is associated.

option_name option_value

The name of any options that will be associated with the new queue, and the corresponding value for the option. If the call to CREATE QUEUE includes
duplicate option names, the server will return an error. The following values are accepted:

TYPE : Specify normal_queue to indicate that the queue is a normal queue, or exception_queue to indicate that the queue is an exception
queue. An exception queue will only accept dequeue operations.
RETRIES : An INTEGER value that specifies the maximum number of attempts to remove a message from a queue.
RETRYDELAY : A DOUBLE PRECISION value that specifies the number of seconds after a ROLLBACK that the server will wait before retrying a

message.

RETENTION : A DOUBLE PRECISION value that specifies the number of seconds that a message will be saved in the queue table after

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1223

RETENTION : A DOUBLE PRECISION value that specifies the number of seconds that a message will be saved in the queue table after
dequeueing.

ExamplesExamples

The following command creates a queue named work_order that is associated with a queue table named work_order_table :

CREATE QUEUE work_order QUEUE TABLE work_order_table (RETRIES 5, RETRYDELAY 2);

The server will allow 5 attempts to remove a message from the queue, and enforce a retry delay of 2 seconds between attempts.

See AlsoSee Also

ALTER QUEUE, DROP QUEUE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1224

17.31 CREATE QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the CREATE QUEUE TABLE SQL command. This syntax can be used in association
with DBMS_AQADM .

NameName

CREATE QUEUE TABLE -- create a new queue table.

SynopsisSynopsis

Use CREATE QUEUE TABLE to define a new queue table:

CREATE QUEUE TABLE <name> OF <type_name> [({ <option_name option_value> } [, ...])]

where option_name and the corresponding option_value can be:

SORT_LIST : Specify option_value as priority, enq_time
MULTIPLE_CONSUMERS : Specify option_value as FALSE, TRUE
MESSAGE_GROUPING : Specify option_value as NONE, TRANSACTIONAL
STORAGE_CLAUSE : Specify option_value as TABLESPACE tablespace_name, PCTFREE integer, PCTUSED integer,
INITRANS integer, MAXTRANS integer, STORAGE storage_option Where storage_option is one or more of the following:
MINEXTENTS integer , MAXEXTENTS integer , PCTINCREASE integer , INITIAL size_clause , NEXT , FREELISTS
integer , OPTIMAL size_clause , BUFFER_POOL {KEEP|RECYCLE|DEFAULT} .

Please note that only the TABLESPACE option is enforced; all others are accepted for compatibility and ignored. Use the TABLESPACE clause to
specify the name of a tablespace in which the table will be created.

DescriptionDescription

CREATE QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to create a new queue table.

If the call to CREATE QUEUE TABLE includes a schema name, the queue table is created in the specified schema. If no schema name is provided, the
new queue table is created in the current schema.

The name of the queue table must be unique from the name of any other queue table in the same schema.

ParametersParameters

name

The name (optionally schema-qualified) of the new queue table.

type_name

The name of an existing type that describes the payload of each entry in the queue table. For information about defining a type, see CREATE TYPE .

option_name option_value

The name of any options that will be associated with the new queue, and the corresponding value for the option. If the call to CREATE QUEUE includes
duplicate option names, the server will return an error. The following values are accepted:

SORT_LIST : Use the SORT_LIST option to control the dequeueing order of the queue; specify the names of the column(s) that will be used to

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1225

SORT_LIST : Use the SORT_LIST option to control the dequeueing order of the queue; specify the names of the column(s) that will be used to
sort the queue (in ascending order). The currently accepted values are the following combinations of enq_time and priority :

enq_time. priority

priority. enq_time

priority

enq_time

Any other value will return an ERROR .

MULTIPLE_CONSUMERS : A BOOLEAN value that indicates if a message can have more than one consumer (TRUE) , or are limited to one
consumer per message (FALSE) .

MESSAGE_GROUPING : Specify none to indicate that each message should be dequeued individually, or transactional to indicate that
messages that are added to the queue as a result of one transaction should be dequeued as a group.

STORAGE_CLAUSE : Use STORAGE_CLAUSE to specify table attributes. STORAGE_CLAUSE may be TABLESPACE tablespace_name ,
PCTFREE integer , PCTUSED integer , INITRANS integer , MAXTRANS integer , STORAGE storage_option Where
storage_option is one or more of the following:

MINEXTENTS integer ,

MAXEXTENTS integer ,

PCTINCREASE integer ,

INITIAL size_clause ,

NEXT ,

FREELISTS integer ,

OPTIMAL size_clause ,

BUFFER_POOL {KEEP|RECYCLE|DEFAULT} .

Please note that only the TABLESPACE option is enforced; all others are accepted for compatibility and ignored. Use the TABLESPACE clause to
specify the name of a tablespace in which the table will be created.

ExamplesExamples

You must create a user-defined type before creating a queue table; the type describes the columns and data types within the table. The following command
creates a type named work_order :

CREATE TYPE work_order AS (name VARCHAR2, project TEXT, completed BOOLEAN);

The following command uses the work_order type to create a queue table named work_order_table :

CREATE QUEUE TABLE work_order_table OF work_order (sort_list (enq_time, priority));

See AlsoSee Also

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1226

ALTER QUEUE TABLE, DROP QUEUE TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1227

17.32 CREATE ROLE

NameName

CREATE ROLE -- define a new database role.

SynopsisSynopsis

CREATE ROLE <name> [IDENTIFIED BY <password> [REPLACE old_password]]

DescriptionDescription

CREATE ROLE adds a new role to the Advanced Server database cluster. A role is an entity that can own database objects and have database privileges;
a role can be considered a “user”, a “group”, or both depending on how it is used. The newly created role does not have the LOGIN attribute, so it cannot
be used to start a session. Use the ALTER ROLE command to give the role LOGIN rights. You must have CREATEROLE privilege or be a database
superuser to use the CREATE ROLE command.

If the IDENTIFIED BY clause is specified, the CREATE ROLE command also creates a schema owned by, and with the same name as the newly
created role.

NoteNote

The roles are defined at the database cluster level, and so are valid in all databases in the cluster.

ParametersParameters

name

The name of the new role.

IDENTIFIED BY password

Sets the role’s password. (A password is only of use for roles having the LOGIN attribute, but you can nonetheless define one for roles without it.) If you do
not plan to use password authentication you can omit this option.

NotesNotes

Use ALTER ROLE to change the attributes of a role, and DROP ROLE to remove a role. The attributes specified by CREATE ROLE can be modified by
later ALTER ROLE commands.

Use GRANT and REVOKE to add and remove members of roles that are being used as groups.

The maximum length limit for role name and password is 63 characters.

ExamplesExamples

Create a role (and a schema) named, admins , with a password:

CREATE ROLE admins IDENTIFIED BY Rt498zb;

See AlsoSee Also

ALTER ROLE, DROP ROLE, GRANT, REVOKE, SET ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1228

17.33 CREATE SCHEMA

NameName

CREATE SCHEMA -- define a new schema.

SynopsisSynopsis

CREATE SCHEMA AUTHORIZATION <username> <schema_element> [...]

DescriptionDescription

This variation of the CREATE SCHEMA command creates a new schema owned by username and populated with one or more objects. The creation of
the schema and objects occur within a single transaction so either all objects are created or none of them including the schema. (Please note: if you are
using an Oracle database, no new schema is created – username , and therefore the schema, must pre-exist.)

A schema is essentially a namespace: it contains named objects (tables, views, etc.) whose names may duplicate those of other objects existing in other
schemas. Named objects are accessed either by “qualifying” their names with the schema name as a prefix, or by setting a search path that includes the
desired schema(s). Unqualified objects are created in the current schema (the one at the front of the search path, which can be determined with the
function CURRENT_SCHEMA). (The search path concept and the CURRENT_SCHEMA function are not compatible with Oracle databases.)

CREATE SCHEMA includes subcommands to create objects within the schema. The subcommands are treated essentially the same as separate
commands issued after creating the schema. All the created objects will be owned by the specified user.

ParametersParameters

username

The name of the user who will own the new schema. The schema will be named the same as username . Only superusers may create schemas owned by
users other than themselves. (Please note: In Advanced Server the role, username , must already exist, but the schema must not exist. In Oracle, the user
(equivalently, the schema) must exist.)

schema_element

An SQL statement defining an object to be created within the schema. CREATE TABLE , CREATE VIEW , and GRANT are accepted as clauses within
CREATE SCHEMA . Other kinds of objects may be created in separate commands after the schema is created.

NotesNotes

To create a schema, the invoking user must have the CREATE privilege for the current database. (Of course, superusers bypass this check.)

In Advanced Server, there are other forms of the CREATE SCHEMA command that are not compatible with Oracle databases.

ExamplesExamples

CREATE SCHEMA AUTHORIZATION enterprisedb
 CREATE TABLE empjobs (ename VARCHAR2(10), job VARCHAR2(9))
 CREATE VIEW managers AS SELECT ename FROM empjobs WHERE job = 'MANAGER'
 GRANT SELECT ON managers TO PUBLIC;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1229

17.34 CREATE SEQUENCE

NameName

CREATE SEQUENCE -- define a new sequence generator.

SynopsisSynopsis

CREATE SEQUENCE <name> [INCREMENT BY <increment>]
 [{ NOMINVALUE | MINVALUE <minvalue> }]
 [{ NOMAXVALUE | MAXVALUE <maxvalue> }]
 [START WITH <start>] [CACHE <cache> | NOCACHE] [CYCLE]

DescriptionDescription

CREATE SEQUENCE creates a new sequence number generator. This involves creating and initializing a new special single-row table with the name,
name . The generator will be owned by the user issuing the command.

If a schema name is given then the sequence is created in the specified schema, otherwise it is created in the current schema. The sequence name must be
distinct from the name of any other sequence, table, index, or view in the same schema.

After a sequence is created, use the functions NEXTVAL and CURRVAL to operate on the sequence. These functions are documented in Sequence
Manipulation Functions of Database Compatibility for Oracle Developers Reference Guide.

ParametersParameters

name

The name (optionally schema-qualified) of the sequence to be created.

increment

The optional clause INCREMENT BY increment specifies the value to add to the current sequence value to create a new value. A positive value will
make an ascending sequence, a negative one a descending sequence. The default value is 1 .

NOMINVALUE | MINVALUE minvalue

The optional clause MINVALUE minvalue determines the minimum value a sequence can generate. If this clause is not supplied, then defaults will be

used. The defaults are 1 and -263-1 for ascending and descending sequences, respectively. Note that the key words, NOMINVALUE , may be used to set
this behavior to the default.

NOMAXVALUE | MAXVALUE maxvalue

The optional clause MAXVALUE maxvalue determines the maximum value for the sequence. If this clause is not supplied, then default values will be

used. The defaults are 263-1 and -1 for ascending and descending sequences, respectively. Note that the key words, NOMAXVALUE , may be used to set
this behavior to the default.

start

The optional clause START WITH start allows the sequence to begin anywhere. The default starting value is minvalue for ascending sequences
and maxvalue for descending ones.

cache

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1230

The optional clause CACHE cache specifies how many sequence numbers are to be preallocated and stored in memory for faster access. The minimum
value is 1 (only one value can be generated at a time, i.e., NOCACHE), and this is also the default.

CYCLE

The CYCLE option allows the sequence to wrap around when the maxvalue or minvalue has been reached by an ascending or descending sequence
respectively. If the limit is reached, the next number generated will be the minvalue or maxvalue , respectively.

If CYCLE is omitted (the default), any calls to NEXTVAL after the sequence has reached its maximum value will return an error. Note that the key words,
NO CYCLE , may be used to obtain the default behavior, however, this term is not compatible with Oracle databases.

NotesNotes

Sequences are based on big integer arithmetic, so the range cannot exceed the range of an eight-byte integer (-9223372036854775808 to
9223372036854775807). On some older platforms, there may be no compiler support for eight-byte integers, in which case sequences use regular
INTEGER arithmetic (range -2147483648 to +2147483647).

Unexpected results may be obtained if a cache setting greater than one is used for a sequence object that will be used concurrently by multiple sessions.
Each session will allocate and cache successive sequence values during one access to the sequence object and increase the sequence object’s last value
accordingly. Then, the next cache-1 uses of NEXTVAL within that session simply return the preallocated values without touching the sequence object.
So, any numbers allocated but not used within a session will be lost when that session ends, resulting in "holes" in the sequence.

Furthermore, although multiple sessions are guaranteed to allocate distinct sequence values, the values may be generated out of sequence when all the
sessions are considered. For example, with a cache setting of 10, session A might reserve values 1..10 and return NEXTVAL=1 , then session B might
reserve values 11..20 and return NEXTVAL=11 before session A has generated NEXTVAL=2 . Thus, with a cache setting of one it is safe to assume
that NEXTVAL values are generated sequentially; with a cache setting greater than one you should only assume that the NEXTVAL values are all
distinct, not that they are generated purely sequentially. Also, the last value will reflect the latest value reserved by any session, whether or not it has yet
been returned by NEXTVAL .

ExamplesExamples

Create an ascending sequence called serial , starting at 101:

CREATE SEQUENCE serial START WITH 101;

Select the next number from this sequence:

SELECT serial.NEXTVAL FROM DUAL;

 nextval

 101
(1 row)

Create a sequence called supplier_seq with the NOCACHE option:

CREATE SEQUENCE supplier_seq
 MINVALUE 1
 START WITH 1
 INCREMENT BY 1
 NOCACHE;

Select the next number from this sequence:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1231

SELECT supplier_seq.NEXTVAL FROM DUAL;

 nextval

 1
(1 row)

See AlsoSee Also

ALTER SEQUENCE, DROP SEQUENCE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1232

17.35 CREATE SYNONYM

NameName

CREATE SYNONYM -- define a new synonym.

SynopsisSynopsis

CREATE [OR REPLACE] [PUBLIC] SYNONYM [<schema>.]<syn_name>
 FOR <object_schema>.<object_name>[@<dblink_name>];

DescriptionDescription

CREATE SYNONYM defines a synonym for certain types of database objects. Advanced Server supports synonyms for:

tables
views
materialized views
sequences
stored procedures
stored functions
types
objects that are accessible through a database link
other synonyms

ParametersParameters

syn_name

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema that the synonym resides in. If you do not specify a schema name, the synonym is created in the first existing
schema in your search path.

object_name

object_name specifies the name of the object.

object_schema

object_schema specifies the name of the schema that the referenced object resides in.

dblink_name

dblink_name specifies the name of the database link through which an object is accessed.

Include the REPLACE clause to replace an existing synonym definition with a new synonym definition.

Include the PUBLIC clause to create the synonym in the public schema. The CREATE PUBLIC SYNONYM command, compatible with Oracle
databases, creates a synonym that resides in the public schema:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1233

CREATE [OR REPLACE] PUBLIC SYNONYM <syn_name> FOR
<object_schema>.<object_name>;

This just a shorthand way to write:

CREATE [OR REPLACE] SYNONYM public.<syn_name> FOR
<object_schema>.<object_name>;

NotesNotes

Access to the object referenced by the synonym is determined by the permissions of the current user of the synonym; the synonym user must have the
appropriate permissions on the underlying database object.

ExamplesExamples

Create a synonym for the emp table in a schema named, enterprisedb :

CREATE SYNONYM personnel FOR enterprisedb.emp;

See AlsoSee Also

DROP SYNONYM

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1234

17.36 CREATE TABLE

NameName

CREATE TABLE -- define a new table.

SynopsisSynopsis

CREATE [GLOBAL TEMPORARY | UNLOGGED] TABLE <table_name> (
 { <column_name> <data_type> [DEFAULT <default_expr>]
 [<column_constraint> [...]] | <table_constraint> } [, ...]
)
 [WITH (ROWIDS [= <value>])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE <tablespace>]
 { NOPARALLEL | PARALLEL [<integer>] }

where column_constraint is:

[CONSTRAINT <constraint_name>]
{ NOT NULL |
 NULL |
 UNIQUE [USING INDEX TABLESPACE <tablespace>] |
 PRIMARY KEY [USING INDEX TABLESPACE <tablespace>] |
 CHECK (<expression>) |
 REFERENCES <reftable> [(<refcolumn>)]
 [ON DELETE <action>] }
[DEFERRABLE | NOT DEFERRABLE] [INITIALLY DEFERRED |
 INITIALLY IMMEDIATE]

and table_constraint is:

[CONSTRAINT <constraint_name>]
{ UNIQUE (<column_name> [, ...])
 [USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
 PRIMARY KEY (<column_name> [, ...])
 [USING INDEX [<create_index_statement>] TABLESPACE <tablespace>] |
 CHECK (<expression>) |
 FOREIGN KEY (<column_name> [, ...])
 REFERENCES <reftable> [(<refcolumn> [, ...])]
 [ON DELETE <action>] }
[DEFERRABLE | NOT DEFERRABLE]
[INITIALLY DEFERRED | INITIALLY IMMEDIATE]

DescriptionDescription

CREATE TABLE will create a new, initially empty table in the current database. The table will be owned by the user issuing the command.

If a schema name is given (for example, CREATE TABLE myschema.mytable ...) then the table is created in the specified schema. Otherwise it is
created in the current schema. Temporary tables exist in a special schema, so a schema name may not be given when creating a temporary table. The table
name must be distinct from the name of any other table, sequence, index, or view in the same schema.

CREATE TABLE also automatically creates a data type that represents the composite type corresponding to one row of the table. Therefore, tables
cannot have the same name as any existing data type in the same schema.

The PARALLEL clause sets the degree of parallelism for a table. If you do not specify the PARALLEL clause, the server determines a value based on the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1235

The PARALLEL clause sets the degree of parallelism for a table. If you do not specify the PARALLEL clause, the server determines a value based on the
relation size.

The NOPARALLEL clause reset the parallelism for default execution, and reloptions will show the parallel_workers parameter as 0 .

A table cannot have more than 1600 columns. (In practice, the effective limit is lower because of tuple-length constraints).

The optional constraint clauses specify constraints (or tests) that new or updated rows must satisfy for an insert or update operation to succeed. A
constraint is an SQL object that helps define the set of valid values in the table in various ways.

There are two ways to define constraints: table constraints and column constraints. A column constraint is defined as part of a column definition. A table
constraint definition is not tied to a particular column, and it can encompass more than one column. Every column constraint can also be written as a table
constraint; a column constraint is only a notational convenience if the constraint only affects one column.

ParametersParameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Temporary tables are automatically dropped at the end of a session, or optionally at the end of the
current transaction (see ON COMMIT below). Existing permanent tables with the same name are not visible to the current session while the temporary
table exists, unless they are referenced with schema-qualified names. In addition, temporary tables are not visible outside the session in which it was
created. (This aspect of global temporary tables is not compatible with Oracle databases.) Any indexes created on a temporary table are automatically
temporary as well.

UNLOGGED

If specified, the table is created as an unlogged table. The data written to unlogged tables is not written to the write-ahead log (WAL), making them faster
than an ordinary table. Indexes created on an unlogged table are automatically unlogged. The contents of an unlogged table are not replicated to a
standby server. The unlogged table is automatically truncated after a crash or shutdown.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column to be created in the new table.

data_type

The data type of the column. This may include array specifiers. For more information on the data types included with Advanced Server, refer to Data Types
of Database Compatibility for Oracle Developers Reference Guide.

DEFAULT default_expr

The DEFAULT clause assigns a default data value for the column whose column definition it appears within. The value is any variable-free expression
(subqueries and cross-references to other columns in the current table are not allowed). The data type of the default expression must match the data type
of the column.

The default expression will be used in any insert operation that does not specify a value for the column. If there is no default for a column, then the default
is null .

CONSTRAINT constraint_name

An optional name for a column or table constraint. If not specified, the system generates a name.

NOT NULL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1236

The column is not allowed to contain null values.

NULL

The column is allowed to contain null values. This is the default.

This clause is only available for compatibility with non-standard SQL databases. Its use is discouraged in new applications.

UNIQUE - column constraint

UNIQUE (column_name [, ...]) - table constraint

The UNIQUE constraint specifies that a group of one or more distinct columns of a table may contain only unique values. The behavior of the unique table
constraint is the same as that for column constraints, with the additional capability to span multiple columns.

For the purpose of a unique constraint, null values are not considered equal.

Each unique table constraint must name a set of columns that is different from the set of columns named by any other unique or primary key constraint
defined for the table. (Otherwise it would just be the same constraint listed twice.)

PRIMARY KEY - column constraint

PRIMARY KEY (column_name [, ...]) - table constraint

The primary key constraint specifies that a column or columns of a table may contain only unique (non-duplicate), non-null values. Technically, PRIMARY
KEY is merely a combination of UNIQUE and NOT NULL , but identifying a set of columns as primary key also provides metadata about the design of the
schema, as a primary key implies that other tables may rely on this set of columns as a unique identifier for rows.

Only one primary key can be specified for a table, whether as a column constraint or a table constraint.

The primary key constraint should name a set of columns that is different from other sets of columns named by any unique constraint defined for the same
table.

CHECK (expression)

The CHECK clause specifies an expression producing a Boolean result which new or updated rows must satisfy for an insert or update operation to
succeed. Expressions evaluating to TRUE or “unknown” succeed. Should any row of an insert or update operation produce a FALSE result an error exception
is raised and the insert or update does not alter the database. A check constraint specified as a column constraint should reference that column’s value
only, while an expression appearing in a table constraint may reference multiple columns.

Currently, CHECK expressions cannot contain subqueries nor refer to variables other than columns of the current row.

REFERENCES reftable [(refcolumn)] [ON DELETE action] - column constraint
FOREIGN KEY (column [, ...]) REFERENCES reftable [(refcolumn [, ...])] [ON DELETE action] - table

constraint

These clauses specify a foreign key constraint, which requires that a group of one or more columns of the new table must only contain values that match
values in the referenced column(s) of some row of the referenced table. If refcolumn is omitted, the primary key of the reftable is used. The
referenced columns must be the columns of a unique or primary key constraint in the referenced table.

In addition, when the data in the referenced columns is changed, certain actions are performed on the data in this table’s columns. The ON DELETE
clause specifies the action to perform when a referenced row in the referenced table is being deleted. Referential actions cannot be deferred even if the
constraint is deferrable. Here are the following possible actions for each clause:

CASCADE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1237

Delete any rows referencing the deleted row, or update the value of the referencing column to the new value of the referenced column, respectively.

SET NULL

Set the referencing column(s) to NULL .

If the referenced column(s) are changed frequently, it may be wise to add an index to the foreign key column so that referential actions associated
with the foreign key column can be performed more efficiently.

DEFERRABLE

NOT DEFERRABLE

This controls whether the constraint can be deferred. A constraint that is not deferrable will be checked immediately after every command. Checking of
constraints that are deferrable may be postponed until the end of the transaction (using the SET CONSTRAINTS command). NOT DEFERRABLE is the
default. Only foreign key constraints currently accept this clause. All other constraint types are not deferrable.

INITIALLY IMMEDIATE

INITIALLY DEFERRED

If a constraint is deferrable, this clause specifies the default time to check the constraint. If the constraint is INITIALLY IMMEDIATE , it is checked
after each statement. This is the default. If the constraint is INITIALLY DEFERRED , it is checked only at the end of the transaction. The constraint
check time can be altered with the SET CONSTRAINTS command.

WITH (ROWIDS [= value])

The ROWIDS option for a table include value equals to TRUE/ON/1 or FALSE/OFF/0 . When set to TRUE/ON/1 , a ROWID column is created in
the new table. ROWID is an auto-incrementing value based on a sequence that starts with 1 and assigned to each row of a table. If a value is not
specified then the default value is always TRUE .

By default, a unique index is created on a ROWID column. The ALTER and DROP operations are restricted on a ROWID column.

ON COMMIT

The behavior of temporary tables at the end of a transaction block can be controlled using ON COMMIT . The two options are:

PRESERVE ROWS

No special action is taken at the ends of transactions. This is the default behavior. (Note that this aspect is not compatible with Oracle databases.
The Oracle default is DELETE ROWS .)

DELETE ROWS

All rows in the temporary table will be deleted at the end of each transaction block. Essentially, an automatic TRUNCATE is done at each commit.

TABLESPACE tablespace

The tablespace is the name of the tablespace in which the new table is to be created. If not specified, default tablespace is used, or the
database’s default tablespace if default_tablespace is an empty string.

USING INDEX [create_index_statement] TABLESPACE tablespace

This clause allows selection of the tablespace in which the index associated with a UNIQUE or PRIMARY KEY constraint will be created. If not specified,
default tablespace is used, or the database’s default tablespace if default_tablespace is an empty string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1238

If you specify the create_index_statement option, the database server creates an index enabling unique or primary key constraints. The columns
specified in the constraint and the columns of an index must be the same, but their order of appearance may differ.

PARALLEL

Include the PARALLEL clause to specify the degree of parallelism for the table; set the parallel_workers parameter equal to the degree of
parallelism to perform a parallel scan of a table. Alternatively, if you specify PARALLEL but do not include a degree of parallelism, an index will use
default parallelism.

NOPARALLEL

Specify NOPARALLEL for default execution.

integer

The integer indicates the degree of parallelism, which is a number of parallel_workers used in the parallel operation to perform a parallel scan
on a table.

NotesNotes

Advanced Server automatically creates an index for each unique constraint and primary key constraint to enforce the uniqueness. Thus, it is not necessary
to create an explicit index for primary key columns. (See CREATE INDEX for more information.)

ExamplesExamples

Create table dept and table emp :

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
);
CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a unique table constraint for the table dept . Unique table constraints can be defined on one or more columns of the table.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);

Define a check column constraint:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1239

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Define a check table constraint:

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno),
 CONSTRAINT new_emp_ck CHECK (ename IS NOT NULL AND empno > 7000)
);

Define a primary key table constraint for the table jobhist . Primary key table constraints can be defined on one or more columns of the table.

CREATE TABLE jobhist (
 empno NUMBER(4) NOT NULL,
 startdate DATE NOT NULL,
 enddate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2),
 chgdesc VARCHAR2(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate)
);

This assigns a literal constant default value for the column, job and makes the default value of hiredate be the date at which the row is inserted.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR2(10),
 job VARCHAR2(9) DEFAULT 'SALESMAN',
 mgr NUMBER(4),
 hiredate DATE DEFAULT SYSDATE,
 sal NUMBER(7,2),
 comm NUMBER(7,2),
 deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);

Create table dept in tablespace diskvol1 :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1240

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14),
 loc VARCHAR2(13)
) TABLESPACE diskvol1;

The following PARALLEL example creates a table sales and sets a degree of parallelism to 6:

CREATE TABLE sales (deptno number) PARALLEL 6 WITH (FILLFACTOR=66);

The following NOPARALLEL example creates a table sales_order and sets a degree of parallelism to 0:

CREATE TABLE sales_order (deptno number) NOPARALLEL WITH (FILLFACTOR=66);

The following example creates a table named dept ; the definition creates a unique key on the dname column. The constraint dept_dname_uq
identifies the dname column as a unique key. The preceding statement includes the USING_INDEX clause, which explicitly creates an index on a table
dept with the index statement specified to enable the unique constraint.

CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL,
 dname VARCHAR2(14),
 loc VARCHAR2(13),
 CONSTRAINT dept_dname_uq UNIQUE(dname)
 USING INDEX (CREATE UNIQUE INDEX idx_dept_dname_uq ON dept(dname))
);

The following example creates a table named emp ; the definition creates a primary key on the ename column. The emp_ename_pk constraint
identifies the ename column as a primary key of the emp table. The preceding statement includes the USING_INDEX clause, which explicitly creates
an index on a table emp with the index statement specified to enable the primary constraint.

CREATE TABLE emp (
 empno NUMBER(4) NOT NULL,
 ename VARCHAR2(10),
 job VARCHAR2(9),
 sal NUMBER(7,2),
 deptno NUMBER(2),
 CONSTRAINT emp_ename_pk PRIMARY KEY (ename)
 USING INDEX (CREATE INDEX idx_emp_ename_pk ON emp (ename))
);

See AlsoSee Also

ALTER TABLE, DROP TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1241

17.37 CREATE TABLE AS

NameName

CREATE TABLE AS -- define a new table from the results of a query.

SynopsisSynopsis

CREATE [GLOBAL TEMPORARY] TABLE <table_name>
 [(<column_name> [, ...])]
 [ON COMMIT { PRESERVE ROWS | DELETE ROWS }]
 [TABLESPACE tablespace]
 AS <query>

DescriptionDescription

CREATE TABLE AS creates a table and fills it with data computed by a SELECT command. The table columns have the names and data types
associated with the output columns of the SELECT (except that you can override the column names by giving an explicit list of new column names).

CREATE TABLE AS bears some resemblance to creating a view, but it is really quite different: it creates a new table and evaluates the query just once to
fill the new table initially. The new table will not track subsequent changes to the source tables of the query. In contrast, a view re-evaluates its defining
SELECT statement whenever it is queried.

ParametersParameters

GLOBAL TEMPORARY

If specified, the table is created as a temporary table. Refer to CREATE TABLE for details.

table_name

The name (optionally schema-qualified) of the table to be created.

column_name

The name of a column in the new table. If column names are not provided, they are taken from the output column names of the query.

query

A query statement (a SELECT command). Refer to SELECT for a description of the allowed syntax.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1242

17.38 CREATE TRIGGER

NameName

CREATE TRIGGER -- define a simple trigger.

SynopsisSynopsis

CREATE [OR REPLACE] TRIGGER <name>
 { BEFORE | AFTER | INSTEAD OF }
 { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE}] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [FOR EACH ROW]
 [WHEN <condition>]
 [DECLARE
 [PRAGMA AUTONOMOUS_TRANSACTION;]
 <declaration>; [, ...]]
 BEGIN
 <statement>; [, ...]
 [EXCEPTION
 { WHEN <exception> [OR <exception>] [...] THEN
 <statement>; [, ...] } [, ...]
]
 END

NameName

CREATE TRIGGER -- define a compound trigger.

SynopsisSynopsis

CREATE [OR REPLACE] TRIGGER <name>
 FOR { INSERT | UPDATE | DELETE | TRUNCATE }
 [OR { INSERT | UPDATE | DELETE | TRUNCATE }] [, ...]
 ON <table>
 [REFERENCING { OLD AS <old> | NEW AS <new> } ...]
 [WHEN <condition>]
 COMPOUND TRIGGER
 [<private_declaration>;] ...
 [<procedure_or_function_definition>] ...
 <compound_trigger_definition>
 END

Where private_declaration is an identifier of a private variable that can be accessed by any procedure or function. There can be zero, one, or more
private variables. private_declaration can be any of the following:

Variable Declaration
Record Declaration
Collection Declaration
REF CURSOR and Cursor Variable Declaration
TYPE Definitions for Records, Collections, and REF CURSORs

Exception
Object Variable Declaration

Where procedure_or_function_definition :=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1243

Where procedure_or_function_definition :=

procedure_definition | function_definition

Where procedure_definition :=

PROCEDURE proc_name[argument_list]
 [options_list]
 { IS | AS }
 procedure_body
 END [proc_name];

Where procedure_body :=

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...]] THEN statement; }
 [...]
]

Where function_definition :=

FUNCTION func_name [argument_list]
 RETURN rettype [DETERMINISTIC]
 [options_list]
 { IS | AS }
 function_body
 END [func_name] ;

Where function_body :=

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

Where compound_trigger_definition :=

{ compound_trigger_event } { IS | AS }
 compound_trigger_body
END [compound_trigger_event] [...]

Where compound_trigger_event :=

[BEFORE STATEMENT | BEFORE EACH ROW | AFTER EACH ROW | AFTER STATEMENT | INSTEAD OF EACH ROW]

Where compound_trigger_body :=

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1244

[declaration;] [, ...]
BEGIN
 statement; [...]
[EXCEPTION
 { WHEN exception [OR exception] [...] THEN statement; }
 [...]
]

DescriptionDescription

CREATE TRIGGER defines a new trigger. CREATE OR REPLACE TRIGGER will either create a new trigger, or replace an existing definition.

If you are using the CREATE TRIGGER keywords to create a new trigger, the name of the new trigger must not match any existing trigger defined on the
same table. New triggers will be created in the same schema as the table on which the triggering event is defined.

If you are updating the definition of an existing trigger, use the CREATE OR REPLACE TRIGGER keywords.

When you use syntax that is compatible with Oracle to create a trigger, the trigger runs as a SECURITY DEFINER function.

ParametersParameters

name

The name of the trigger to create.

BEFORE | AFTER

Determines whether the trigger is fired before or after the triggering event.

INSTEAD OF

INSTEAD OF trigger modifies an updatable view; the trigger will execute to update the underlying table(s) appropriately. The INSTEAD OF trigger is
executed for each row of the view that is updated or modified.

INSERT | UPDATE | DELETE | TRUNCATE

Defines the triggering event.

table

The name of the table or view on which the triggering event occurs.

condition

condition is a Boolean expression that determines if the trigger will actually be executed; if condition evaluates to TRUE , the trigger will fire.

If the simple trigger definition includes the FOR EACH ROW keywords, the WHEN clause can refer to columns of the old and/or new row values by
writing OLD.column_name or NEW.column_name respectively. INSERT triggers cannot refer to OLD and DELETE triggers cannot refer to
NEW .

If the compound trigger definition includes a statement-level trigger having a WHEN clause, then the trigger is executed without evaluating the
expression in the WHEN clause. Similarly, if a compound trigger definition includes a row-level trigger having a WHEN clause, then the trigger is
executed if the expression evaluates to TRUE .

If the trigger includes the INSTEAD OF keywords, it may not include a WHEN clause. A WHEN clause cannot contain subqueries.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1245

REFERENCING { OLD AS old | NEW AS new } ...

REFERENCING clause to reference old rows and new rows, but restricted in that old may only be replaced by an identifier named old or any equivalent
that is saved in all lowercase (for example, REFERENCING OLD AS old , REFERENCING OLD AS OLD , or REFERENCING OLD AS "old").
Also, new may only be replaced by an identifier named new or any equivalent that is saved in all lowercase (for example, REFERENCING NEW AS new ,
REFERENCING NEW AS NEW , or REFERENCING NEW AS "new").

Either one, or both phrases OLD AS old and NEW AS new may be specified in the REFERENCING clause (for example, REFERENCING NEW AS
New OLD AS Old).

This clause is not compatible with Oracle databases in that identifiers other than old or new may not be used.

FOR EACH ROW

Determines whether the trigger should be fired once for every row affected by the triggering event, or just once per SQL statement. If specified, the trigger
is fired once for every affected row (row-level trigger), otherwise the trigger is a statement-level trigger.

PRAGMA AUTONOMOUS_TRANSACTION

PRAGMA AUTONOMOUS_TRANSACTION is the directive that sets the trigger as an autonomous transaction.

declaration

A variable, type, REF CURSOR , or subprogram declaration. If subprogram declarations are included, they must be declared after all other variable, type,
and REF CURSOR declarations.

statement

An SPL program statement. Note that a DECLARE - BEGIN - END block is considered an SPL statement unto itself. Thus, the trigger body may
contain nested blocks.

exception

An exception condition name such as NO_DATA_FOUND , OTHERS , etc.

ExamplesExamples

The following is a statement-level trigger that fires after the triggering statement (insert, update, or delete on table emp) is executed.

CREATE OR REPLACE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
DECLARE
 v_action VARCHAR2(24);
BEGIN
 IF INSERTING THEN
 v_action := ' added employee(s) on ';
 ELSIF UPDATING THEN
 v_action := ' updated employee(s) on ';
 ELSIF DELETING THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 DBMS_OUTPUT.PUT_LINE('User ' || USER || v_action ||
 TO_CHAR(SYSDATE,'YYYY-MM-DD'));
END;

The following is a row-level trigger that fires before each row is either inserted, updated, or deleted on table emp .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1246

CREATE OR REPLACE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW
DECLARE
 sal_diff NUMBER;
BEGIN
 IF INSERTING THEN
 DBMS_OUTPUT.PUT_LINE('Inserting employee ' || :NEW.empno);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 END IF;
 IF UPDATING THEN
 sal_diff := :NEW.sal - :OLD.sal;
 DBMS_OUTPUT.PUT_LINE('Updating employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 DBMS_OUTPUT.PUT_LINE('..New salary: ' || :NEW.sal);
 DBMS_OUTPUT.PUT_LINE('..Raise : ' || sal_diff);
 END IF;
 IF DELETING THEN
 DBMS_OUTPUT.PUT_LINE('Deleting employee ' || :OLD.empno);
 DBMS_OUTPUT.PUT_LINE('..Old salary: ' || :OLD.sal);
 END IF;
END;

The following is an example of a compound trigger that records a change to the employee salary by defining a compound trigger hr_trigger on table
emp .

First, create a table named emp .

CREATE TABLE emp(EMPNO INT, ENAME TEXT, SAL INT, DEPTNO INT);
CREATE TABLE

Then, create a compound trigger named hr_trigger . The trigger utilizes each of the four timing-points to modify the salary with an INSERT ,
UPDATE , or DELETE statement. In the global declaration section, the initial salary is declared as 10,000 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1247

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;

 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || var_sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || var_sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

INSERT the record into table emp .

INSERT INTO emp (EMPNO, ENAME, SAL, DEPTNO) VALUES(1111,'SMITH', 10000, 20);

The INSERT statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 15000 for a specific employee number.

UPDATE emp SET SAL = 15000 where EMPNO = 1111;

The UPDATE statement produces the following output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1248

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
UPDATE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-------+--------
 1111 | SMITH | 15000 | 20
(1 row)

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement: 11000
Before each row: 12000
After each row: 13000
After statement: 14000
DELETE 1

SELECT * FROM emp;
 EMPNO | ENAME | SAL | DEPTNO
-------+-------+-----+--------
(0 rows)

The TRUNCATE statement removes all the records from the emp table.

CREATE OR REPLACE TRIGGER hr_trigger
 FOR TRUNCATE ON emp
 COMPOUND TRIGGER
 -- Global declaration.
 var_sal NUMBER := 10000;
 BEFORE STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('Before Statement: ' || var_sal);
 END BEFORE STATEMENT;

 AFTER STATEMENT IS
 BEGIN
 var_sal := var_sal + 1000;
 DBMS_OUTPUT.PUT_LINE('After Statement: ' || var_sal);
 END AFTER STATEMENT;

END hr_trigger;

Output: Trigger created.

The TRUNCATE statement produces the following output:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1249

TRUNCATE emp;
Before Statement: 11000
After statement: 12000
TRUNCATE TABLE

NoteNote

The TRUNCATE statement may be used only at a BEFORE STATEMENT or AFTER STATEMENT timing-point.

The following example creates a compound trigger named hr_trigger on the emp table with a WHEN condition that checks and prints employee
salary whenever an INSERT , UPDATE , or DELETE statement affects the emp table. The database evaluates the WHEN condition for a row-level
trigger, and the trigger is executed once per row if the WHEN condition evaluates to TRUE . The statement-level trigger is executed irrespective of the
WHEN condition.

CREATE OR REPLACE TRIGGER hr_trigger
 FOR INSERT OR UPDATE OR DELETE ON emp
 REFERENCING NEW AS new OLD AS old
 WHEN (old.sal > 5000 OR new.sal < 8000)
 COMPOUND TRIGGER

 BEFORE STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Statement');
 END BEFORE STATEMENT;

 BEFORE EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Before Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END BEFORE EACH ROW;

 AFTER EACH ROW IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Each Row: ' || :OLD.sal ||' ' || :NEW.sal);
 END AFTER EACH ROW;

 AFTER STATEMENT IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('After Statement');
 END AFTER STATEMENT;

END hr_trigger;

Insert the record into table emp .

INSERT INTO emp(EMPNO, ENAME, SAL, DEPTNO) VALUES(1111, 'SMITH', 1600, 20);

The INSERT statement produces the following output:

Before Statement
Before Each Row: 1600
After Each Row: 1600
After Statement
INSERT 0 1

The UPDATE statement will update the employee salary record, setting the salary to 7500 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1250

UPDATE emp SET SAL = 7500 where EMPNO = 1111;

The UPDATE statement produces the following output:

Before Statement
Before Each Row: 1600 7500
After Each Row: 1600 7500
After Statement
UPDATE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+------+--------
 1111 | SMITH | 7500 | 20
(1 row)

The DELETE statement deletes the employee salary record.

DELETE from emp where EMPNO = 1111;

The DELETE statement produces the following output:

Before Statement
Before Each Row: 7500
After Each Row: 7500
After Statement
DELETE 1

SELECT * from emp;
 empno | ename | sal | deptno
-------+-------+-----+--------
(0 rows)

See AlsoSee Also

ALTER TRIGGER, DROP TRIGGER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1251

17.39 CREATE TYPE

NameName

CREATE TYPE -- define a new user-defined type, which can be an object type, a collection type (a nested table type or a varray type), or a composite type.

SynopsisSynopsis

Object TypeObject Type

CREATE [OR REPLACE] TYPE <name>
 [AUTHID { DEFINER | CURRENT_USER }]
 { IS | AS } OBJECT
({ <attribute> { <datatype> | <objtype> | <collecttype> } }
 [, ...]
 [<method_spec>] [, ...]
) [[NOT] { FINAL | INSTANTIABLE }] ...

where method_spec is:

[[NOT] { FINAL | INSTANTIABLE }] ...
[OVERRIDING]
 <subprogram_spec>

and subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
 RETURN <rettype>
}

Nested Table TypeNested Table Type

CREATE [OR REPLACE] TYPE <name> { IS | AS } TABLE OF
 { <datatype> | <objtype> | <collecttype> }

Varray TypeVarray Type

CREATE [OR REPLACE] TYPE <name> { IS | AS }
 { VARRAY | VARYING ARRAY } (<maxsize>) OF { <datatype> | <objtype> }

Composite TypeComposite Type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1252

CREATE [OR REPLACE] TYPE <name> { IS | AS }
([attribute <datatype>][, ...]
)

DescriptionDescription

CREATE TYPE defines a new, user-defined data type. The types that can be created are an object type, a nested table type, a varray type, or a composite
type. Nested table and varray types belong to the category of types known as collections.

Composite types are not compatible with Oracle databases. However, composite types can be accessed by SPL programs as with other types described in
this section.

NoteNote

For packages only, a composite type can be included in a user-defined record type declared with the TYPE IS RECORD statement
within the package specification or package body. Such nested structure is not permitted in other SPL programs such as functions,
procedures, triggers, etc.
In the CREATE TYPE command, if a schema name is included, then the type is created in the specified schema, otherwise it is created in
the current schema. The name of the new type must not match any existing type in the same schema unless the intent is to update the
definition of an existing type, in which case use CREATE OR REPLACE TYPE .
The OR REPLACE option cannot be currently used to add, delete, or modify the attributes of an existing object type. Use the DROP
TYPE command to first delete the existing object type. The OR REPLACE option can be used to add, delete, or modify the methods in an
existing object type.
The PostgreSQL form of the ALTER TYPE ALTER ATTRIBUTE command can be used to change the data type of an attribute in an
existing object type. However, the ALTER TYPE command cannot add or delete attributes in the object type.

The user that creates the type becomes the owner of the type.

ParametersParameters

name

The name (optionally schema-qualified) of the type to create.

DEFINER | CURRENT_USER

Specifies whether the privileges of the object type owner (DEFINER) or the privileges of the current user executing a method in the object type
(CURRENT_USER) are to be used to determine whether or not access is allowed to database objects referenced in the object type. DEFINER is the
default.

attribute

The name of an attribute in the object type or composite type.

datatype

The data type that defines an attribute of the object type or composite type, or the elements of the collection type that is being created.

objtype

The name of an object type that defines an attribute of the object type or the elements of the collection type that is being created.

collecttype

The name of a collection type that defines an attribute of the object type or the elements of the collection type that is being created.

FINAL

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1253

FINAL

NOT FINAL

For an object type, specifies whether or not a subtype can be derived from the object type. FINAL (subtype cannot be derived from the object type) is the
default.

For method_spec , specifies whether or not the method may be overridden in a subtype. NOT FINAL (method may be overridden in a subtype) is the
default.

INSTANTIABLE

NOT INSTANTIABLE

For an object type, specifies whether or not an object instance can be created of this object type. INSTANTIABLE (an instance of this object type can be
created) is the default. If NOT INSTANTIABLE is specified, then NOT FINAL must be specified as well. If method_spec for any method in the
object type contains the NOT INSTANTIABLE qualifier, then the object type, itself, must be defined with NOT INSTANTIABLE and NOT FINAL
following the closing parenthesis of the object type specification.

For method_spec , specifies whether or not the object type definition provides an implementation for the method. INSTANTIABLE (the CREATE
TYPE BODY command for the object type provides the implementation of the method) is the default. If NOT INSTANTIABLE is specified, then the
CREATE TYPE BODY command for the object type must not contain the implementation of the method.

OVERRIDING

If OVERRIDING is specified, method_spec overrides an identically named method with the same number of identically named method arguments with
the same data types, in the same order, and the same return type (if the method is a function) as defined in a supertype.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the subprogram operates independently of any particular object
instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose data type is that of the object type being defined. SELF refers to the
object instance that is currently invoking the method. SELF can be explicitly declared as an IN or IN OUT parameter in the parameter list. If explicitly
declared, SELF must be the first parameter in the parameter list. If SELF is not explicitly declared, its parameter mode defaults to IN OUT for member
procedures and IN for member functions.

argname

The name of an argument. The argument is referenced by this name within the method body.

argtype

The data type(s) of the method’s arguments. The argument types may be a base data type or a user-defined type such as a nested table or an object type. A
length must not be specified for any base type - for example, specify VARCHAR2 , not VARCHAR2(10) .

DEFAULT value

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1254

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method call. DEFAULT may not be specified for arguments with modes IN
OUT or OUT .

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype . As for argtype , a length must not be specified for rettype .

maxsize

The maximum number of elements permitted in the varray.

ExamplesExamples

Creating an Object TypeCreating an Object Type

Create object type addr_obj_typ .

CREATE OR REPLACE TYPE addr_obj_typ AS OBJECT (
 street VARCHAR2(30),
 city VARCHAR2(20),
 state CHAR(2),
 zip NUMBER(5)
);

Create object type emp_obj_typ that includes a member method display_emp .

CREATE OR REPLACE TYPE emp_obj_typ AS OBJECT (
 empno NUMBER(4),
 ename VARCHAR2(20),
 addr ADDR_OBJ_TYP,
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
);

Create object type dept_obj_typ that includes a static method get_dname .

CREATE OR REPLACE TYPE dept_obj_typ AS OBJECT (
 deptno NUMBER(2),
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2,
 MEMBER PROCEDURE display_dept
);

Creating a Collection TypeCreating a Collection Type

Create a nested table type, budget_tbl_typ , of data type, NUMBER(8,2) .

CREATE OR REPLACE TYPE budget_tbl_typ IS TABLE OF NUMBER(8,2);

Creating and Using a Composite TypeCreating and Using a Composite Type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1255

The following example shows the usage of a composite type accessed from an anonymous block.

The composite type is created by the following:

CREATE OR REPLACE TYPE emphist_typ AS (
 empno NUMBER(4),
 ename VARCHAR2(10),
 hiredate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

The following is the anonymous block that accesses the composite type:

DECLARE
 v_emphist EMPHIST_TYP;
BEGIN
 v_emphist.empno := 9001;
 v_emphist.ename := 'SMITH';
 v_emphist.hiredate := '01-AUG-17';
 v_emphist.job := 'SALESMAN';
 v_emphist.sal := 8000.00;
 DBMS_OUTPUT.PUT_LINE(' EMPNO: ' || v_emphist.empno);
 DBMS_OUTPUT.PUT_LINE(' ENAME: ' || v_emphist.ename);
 DBMS_OUTPUT.PUT_LINE('HIREDATE: ' || v_emphist.hiredate);
 DBMS_OUTPUT.PUT_LINE(' JOB: ' || v_emphist.job);
 DBMS_OUTPUT.PUT_LINE(' SAL: ' || v_emphist.sal);
END;

 EMPNO: 9001
 ENAME: SMITH
HIREDATE: 01-AUG-17 00:00:00
 JOB: SALESMAN
 SAL: 8000.00

The following example shows the usage of a composite type accessed from a user-defined record type, declared within a package body.

The composite type is created by the following:

CREATE OR REPLACE TYPE salhist_typ AS (
 startdate DATE,
 job VARCHAR2(9),
 sal NUMBER(7,2)
);

The package specification is defined by the following:

CREATE OR REPLACE PACKAGE emp_salhist
IS
 PROCEDURE fetch_emp (
 p_empno IN NUMBER
);
END;

The package body is defined by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1256

CREATE OR REPLACE PACKAGE BODY emp_salhist
IS
 TYPE emprec_typ IS RECORD (
 empno NUMBER(4),
 ename VARCHAR(10),
 salhist SALHIST_TYP
);
 TYPE emp_arr_typ IS TABLE OF emprec_typ INDEX BY BINARY_INTEGER;
 emp_arr emp_arr_typ;

 PROCEDURE fetch_emp (
 p_empno IN NUMBER
)
 IS
 CURSOR emp_cur IS SELECT e.empno, e.ename, h.startdate, h.job, h.sal
 FROM emp e, jobhist h
 WHERE e.empno = p_empno
 AND e.empno = h.empno;

 i INTEGER := 0;
 BEGIN
 DBMS_OUTPUT.PUT_LINE('EMPNO ENAME STARTDATE JOB ' ||
 'SAL ');
 DBMS_OUTPUT.PUT_LINE('----- ------- --------- --------- ' ||
 '---------');

 FOR r_emp IN emp_cur LOOP
 i := i + 1;
 emp_arr(i) := (r_emp.empno, r_emp.ename,
 (r_emp.startdate, r_emp.job, r_emp.sal));
 END LOOP;

 FOR i IN 1 .. emp_arr.COUNT LOOP
 DBMS_OUTPUT.PUT_LINE(emp_arr(i).empno || ' ' ||
 RPAD(emp_arr(i).ename,8) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.startdate,'DD-MON-YY') || ' ' ||
 RPAD(emp_arr(i).salhist.job,10) || ' ' ||
 TO_CHAR(emp_arr(i).salhist.sal,'99,999.99'));
 END LOOP;
 END;
END;

Note that in the declaration of the TYPE emprec_typ IS RECORD data structure in the package body, the salhist field is defined with the
SALHIST_TYP composite type as created by the CREATE TYPE salhist_typ statement.

The associative array definition TYPE emp_arr_typ IS TABLE OF emprec_typ references the record type data structure emprec_typ that
includes the field salhist that is defined with the SALHIST_TYP composite type.

Invocation of the package procedure that loads the array from a join of the emp and jobhist tables, then displays the array content is shown by the
following:

EXEC emp_salhist.fetch_emp(7788);

EMPNO ENAME STARTDATE JOB SAL
----- ------- --------- --------- ---------
7788 SCOTT 19-APR-87 CLERK 1,000.00
7788 SCOTT 13-APR-88 CLERK 1,040.00
7788 SCOTT 05-MAY-90 ANALYST 3,000.00

EDB-SPL Procedure successfully completed

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1257

See AlsoSee Also

CREATE TYPE BODY, DROP TYPE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1258

17.40 CREATE TYPE BODY

NameName

CREATE TYPE BODY -- define a new object type body.

SynopsisSynopsis

CREATE [OR REPLACE] TYPE BODY <name>
 { IS | AS }
 <method_spec> [...]
END

where method_spec is:

subprogram_spec

and subprogram_spec is:

{ MEMBER | STATIC }
{ PROCEDURE <proc_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
{ IS | AS }
 <program_body>
 END;
|
 FUNCTION <func_name>
 [([SELF [IN | IN OUT] <name>]
 [, <argname> [IN | IN OUT | OUT] <argtype>
 [DEFAULT <value>]
] ...)
]
 RETURN <rettype>
{ IS |AS }
 <program_body>
 END;
}

DescriptionDescription

CREATE TYPE BODY defines a new object type body. CREATE OR REPLACE TYPE BODY will either create a new object type body, or replace an
existing body.

If a schema name is included, then the object type body is created in the specified schema. Otherwise it is created in the current schema. The name of the
new object type body must match an existing object type specification in the same schema. The new object type body name must not match any existing
object type body in the same schema unless the intent is to update the definition of an existing object type body, in which case use CREATE OR REPLACE
TYPE BODY .

ParametersParameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1259

The name (optionally schema-qualified) of the object type for which a body is to be created.

MEMBER

STATIC

Specify MEMBER if the subprogram operates on an object instance. Specify STATIC if the subprogram operates independently of any particular object
instance.

proc_name

The name of the procedure to create.

SELF [IN | IN OUT] name

For a member method there is an implicit, built-in parameter named SELF whose data type is that of the object type being defined. SELF refers to the
object instance that is currently invoking the method. SELF can be explicitly declared as an IN or IN OUT parameter in the parameter list. If explicitly
declared, SELF must be the first parameter in the parameter list. If SELF is not explicitly declared, its parameter mode defaults to IN OUT for member
procedures and IN for member functions.

argname

The name of an argument. The argument is referenced by this name within the method body.

argtype

The data type(s) of the method’s arguments. The argument types may be a base data type or a user-defined type such as a nested table or an object type. A
length must not be specified for any base type - for example, specify VARCHAR2 , not VARCHAR2(10) .

DEFAULT value

Supplies a default value for an input argument if one is not supplied in the method call. DEFAULT may not be specified for arguments with modes IN
OUT or OUT .

program_body

The pragma, declarations, and SPL statements that comprise the body of the function or procedure. The pragma may be PRAGMA
AUTONOMOUS_TRANSACTION to set the function or procedure as an autonomous transaction.

func_name

The name of the function to create.

rettype

The return data type, which may be any of the types listed for argtype . As for argtype , a length must not be specified for rettype .

ExamplesExamples

Create the object type body for object type emp_obj_typ given in the example for the CREATE TYPE command.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1260

CREATE OR REPLACE TYPE BODY emp_obj_typ AS
 MEMBER PROCEDURE display_emp (SELF IN OUT emp_obj_typ)
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Employee No : ' || empno);
 DBMS_OUTPUT.PUT_LINE('Name : ' || ename);
 DBMS_OUTPUT.PUT_LINE('Street : ' || addr.street);
 DBMS_OUTPUT.PUT_LINE('City/State/Zip: ' || addr.city || ', ' ||
 addr.state || ' ' || LPAD(addr.zip,5,'0'));
 END;
END;

Create the object type body for object type dept_obj_typ given in the example for the CREATE TYPE command.

CREATE OR REPLACE TYPE BODY dept_obj_typ AS
 STATIC FUNCTION get_dname (p_deptno IN NUMBER) RETURN VARCHAR2
 IS
 v_dname VARCHAR2(14);
 BEGIN
 CASE p_deptno
 WHEN 10 THEN v_dname := 'ACCOUNING';
 WHEN 20 THEN v_dname := 'RESEARCH';
 WHEN 30 THEN v_dname := 'SALES';
 WHEN 40 THEN v_dname := 'OPERATIONS';
 ELSE v_dname := 'UNKNOWN';
 END CASE;
 RETURN v_dname;
 END;
 MEMBER PROCEDURE display_dept
 IS
 BEGIN
 DBMS_OUTPUT.PUT_LINE('Dept No : ' || SELF.deptno);
 DBMS_OUTPUT.PUT_LINE('Dept Name : ' ||
 dept_obj_typ.get_dname(SELF.deptno));
 END;
END;

See AlsoSee Also

CREATE TYPE, DROP TYPE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1261

17.41 CREATE USER

NameName

CREATE USER -- define a new database user account.

SynopsisSynopsis

CREATE USER <name> [IDENTIFIED BY <password>]

DescriptionDescription

CREATE USER adds a new user to an Advanced Server database cluster. You must be a database superuser to use this command.

When the CREATE USER command is given, a schema will also be created with the same name as the new user and owned by the new user. Objects with
unqualified names created by this user will be created in this schema.

ParametersParameters

name

The name of the user.

password

The user’s password. The password can be changed later using ALTER USER .

NotesNotes

The maximum length allowed for the user name and password is 63 characters.

ExamplesExamples

Create a user named, john .

CREATE USER john IDENTIFIED BY abc;

See AlsoSee Also

DROP USER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1262

17.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES

NameName

CREATE USER|ROLE

SynopsisSynopsis

CREATE USER|ROLE <name> [[WITH] option […]]

where option can be the following compatible clauses:

 PROFILE <profile_name>
| ACCOUNT {LOCK|UNLOCK}
| PASSWORD EXPIRE [AT '<timestamp>']

or option can be the following non-compatible clauses:

| LOCK TIME '<timestamp>'

For information about the administrative clauses of the CREATE USER or CREATE ROLE command that are supported by Advanced Server, see the
PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

DescriptionDescription

CREATE ROLE|USER… PROFILE adds a new role with an associated profile to an Advanced Server database cluster.

Roles created with the CREATE USER command are (by default) login roles. Roles created with the CREATE ROLE command are (by default) not login
roles. To create a login account with the CREATE ROLE command, you must include the LOGIN keyword.

Only a database superuser can use the CREATE USER|ROLE clauses that enforce profile management; these clauses enforce the following behaviors:

Include the PROFILE clause and a profile_name to associate a pre-defined profile with a role, or to change which pre-defined profile is
associated with a user.

Include the ACCOUNT clause and the LOCK or UNLOCK keyword to specify that the user account should be placed in a locked or unlocked state.

Include the LOCK TIME 'timestamp' clause and a date/time value to lock the role at the specified time, and unlock the role at the time
indicated by the PASSWORD_LOCK_TIME parameter of the profile assigned to this role. If LOCK TIME is used with the ACCOUNT LOCK
clause, the role can only be unlocked by a database superuser with the ACCOUNT UNLOCK clause.

Include the PASSWORD EXPIRE clause with the optional AT 'timestamp' keywords to specify a date/time when the password associated
with the role will expire. If you omit the AT 'timestamp' keywords, the password will expire immediately.

Each login role may only have one profile. To discover the profile that is currently associated with a login role, query the profile column of the
DBA_USERS view.

ParametersParameters

name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1263

https://www.postgresql.org/docs/current/static/sql-commands.html

The name of the role.

profile_name

The name of the profile associated with the role.

timestamp

The date and time at which the clause will be enforced. When specifying a value for timestamp , enclose the value in single-quotes.

ExamplesExamples

The following example uses CREATE USER to create a login role named john who is associated with the acctg_profile profile:

CREATE USER john PROFILE acctg_profile IDENTIFIED BY “1safepwd”;

john can log in to the server, using the password 1safepwd .

The following example uses CREATE ROLE to create a login role named john who is associated with the acctg_profile profile:

CREATE ROLE john PROFILE acctg_profile LOGIN PASSWORD “1safepwd”;

john can log in to the server, using the password 1safepwd .

See AlsoSee Also

ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1264

17.43 CREATE VIEW

NameName

CREATE VIEW -- define a new view.

SynopsisSynopsis

CREATE [OR REPLACE] VIEW <name> [(<column_name> [, ...])]
 AS <query>

DescriptionDescription

CREATE VIEW defines a view of a query. The view is not physically materialized. Instead, the query is run every time the view is referenced in a query.

CREATE OR REPLACE VIEW is similar, but if a view of the same name already exists, it is replaced.

If a schema name is given (for example, CREATE VIEW myschema.myview ...) then the view is created in the specified schema. Otherwise it is
created in the current schema. The view name must be distinct from the name of any other view, table, sequence, or index in the same schema.

ParametersParameters

name

The name (optionally schema-qualified) of a view to be created.

column_name

An optional list of names to be used for columns of the view. If not given, the column names are deduced from the query.

query

A query (that is, a SELECT statement) which will provide the columns and rows of the view.

Refer to SELECT for more information about valid queries.

NotesNotes

Currently, views are read only - the system will not allow an insert, update, or delete on a view. You can get the effect of an updatable view by creating rules
that rewrite inserts, etc. on the view into appropriate actions on other tables.

Access to tables referenced in the view is determined by permissions of the view owner. However, functions called in the view are treated the same as if
they had been called directly from the query using the view. Therefore the user of a view must have permissions to call all functions used by the view.

ExamplesExamples

Create a view consisting of all employees in department 30 :

CREATE VIEW dept_30 AS SELECT * FROM emp WHERE deptno = 30;

See AlsoSee Also

DROP VIEW

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1265

17.44 DELETE

NameName

DELETE -- delete rows of a table.

SynopsisSynopsis

DELETE [<optimizer_hint>] FROM <table>[@<dblink>]
 [WHERE <condition>]
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]

DescriptionDescription

DELETE deletes rows that satisfy the WHERE clause from the specified table. If the WHERE clause is absent, the effect is to delete all rows in the table.
The result is a valid, but empty table.

NoteNote

The TRUNCATE command provides a faster mechanism to remove all rows from a table.

The RETURNING INTO { record | variable [, ...] } clause may only be specified if the DELETE command is used within an SPL
program. In addition the result set of the DELETE command must not include more than one row, otherwise an exception is thrown. If the result set is
empty, then the contents of the target record or variables are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if the DELETE command is used within an SPL
program. If more than one collection is specified as the target of the BULK COLLECT INTO clause, then each collection must consist of a
single, scalar field – i.e., collection must not be a record. The result set of the DELETE command may contain none, one, or more rows.
return_expression evaluated for each row of the result set, becomes an element in collection starting with the first element. Any existing rows

in collection are deleted. If the result set is empty, then collection will be empty.

You must have the DELETE privilege on the table to delete from it, as well as the SELECT privilege for any table whose values are read in the condition.

ParametersParameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK command for information on database links.

condition

A value expression that returns a value of type BOOLEAN that determines the rows which are to be deleted.

return_expression

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1266

return_expression

An expression that may include one or more columns from table . If a column name from table is specified in the return_expression , the value
substituted for the column when return_expression is evaluated is the value from the deleted row.

record

A record whose field the evaluated return_expression is to be assigned. The first return_expression is assigned to the first field in record ,
the second return_expression is assigned to the second field in record , etc. The number of fields in record must exactly match the number of
expressions and the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If more than one return_expression and variable are specified,
the first return_expression is assigned to the first variable , the second return_expression is assigned to the second variable ,
etc. The number of variables specified following the INTO keyword must exactly match the number of expressions following the RETURNING keyword
and the variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . There can be either a single collection which may be a collection
of a single field or a collection of a record type, or there may be more than one collection in which case each collection must consist of a single field. The
number of return expressions must match in number and order the number of fields in all specified collections. Each corresponding
return_expression and collection field must be type-compatible.

ExamplesExamples

Delete all rows for employee 7900 from the jobhist table:

DELETE FROM jobhist WHERE empno = 7900;

Clear the table jobhist :

DELETE FROM jobhist;

See AlsoSee Also

TRUNCATE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1267

17.45 DROP DATABASE LINK

NameName

DROP DATABASE LINK -- remove a database link.

SynopsisSynopsis

DROP [PUBLIC] DATABASE LINK <name>

DescriptionDescription

DROP DATABASE LINK drops existing database links. To execute this command you must be a superuser or the owner of the database link.

ParametersParameters

name

The name of a database link to be removed.

PUBLIC

Indicates that name is a public database link.

ExamplesExamples

Remove the public database link named, oralink :

DROP PUBLIC DATABASE LINK oralink;

Remove the private database link named, edblink :

DROP DATABASE LINK edblink;

See AlsoSee Also

CREATE PUBLIC DATABASE LINK

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1268

17.46 DROP DIRECTORY

NameName

DROP DIRECTORY -- remove a directory alias for a file system directory path.

SynopsisSynopsis

DROP DIRECTORY <name>

DescriptionDescription

DROP DIRECTORY drops an existing alias for a file system directory path that was created with the CREATE DIRECTORY command. To execute this
command you must be a superuser.

When a directory alias is deleted, the corresponding physical file system directory is not affected. The file system directory must be deleted using the
appropriate operating system commands.

ParametersParameters

name

The name of a directory alias to be removed.

ExamplesExamples

Remove the directory alias named empdir :

DROP DIRECTORY empdir;

See AlsoSee Also

CREATE DIRECTORY, ALTER DIRECTORY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1269

17.47 DROP FUNCTION

NameName

DROP FUNCTION -- remove a function.

SynopsisSynopsis

DROP FUNCTION [IF EXISTS] <name>
 [([[<argmode>] [<argname>] <argtype>] [, ...])]
 [CASCADE | RESTRICT]

DescriptionDescription

DROP FUNCTION removes the definition of an existing function. To execute this command you must be a superuser or the owner of the function. All
input (IN , IN OUT) argument data types to the function must be specified if this is an overloaded function. (This requirement is not compatible with
Oracle databases. In Oracle, only the function name is specified. Advanced Server allows overloading of function names, so the function signature given by
the input argument data types is required in the Advanced Server DROP FUNCTION command of an overloaded function.)

Usage of IF EXISTS , CASCADE , or RESTRICT is not compatible with Oracle databases and is used only by Advanced Server.

ParametersParameters

IF EXISTS

Do not throw an error if the function does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing function.

argmode

The mode of an argument: IN , IN OUT , or OUT . If omitted, the default is IN . Note that DROP FUNCTION does not actually pay any attention to
OUT arguments, since only the input arguments are needed to determine the function’s identity. So it is sufficient to list only the IN and IN OUT

arguments. (Specification of argmode is not compatible with Oracle databases and applies only to Advanced Server.)

argname

The name of an argument. Note that DROP FUNCTION does not actually pay any attention to argument names, since only the argument data types are
needed to determine the function’s identity. (Specification of argname is not compatible with Oracle databases and applies only to Advanced Server.)

argtype

The data type of an argument of the function. (Specification of argtype is not compatible with Oracle databases and applies only to Advanced Server.)

CASCADE

Automatically drop objects that depend on the function (such as operators or triggers), and in turn all objects that depend on those objects.

RESTRICT

Refuse to drop the function if any objects depend on it. This is the default.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1270

ExamplesExamples

The following command removes the emp_comp function.

DROP FUNCTION emp_comp(NUMBER, NUMBER);

See AlsoSee Also

CREATE FUNCTION

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1271

17.48 DROP INDEX

NameName

DROP INDEX -- remove an index.

SynopsisSynopsis

DROP INDEX <name>

DescriptionDescription

DROP INDEX drops an existing index from the database system. To execute this command you must be a superuser or the owner of the index. If any
objects depend on the index, an error will be given and the index will not be dropped.

ParametersParameters

name

The name (optionally schema-qualified) of an index to remove.

ExamplesExamples

This command will remove the index, name_idx :

DROP INDEX name_idx;

See AlsoSee Also

CREATE INDEX, ALTER INDEX

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1272

17.49 DROP PACKAGE

NameName

DROP PACKAGE -- remove a package.

SynopsisSynopsis

DROP PACKAGE [BODY] <name>

DescriptionDescription

DROP PACKAGE drops an existing package. To execute this command you must be a superuser or the owner of the package. If BODY is specified, only
the package body is removed – the package specification is not dropped. If BODY is omitted, both the package specification and body are removed.

ParametersParameters

name

The name (optionally schema-qualified) of a package to remove.

ExamplesExamples

This command will remove the emp_admin package:

DROP PACKAGE emp_admin;

See AlsoSee Also

CREATE PACKAGE, CREATE PACKAGE BODY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1273

17.50 DROP PROCEDURE

NameName

DROP PROCEDURE -- remove a procedure.

SynopsisSynopsis

DROP PROCEDURE [IF EXISTS] <name>
 [([[<argmode>] [<argname>] <argtype>] [, ...])]
 [CASCADE | RESTRICT]

DescriptionDescription

DROP PROCEDURE removes the definition of an existing procedure. To execute this command you must be a superuser or the owner of the procedure. All
input (IN , IN OUT) argument data types to the procedure must be specified if this is an overloaded procedure. (This requirement is not compatible with
Oracle databases. In Oracle, only the procedure name is specified. Advanced Server allows overloading of procedure names, so the procedure signature
given by the input argument data types is required in the Advanced Server DROP PROCEDURE command of an overloaded procedure.)

Usage of IF EXISTS , CASCADE , or RESTRICT is not compatible with Oracle databases and is used only by Advanced Server.

ParametersParameters

IF EXISTS

Do not throw an error if the procedure does not exist. A notice is issued in this case.

name

The name (optionally schema-qualified) of an existing procedure.

argmode

The mode of an argument: IN , IN OUT , or OUT . If omitted, the default is IN . Note that DROP PROCEDURE does not actually pay any attention to
OUT arguments, since only the input arguments are needed to determine the procedure’s identity. So it is sufficient to list only the IN and IN OUT

arguments. (Specification of argmode is not compatible with Oracle databases and applies only to Advanced Server.)

argname

The name of an argument. Note that DROP PROCEDURE does not actually pay any attention to argument names, since only the argument data types are
needed to determine the procedure’s identity. (Specification of argname is not compatible with Oracle databases and applies only to Advanced Server.)

argtype

The data type of an argument of the procedure. (Specification of argtype is not compatible with Oracle databases and applies only to Advanced Server.)

CASCADE

Automatically drop objects that depend on the procedure, and in turn all objects that depend on those objects.

RESTRICT

Refuse to drop the procedure if any objects depend on it. This is the default.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1274

ExamplesExamples

The following command removes the select_emp procedure.

DROP PROCEDURE select_emp;

See AlsoSee Also

CREATE PROCEDURE, ALTER PROCEDURE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1275

17.51 DROP PROFILE

NameName

DROP PROFILE -- drop a user-defined profile.

SynopsisSynopsis

DROP PROFILE [IF EXISTS] <profile_name> [CASCADE | RESTRICT];

DescriptionDescription

Include the IF EXISTS clause to instruct the server to not throw an error if the specified profile does not exist. The server will issue a notice if the profile
does not exist.

Include the optional CASCADE clause to reassign any users that are currently associated with the profile to the default profile, and then drop the
profile. Include the optional RESTRICT clause to instruct the server to not drop any profile that is associated with a role. This is the default behavior.

ParametersParameters

profile_name

The name of the profile being dropped.

ExamplesExamples

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile CASCADE;

The command first re-associates any roles associated with the acctg_profile profile with the default profile, and then drops the
acctg_profile profile.

The following example drops a profile named acctg_profile :

DROP PROFILE acctg_profile RESTRICT;

The RESTRICT clause in the command instructs the server to not drop acctg_profile if there are any roles associated with the profile.

See AlsoSee Also

CREATE PROFILE, ALTER PROFILE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1276

17.52 DROP QUEUE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE SQL command. This syntax can be used in association with
DBMS_AQADM .

NameName

DROP QUEUE -- drop an existing queue.

SynopsisSynopsis

Use DROP QUEUE to drop an existing queue:

DROP QUEUE [IF EXISTS] <name>

DescriptionDescription

DROP QUEUE allows a superuser or a user with the aq_administrator_role privilege to drop an existing queue.

ParametersParameters

name

The name (possibly schema-qualified) of the queue that is being dropped.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the queue does not exist. The server will issue a notice.

ExamplesExamples

The following example drops a queue named work_order :

DROP QUEUE work_order;

See AlsoSee Also

CREATE QUEUE, ALTER QUEUE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1277

17.53 DROP QUEUE TABLE

Advanced Server includes extra syntax (not offered by Oracle) with the DROP QUEUE TABLE SQL command. This syntax can be used in association with
DBMS_AQADM .

NameName

DROP QUEUE TABLE -- drop a queue table.

SynopsisSynopsis

Use DROP QUEUE TABLE to delete a queue table:

DROP QUEUE TABLE [IF EXISTS] <name> [, ...]
[CASCADE | RESTRICT]

DescriptionDescription

DROP QUEUE TABLE allows a superuser or a user with the aq_administrator_role privilege to delete a queue table.

ParametersParameters

name

The name (possibly schema-qualified) of the queue table that will be deleted.

IF EXISTS

Include the IF EXISTS clause to instruct the server to not return an error if the queue table does not exist. The server will issue a notice.

CASCADE

Include the CASCADE keyword to automatically delete any objects that depend on the queue table.

RESTRICT

Include the RESTRICT keyword to instruct the server to refuse to delete the queue table if any objects depend on it. This is the default.

ExamplesExamples

The following example deletes a queue table named work_order_table and any objects that depend on it:

DROP QUEUE TABLE work_order_table CASCADE;

See AlsoSee Also

CREATE QUEUE TABLE, ALTER QUEUE TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1278

17.54 DROP SYNONYM

NameName

DROP SYNONYM -- remove a synonym.

SynopsisSynopsis

DROP [PUBLIC] SYNONYM [<schema>.]<syn_name>

DescriptionDescription

DROP SYNONYM deletes existing synonyms. To execute this command you must be a superuser or the owner of the synonym, and have USAGE privileges
on the schema in which the synonym resides.

ParametersParameters

syn_name

syn_name is the name of the synonym. A synonym name must be unique within a schema.

schema

schema specifies the name of the schema that the synonym resides in.

Like any other object that can be schema-qualified, you may have two synonyms with the same name in your search path. To disambiguate the name of the
synonym that you are dropping, include a schema name. Unless a synonym is schema qualified in the DROP SYNONYM command, Advanced Server
deletes the first instance of the synonym it finds in your search path.

You can optionally include the PUBLIC clause to drop a synonym that resides in the public schema. The DROP PUBLIC SYNONYM command,
compatible with Oracle databases, drops a synonym that resides in the public schema:

DROP PUBLIC SYNONYM syn_name;

The following example drops the synonym, personnel :

DROP SYNONYM personnel;

See AlsoSee Also

CREATE SYNONYM

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1279

17.55 DROP ROLE

NameName

DROP ROLE -- remove a database role.

SynopsisSynopsis

DROP ROLE <name> [CASCADE]

DescriptionDescription

DROP ROLE removes the specified role. To drop a superuser role, you must be a superuser yourself; to drop non-superuser roles, you must have
CREATEROLE privilege.

A role cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so. Before dropping the role, you must drop all the
objects it owns (or reassign their ownership) and revoke any privileges the role has been granted.

It is not necessary to remove role memberships involving the role; DROP ROLE automatically revokes any memberships of the target role in other roles,
and of other roles in the target role. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the role belong within a schema that is owned by the role and has the same name as the role, the CASCADE
option can be specified. In this case the issuer of the DROP ROLE name CASCADE command must be a superuser and the named role, the schema, and
all objects within the schema will be deleted.

ParametersParameters

name

The name of the role to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the role (and all objects owned by the role belonging to the schema) as long as no
other dependencies on the role or the schema exist.

ExamplesExamples

To drop a role:

DROP ROLE admins;

See AlsoSee Also

CREATE ROLE, SET ROLE, GRANT, REVOKE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1280

17.56 DROP SEQUENCE

NameName

DROP SEQUENCE -- remove a sequence.

SynopsisSynopsis

DROP SEQUENCE <name> [, ...]

DescriptionDescription

DROP SEQUENCE removes sequence number generators. To execute this command you must be a superuser or the owner of the sequence.

ParametersParameters

name

The name (optionally schema-qualified) of a sequence.

ExamplesExamples

To remove the sequence, serial :

DROP SEQUENCE serial;

See AlsoSee Also

ALTER SEQUENCE, CREATE SEQUENCE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1281

17.57 DROP TABLE

NameName

DROP TABLE -- remove a table.

SynopsisSynopsis

DROP TABLE <name> [CASCADE | RESTRICT | CASCADE CONSTRAINTS]

DescriptionDescription

DROP TABLE removes tables from the database. Only its owner may destroy a table. To empty a table of rows, without destroying the table, use
DELETE . DROP TABLE always removes any indexes, rules, triggers, and constraints that exist for the target table.

ParametersParameters

name

The name (optionally schema-qualified) of the table to drop.

Include the RESTRICT keyword to specify that the server should refuse to drop the table if any objects depend on it. This is the default behavior;
the DROP TABLE command will report an error if any objects depend on the table.

Include the CASCADE clause to drop any objects that depend on the table.

Include the CASCADE CONSTRAINTS clause to specify that Advanced Server should drop any dependent constraints (excluding other object
types) on the specified table.

ExamplesExamples

The following command drops a table named emp that has no dependencies:

DROP TABLE emp;

The outcome of a DROP TABLE command will vary depending on whether the table has any dependencies - you can control the outcome by specifying a
drop behavior. For example, if you create two tables, orders and items , where the items table is dependent on the orders table:

CREATE TABLE orders
 (order_id int PRIMARY KEY, order_date date, …);
CREATE TABLE items
 (order_id REFERENCES orders, quantity int, …);

Advanced Server will perform one of the following actions when dropping the orders table, depending on the drop behavior that you specify:

If you specify DROP TABLE orders RESTRICT , Advanced Server will report an error.
If you specify DROP TABLE orders CASCADE , Advanced Server will drop the orders table and the items table.
If you specify DROP TABLE orders CASCADE CONSTRAINTS , Advanced Server will drop the orders table and remove the foreign key
specification from the items table, but not drop the items table.

See AlsoSee Also

CREATE TABLE, ALTER TABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1282

17.58 DROP TABLESPACE

NameName

DROP TABLESPACE -- remove a tablespace.

SynopsisSynopsis

DROP TABLESPACE <tablespacename>

DescriptionDescription

DROP TABLESPACE removes a tablespace from the system.

A tablespace can only be dropped by its owner or a superuser. The tablespace must be empty of all database objects before it can be dropped. It is possible
that objects in other databases may still reside in the tablespace even if no objects in the current database are using the tablespace.

ParametersParameters

tablespacename

The name of a tablespace.

ExamplesExamples

To remove tablespace employee_space from the system:

DROP TABLESPACE employee_space;

See AlsoSee Also

ALTER TABLESPACE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1283

17.59 DROP TRIGGER

NameName

DROP TRIGGER -- remove a trigger.

SynopsisSynopsis

DROP TRIGGER <name>

DescriptionDescription

DROP TRIGGER removes a trigger from its associated table. The command must be run by a superuser or the owner of the table on which the trigger is
defined.

ParametersParameters

name

The name of a trigger to remove.

ExamplesExamples

Remove a trigger named emp_salary_trig :

DROP TRIGGER emp_salary_trig;

See AlsoSee Also

CREATE TRIGGER, ALTER TRIGGER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1284

17.60 DROP TYPE

NameName

DROP TYPE -- remove a type definition.

SynopsisSynopsis

DROP TYPE [BODY] <name>

DescriptionDescription

DROP TYPE removes the type definition. To execute this command you must be a superuser or the owner of the type.

The optional BODY qualifier applies only to object type definitions, not to collection types nor to composite types. If BODY is specified, only the object
type body is removed – the object type specification is not dropped. If BODY is omitted, both the object type specification and body are removed.

The type will not be deleted if there are other database objects dependent upon the named type.

ParametersParameters

name

The name of a type definition to remove.

ExamplesExamples

Drop the object type named addr_obj_typ :

DROP TYPE addr_obj_typ;

Drop the nested table type named budget_tbl_typ :

DROP TYPE budget_tbl_typ;

See AlsoSee Also

CREATE TYPE, CREATE TYPE BODY

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1285

17.61 DROP USER

NameName

DROP USER -- remove a database user account.

SynopsisSynopsis

DROP USER <name> [CASCADE]

DescriptionDescription

DROP USER removes the specified user. To drop a superuser, you must be a superuser yourself; to drop non-superusers, you must have CREATEROLE
privilege.

A user cannot be removed if it is still referenced in any database of the cluster; an error will be raised if so. Before dropping the user, you must drop all the
objects it owns (or reassign their ownership) and revoke any privileges the user has been granted.

However, it is not necessary to remove role memberships involving the user; DROP USER automatically revokes any memberships of the target user in
other roles, and of other roles in the target user. The other roles are not dropped nor otherwise affected.

Alternatively, if the only objects owned by the user belong within a schema that is owned by the user and has the same name as the user, the CASCADE
option can be specified. In this case the issuer of the DROP USER name CASCADE command must be a superuser and the named user, the schema, and
all objects within the schema will be deleted.

ParametersParameters

name

The name of the user to remove.

CASCADE

If specified, also drops the schema owned by, and with the same name as the user (and all objects owned by the user belonging to the schema) as long as no
other dependencies on the user or the schema exist.

ExamplesExamples

To drop a user account named john that owns no objects nor has been granted any privileges on other objects:

DROP USER john;

To drop user account, john , who has not been granted any privileges on any objects, and does not own any objects outside of a schema named, john ,
that is owned by user, john :

DROP USER john CASCADE;

See AlsoSee Also

CREATE USER, ALTER USER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1286

17.62 DROP VIEW

NameName

DROP VIEW -- remove a view.

SynopsisSynopsis

DROP VIEW <name>

DescriptionDescription

DROP VIEW drops an existing view. To execute this command you must be a database superuser or the owner of the view. The named view will not be
deleted if other objects are dependent upon this view (such as a view of a view).

The form of the DROP VIEW command compatible with Oracle does not support a CASCADE clause; to drop a view and it's dependencies, use the
PostgreSQL-compatible form of the DROP VIEW command. For more information, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-dropview.html

ParametersParameters

name

The name (optionally schema-qualified) of the view to remove.

ExamplesExamples

This command will remove the view named dept_30 :

DROP VIEW dept_30;

See AlsoSee Also

CREATE VIEW

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1287

https://www.postgresql.org/docs/current/static/sql-dropview.html

17.63 EXEC

NameName

EXEC

SynopsisSynopsis

EXEC function_name ['('[<argument_list>]')']

DescriptionDescription

EXECUTE

ParametersParameters

procedure_name

procedure_name is the (optionally schema-qualified) function name.

argument_list

argument_list specifies a comma-separated list of arguments required by the function. Note that each member of argument_list corresponds to
a formal argument expected by the function. Each formal argument may be an IN parameter, an OUT parameter, or an INOUT parameter.

ExamplesExamples

The EXEC statement may take one of several forms, depending on the arguments required by the function:

EXEC update_balance;
EXEC update_balance();
EXEC update_balance(1,2,3);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1288

17.64 GRANT

NameName

GRANT -- define access privileges.

SynopsisSynopsis

GRANT { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { { INSERT | UPDATE | REFERENCES } (column [, ...]) }
 [, ...]
 ON tablename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 TO { username | groupname | PUBLIC } [, ...]
 [WITH GRANT OPTION]

GRANT role [, ...]
 TO { username | groupname | PUBLIC } [, ...]
 [WITH ADMIN OPTION]

GRANT { CONNECT | RESOURCE | DBA } [, ...]
 TO { username | groupname } [, ...]
 [WITH ADMIN OPTION]

GRANT CREATE [PUBLIC] DATABASE LINK
 TO { username | groupname }

GRANT DROP PUBLIC DATABASE LINK
 TO { username | groupname }

GRANT EXEMPT ACCESS POLICY
 TO { username | groupname }

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1289

DescriptionDescription

The GRANT command has three basic variants: one that grants privileges on a database object (table, view, sequence, or program), one that grants
membership in a role, and one that grants system privileges. These variants are similar in many ways, but they are different enough to be described
separately.

In Advanced Server, the concept of users and groups has been unified into a single type of entity called a role. In this context, a user is a role that has the
LOGIN attribute – the role may be used to create a session and connect to an application. A group is a role that does not have the LOGIN attribute – the

role may not be used to create a session or connect to an application.

A role may be a member of one or more other roles, so the traditional concept of users belonging to groups is still valid. However, with the generalization of
users and groups, users may “belong” to users, groups may “belong” to groups, and groups may “belong” to users, forming a general multi-level hierarchy
of roles. User names and group names share the same namespace therefore it is not necessary to distinguish whether a grantee is a user or a group in the
GRANT command.

GRANT on Database Objects

This variant of the GRANT command gives specific privileges on a database object to a role. These privileges are added to those already granted, if any.

The key word PUBLIC indicates that the privileges are to be granted to all roles, including those that may be created later. PUBLIC may be thought of as
an implicitly defined group that always includes all roles. Any particular role will have the sum of privileges granted directly to it, privileges granted to any
role it is presently a member of, and privileges granted to PUBLIC .

If the WITH GRANT OPTION is specified, the recipient of the privilege may in turn grant it to others. Without a grant option, the recipient cannot do that.
Grant options cannot be granted to PUBLIC .

There is no need to grant privileges to the owner of an object (usually the user that created it), as the owner has all privileges by default. (The owner could,
however, choose to revoke some of his own privileges for safety.) The right to drop an object or to alter its definition in any way is not described by a
grantable privilege; it is inherent in the owner, and cannot be granted or revoked. The owner implicitly has all grant options for the object as well.

Depending on the type of object, the initial default privileges may include granting some privileges to PUBLIC . The default is no public access for tables
and EXECUTE privilege for functions, procedures, and packages. The object owner may of course revoke these privileges. (For maximum security, issue
the REVOKE in the same transaction that creates the object; then there is no window in which another user may use the object.)

The possible privileges are:

SELECT

Allows SELECT from any column of the specified table, view, or sequence. For sequences, this privilege also allows the use of the currval function.

INSERT

Allows INSERT of a new row into the specified table.

UPDATE

Allows UPDATE of a column of the specified table. SELECT ... FOR UPDATE also requires this privilege (besides the SELECT privilege).

DELETE

Allows DELETE of a row from the specified table.

REFERENCES

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1290

To create a foreign key constraint, it is necessary to have this privilege on both the referencing and referenced tables.

EXECUTE

Allows the use of the specified package, procedure, or function. When applied to a package, allows the use of all of the package’s public procedures, public
functions, public variables, records, cursors and other public objects and object types. This is the only type of privilege that is applicable to functions,
procedures, and packages.

The Advanced Server syntax for granting the EXECUTE privilege is not fully compatible with Oracle databases. Advanced Server requires qualification of
the program name by one of the keywords, FUNCTION , PROCEDURE , or PACKAGE whereas these keywords must be omitted in Oracle. For functions,
Advanced Server requires all input (IN , IN OUT) argument data types after the function name (including an empty parenthesis if there are no function
arguments). For procedures, all input argument data types must be specified if the procedure has one or more input arguments. In Oracle, function and
procedure signatures must be omitted. This is due to the fact that all programs share the same namespace in Oracle, whereas functions, procedures, and
packages have their own individual namespace in Advanced Server to allow program name overloading to a certain extent.

ALL PRIVILEGES

Grant all of the available privileges at once.

The privileges required by other commands are listed on the reference page of the respective command.

GRANT on Roles

This variant of the GRANT command grants membership in a role to one or more other roles. Membership in a role is significant because it conveys the
privileges granted to a role to each of its members.

If the WITH ADMIN OPTION is specified, the member may in turn grant membership in the role to others, and revoke membership in the role as well.
Without the admin option, ordinary users cannot do that.

Database superusers can grant or revoke membership in any role to anyone. Roles having the CREATEROLE privilege can grant or revoke membership in
any role that is not a superuser.

There are three pre-defined roles that have the following meanings:

CONNECT

Granting the CONNECT role is equivalent to giving the grantee the LOGIN privilege. The grantor must have the CREATEROLE privilege.

RESOURCE

Granting the RESOURCE role is equivalent to granting the CREATE and USAGE privileges on a schema that has the same name as the grantee. This
schema must exist before the grant is given. The grantor must have the privilege to grant CREATE or USAGE privileges on this schema to the grantee.

DBA

Granting the DBA role is equivalent to making the grantee a superuser. The grantor must be a superuser.

NotesNotes

The REVOKE command is used to revoke access privileges.

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright if the user has no privileges whatsoever on the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1291

When a non-owner of an object attempts to GRANT privileges on the object, the command will fail outright if the user has no privileges whatsoever on the
object. As long as a privilege is available, the command will proceed, but it will grant only those privileges for which the user has grant options. The GRANT
ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms will issue a warning if grant options for any of
the privileges specifically named in the command are not held. (In principle these statements apply to the object owner as well, but since the owner is
always treated as holding all grant options, the cases can never occur.)

It should be noted that database superusers can access all objects regardless of object privilege settings. This is comparable to the rights of root in a
Unix system. As with root , it’s unwise to operate as a superuser except when absolutely necessary.

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it were issued by the owner of the affected object.
In particular, privileges granted via such a command will appear to have been granted by the object owner. (For role membership, the membership appears
to have been granted by the containing role itself.)

GRANT and REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role that owns the object, or is a
member of a role that holds privileges WITH GRANT OPTION on the object. In this case the privileges will be recorded as having been granted by the role
that actually owns the object or holds the privileges WITH GRANT OPTION .

For example, if table t1 is owned by role g1 , of which role u1 is a member, then u1 can grant privileges on t1 to u2 , but those privileges will
appear to have been granted directly by g1 . Any other member of role g1 could revoke them later.

If the role executing GRANT holds the required privileges indirectly via more than one role membership path, it is unspecified which containing role will be
recorded as having done the grant. In such cases it is best practice to use SET ROLE to become the specific role you want to do the GRANT as.

Currently, Advanced Server does not support granting or revoking privileges for individual columns of a table. One possible workaround is to create a view
having just the desired columns and then grant privileges to that view.

ExamplesExamples

Grant insert privilege to all users on table emp :

GRANT INSERT ON emp TO PUBLIC;

Grant all available privileges to user mary on view salesemp :

GRANT ALL PRIVILEGES ON salesemp TO mary;

Note that while the above will indeed grant all privileges if executed by a superuser or the owner of emp , when executed by someone else it will only grant
those permissions for which the someone else has grant options.

Grant membership in role admins to user joe :

GRANT admins TO joe;

Grant CONNECT privilege to user joe :

GRANT CONNECT TO joe;

See AlsoSee Also

REVOKE, SET ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1292

GRANT on System Privileges

This variant of the GRANT command gives a role the ability to perform certain system operations within a database. System privileges relate to the ability
to create or delete certain database objects that are not necessarily within the confines of one schema. Only database superusers can grant system
privileges.

CREATE [PUBLIC] DATABASE LINKCREATE [PUBLIC] DATABASE LINK

The CREATE [PUBLIC] DATABASE LINK privilege allows the specified role to create a database link. Include the PUBLIC keyword to allow the role
to create public database links; omit the PUBLIC keyword to allow the specified role to create private database links.

DROP PUBLIC DATABASE LINKDROP PUBLIC DATABASE LINK

The DROP PUBLIC DATABASE LINK privilege allows a role to drop a public database link. System privileges are not required to drop a private
database link. A private database link may be dropped by the link owner or a database superuser.

EXEMPT ACCESS POLICYEXEMPT ACCESS POLICY

The EXEMPT ACCESS POLICY privilege allows a role to execute a SQL command without invoking any policy function that may be associated with the
target database object. The role is exempt from all security policies in the database.

The EXEMPT ACCESS POLICY privilege is not inheritable by membership to a role that has the EXEMPT ACCESS POLICY privilege. For example, the
following sequence of GRANT commands does not result in user joe obtaining the EXEMPT ACCESS POLICY privilege even though joe is granted
membership to the enterprisedb role, which has been granted the EXEMPT ACCESS POLICY privilege:

GRANT EXEMPT ACCESS POLICY TO enterprisedb;
GRANT enterprisedb TO joe;

The rolpolicyexempt column of the system catalog table pg_authid is set to true if a role has the EXEMPT ACCESS POLICY privilege.

ExamplesExamples

Grant CREATE PUBLIC DATABASE LINK privilege to user joe :

GRANT CREATE PUBLIC DATABASE LINK TO joe;

Grant DROP PUBLIC DATABASE LINK privilege to user joe :

GRANT DROP PUBLIC DATABASE LINK TO joe;

Grant the EXEMPT ACCESS POLICY privilege to user joe :

GRANT EXEMPT ACCESS POLICY TO joe;

Using the ALTER ROLE Command to Assign System PrivilegesUsing the ALTER ROLE Command to Assign System Privileges

The Advanced Server ALTER ROLE command also supports syntax that you can use to assign:

the privilege required to create a public or private database link.
the privilege required to drop a public database link.
the EXEMPT ACCESS POLICY privilege.

The ALTER ROLE syntax is functionally equivalent to the respective commands compatible with Oracle databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1293

See AlsoSee Also

REVOKE, ALTER ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1294

17.65 INSERT

NameName

INSERT -- create new rows in a table.

SynopsisSynopsis

INSERT INTO <table>[@<dblink>] [(<column> [, ...])]
 { VALUES ({ <expression> | DEFAULT } [, ...])
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]
 | <query> }

DescriptionDescription

INSERT allows you to insert new rows into a table. You can insert a single row at a time or several rows as a result of a query.

The columns in the target list may be listed in any order. Each column not present in the target list will be inserted using a default value, either its declared
default value or null.

If the expression for each column is not of the correct data type, automatic type conversion will be attempted.

The RETURNING INTO { record | variable [, ...] } clause may only be specified when the INSERT command is used within an SPL
program and only when the VALUES clause is used.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if the INSERT command is used within an SPL
program. If more than one collection is specified as the target of the BULK COLLECT INTO clause, then each collection must consist of a
single, scalar field – i.e., collection must not be a record. return_expression evaluated for each inserted row, becomes an element in
collection starting with the first element. Any existing rows in collection are deleted. If the result set is empty, then collection will be

empty.

You must have INSERT privilege to a table in order to insert into it. If you use the query clause to insert rows from a query, you also need to have
SELECT privilege on any table used in the query.

ParametersParameters

table

The name (optionally schema-qualified) of an existing table.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK command for information on database links.

column

The name of a column in table .

expression

An expression or value to assign to column .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1295

DEFAULT

This column will be filled with its default value.

query

A query (SELECT statement) that supplies the rows to be inserted. Refer to the SELECT command for a description of the syntax.

return_expression

An expression that may include one or more columns from table . If a column name from table is specified in return_expression , the value
substituted for the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in the INSERT command, then the assigned value is used in the evaluation
of return_expression .

If the column specified in return_expression is not assigned a value in the INSERT command and there is no default value for the column in
the table’s column definition, then null is used in the evaluation of return_expression .

If the column specified in return_expression is not assigned a value in the INSERT command and there is a default value for the column in
the table’s column definition, then the default value is used in the evaluation of return_expression .

record

A record whose field the evaluated return_expression is to be assigned. The first return_expression is assigned to the first field in record ,
the second return_expression is assigned to the second field in record , etc. The number of fields in record must exactly match the number of
expressions and the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If more than one return_expression and variable are specified,
the first return_expression is assigned to the first variable , the second return_expression is assigned to the second variable , etc.
The number of variables specified following the INTO keyword must exactly match the number of expressions following the RETURNING keyword and
the variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . There can be either a single collection which may be a collection
of a single field or a collection of a record type, or there may be more than one collection in which case each collection must consist of a single field. The
number of return expressions must match in number and order the number of fields in all specified collections. Each corresponding
return_expression and collection field must be type-compatible.

ExamplesExamples

Insert a single row into table emp :

INSERT INTO emp VALUES (8021,'JOHN','SALESMAN',7698,'22-FEB-07',1250,500,30);

In this second example, the column, comm , is omitted and therefore it will have the default value of null:

INSERT INTO emp (empno, ename, job, mgr, hiredate, sal, deptno)
 VALUES (8022,'PETERS','CLERK',7698,'03-DEC-06',950,30);

The third example uses the DEFAULT clause for the hiredate and comm columns rather than specifying a value:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1296

INSERT INTO emp VALUES (8023,'FORD','ANALYST',7566,NULL,3000,NULL,20);

This example creates a table for the department names and then inserts into the table by selecting from the dname column of the dept table:

CREATE TABLE deptnames (
 deptname VARCHAR2(14)
);
INSERT INTO deptnames SELECT dname FROM dept;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1297

17.66 LOCK

NameName

LOCK -- lock a table.

SynopsisSynopsis

LOCK TABLE <name> [, ...] IN <lockmode> MODE [NOWAIT]

where lockmode is one of:

ROW SHARE | ROW EXCLUSIVE | SHARE | SHARE ROW EXCLUSIVE | EXCLUSIVE

DescriptionDescription

LOCK TABLE obtains a table-level lock, waiting if necessary for any conflicting locks to be released. If NOWAIT is specified, LOCK TABLE does not
wait to acquire the desired lock: if it cannot be acquired immediately, the command is aborted and an error is emitted. Once obtained, the lock is held for
the remainder of the current transaction. (There is no UNLOCK TABLE command; locks are always released at transaction end.)

When acquiring locks automatically for commands that reference tables, Advanced Server always uses the least restrictive lock mode possible. LOCK
TABLE provides for cases when you might need more restrictive locking. For example, suppose an application runs a transaction at the isolation level read
committed and needs to ensure that data in a table remains stable for the duration of the transaction. To achieve this you could obtain SHARE lock mode
over the table before querying. This will prevent concurrent data changes and ensure subsequent reads of the table see a stable view of committed data,
because SHARE lock mode conflicts with the ROW EXCLUSIVE lock acquired by writers, and your LOCK TABLE name IN SHARE MODE statement
will wait until any concurrent holders of ROW EXCLUSIVE mode locks commit or roll back. Thus, once you obtain the lock, there are no uncommitted
writes outstanding; furthermore none can begin until you release the lock.

To achieve a similar effect when running a transaction at the isolation level serializable, you have to execute the LOCK TABLE statement before
executing any data modification statement. A serializable transaction’s view of data will be frozen when its first data modification statement begins. A later
LOCK TABLE will still prevent concurrent writes - but it won’t ensure that what the transaction reads corresponds to the latest committed values.

If a transaction of this sort is going to change the data in the table, then it should use SHARE ROW EXCLUSIVE lock mode instead of SHARE mode.

This ensures that only one transaction of this type runs at a time. Without this, a deadlock is possible: two transactions might both acquire SHARE mode,
and then be unable to also acquire ROW EXCLUSIVE mode to actually perform their updates. (Note that a transaction’s own locks never conflict, so a
transaction can acquire ROW EXCLUSIVE mode when it holds SHARE mode - but not if anyone else holds SHARE mode.) To avoid deadlocks, make
sure all transactions acquire locks on the same objects in the same order, and if multiple lock modes are involved for a single object, then transactions
should always acquire the most restrictive mode first.

ParametersParameters

name

The name (optionally schema-qualified) of an existing table to lock.

The command LOCK TABLE a, b; is equivalent to LOCK TABLE a; LOCK TABLE b . The tables are locked one-by-one in the order specified in
the LOCK TABLE command.

lockmode

The lock mode specifies which locks this lock conflicts with.

If no lock mode is specified, then the server uses the most restrictive mode, ACCESS EXCLUSIVE . (ACCESS EXCLUSIVE is not compatible with

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1298

If no lock mode is specified, then the server uses the most restrictive mode, ACCESS EXCLUSIVE . (ACCESS EXCLUSIVE is not compatible with
Oracle databases. In Advanced Server, this configuration mode ensures that no other transaction can access the locked table in any manner.)

NOWAIT

Specifies that LOCK TABLE should not wait for any conflicting locks to be released: if the specified lock cannot be immediately acquired without waiting,
the transaction is aborted.

NotesNotes

All forms of LOCK require UPDATE and/or DELETE privileges.

LOCK TABLE is useful only inside a transaction block since the lock is dropped as soon as the transaction ends. A LOCK TABLE command appearing
outside any transaction block forms a self-contained transaction, so the lock will be dropped as soon as it is obtained.

LOCK TABLE only deals with table-level locks, and so the mode names involving ROW are all misnomers. These mode names should generally be read as
indicating the intention of the user to acquire row-level locks within the locked table. Also, ROW EXCLUSIVE mode is a sharable table lock. Keep in mind
that all the lock modes have identical semantics so far as LOCK TABLE is concerned, differing only in the rules about which modes conflict with which.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1299

17.67 REVOKE

NameName

REVOKE -- remove access privileges.

SynopsisSynopsis

REVOKE { { SELECT | INSERT | UPDATE | DELETE | REFERENCES }
 [,...] | ALL [PRIVILEGES] }
 ON tablename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { SELECT | ALL [PRIVILEGES] }
 ON sequencename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON FUNCTION progname
 ([[argmode] [argname] argtype] [, ...])
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PROCEDURE progname
 [([[argmode] [argname] argtype] [, ...])]
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE { EXECUTE | ALL [PRIVILEGES] }
 ON PACKAGE packagename
 FROM { username | groupname | PUBLIC } [, ...]
 [CASCADE | RESTRICT]

REVOKE role [, ...] FROM { username | groupname | PUBLIC }
 [, ...]
 [CASCADE | RESTRICT]

REVOKE { CONNECT | RESOURCE | DBA } [, ...]
 FROM { username | groupname } [, ...]

REVOKE CREATE [PUBLIC] DATABASE LINK
 FROM { username | groupname }

REVOKE DROP PUBLIC DATABASE LINK
 FROM { username | groupname }

REVOKE EXEMPT ACCESS POLICY
 FROM { username | groupname }

DescriptionDescription

The REVOKE command revokes previously granted privileges from one or more roles. The key word PUBLIC refers to the implicitly defined group of all
roles.

See the description of the GRANT command for the meaning of the privilege types.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1300

Note that any particular role will have the sum of privileges granted directly to it, privileges granted to any role it is presently a member of, and privileges
granted to PUBLIC . Thus, for example, revoking SELECT privilege from PUBLIC does not necessarily mean that all roles have lost SELECT privilege
on the object: those who have it granted directly or via another role will still have it.

If the privilege had been granted with the grant option, the grant option for the privilege is revoked as well as the privilege, itself.

If a user holds a privilege with grant option and has granted it to other users then the privileges held by those other users are called dependent privileges. If
the privilege or the grant option held by the first user is being revoked and dependent privileges exist, those dependent privileges are also revoked if
CASCADE is specified, else the revoke action will fail. This recursive revocation only affects privileges that were granted through a chain of users that is

traceable to the user that is the subject of this REVOKE command. Thus, the affected users may effectively keep the privilege if it was also granted
through other users.

NoteNote

CASCADE is not an option compatible with Oracle databases. By default Oracle always cascades dependent privileges, but Advanced Server
requires the CASCADE keyword to be explicitly given, otherwise the REVOKE command will fail.

When revoking membership in a role, GRANT OPTION is instead called ADMIN OPTION , but the behavior is similar.

NotesNotes

A user can only revoke privileges that were granted directly by that user. If, for example, user A has granted a privilege with grant option to user B , and
user B has in turned granted it to user C , then user A cannot revoke the privilege directly from C . Instead, user A could revoke the grant option from
user B and use the CASCADE option so that the privilege is in turn revoked from user C . For another example, if both A and B have granted the same
privilege to C , A can revoke his own grant but not B ’s grant, so C will still effectively have the privilege.

When a non-owner of an object attempts to REVOKE privileges on the object, the command will fail outright if the user has no privileges whatsoever on
the object. As long as some privilege is available, the command will proceed, but it will revoke only those privileges for which the user has grant options.
The REVOKE ALL PRIVILEGES forms will issue a warning message if no grant options are held, while the other forms will issue a warning if grant
options for any of the privileges specifically named in the command are not held. (In principle these statements apply to the object owner as well, but since
the owner is always treated as holding all grant options, the cases can never occur.)

If a superuser chooses to issue a GRANT or REVOKE command, the command is performed as though it were issued by the owner of the affected object.
Since all privileges ultimately come from the object owner (possibly indirectly via chains of grant options), it is possible for a superuser to revoke all
privileges, but this may require use of CASCADE as stated above.

REVOKE can also be done by a role that is not the owner of the affected object, but is a member of the role that owns the object, or is a member of a role
that holds privileges WITH GRANT OPTION on the object. In this case the command is performed as though it were issued by the containing role that
actually owns the object or holds the privileges WITH GRANT OPTION . For example, if table t1 is owned by role g1 , of which role u1 is a member,
then u1 can revoke privileges on t1 that are recorded as being granted by g1 . This would include grants made by u1 as well as by other members of
role g1 .

If the role executing REVOKE holds privileges indirectly via more than one role membership path, it is unspecified which containing role will be used to
perform the command. In such cases it is best practice to use SET ROLE to become the specific role you want to do the REVOKE as. Failure to do so may
lead to revoking privileges other than the ones you intended, or not revoking anything at all.

NoteNote

The Advanced Server ALTER ROLE command also supports syntax that revokes the system privileges required to create a public or private
database link, or exemptions from fine-grained access control policies (DBMS_RLS). The ALTER ROLE syntax is functionally equivalent to the
respective REVOKE command, compatible with Oracle databases.

ExamplesExamples

Revoke insert privilege for the public on table emp :

REVOKE INSERT ON emp FROM PUBLIC;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1301

Revoke all privileges from user mary on view salesemp :

REVOKE ALL PRIVILEGES ON salesemp FROM mary;

Note that this actually means “revoke all privileges that I granted”.

Revoke membership in role admins from user joe :

REVOKE admins FROM joe;

Revoke CONNECT privilege from user joe :

REVOKE CONNECT FROM joe;

Revoke CREATE DATABASE LINK privilege from user joe :

REVOKE CREATE DATABASE LINK FROM joe;

Revoke the EXEMPT ACCESS POLICY privilege from user joe :

REVOKE EXEMPT ACCESS POLICY FROM joe;

See AlsoSee Also

GRANT, SET ROLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1302

17.68 ROLLBACK

NameName

ROLLBACK -- abort the current transaction.

SynopsisSynopsis

ROLLBACK [WORK]

DescriptionDescription

ROLLBACK rolls back the current transaction and causes all the updates made by the transaction to be discarded.

ParametersParameters

WORK

Optional key word - has no effect.

NotesNotes

Use COMMIT to successfully terminate a transaction.

Issuing ROLLBACK when not inside a transaction does no harm.

NoteNote

Executing a ROLLBACK in a plpgsql procedure will throw an error if there is an Oracle-style SPL procedure on the runtime stack.

ExamplesExamples

To abort all changes:

ROLLBACK;

See AlsoSee Also

COMMIT, ROLLBACK TO SAVEPOINT, SAVEPOINT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1303

17.69 ROLLBACK TO SAVEPOINT

NameName

ROLLBACK TO SAVEPOINT -- roll back to a savepoint.

SynopsisSynopsis

ROLLBACK [WORK] TO [SAVEPOINT] <savepoint_name>

DescriptionDescription

Roll back all commands that were executed after the savepoint was established. The savepoint remains valid and can be rolled back to again, if needed.

ROLLBACK TO SAVEPOINT destroys all savepoints that were established after the named savepoint.

ParametersParameters

savepoint_name

The savepoint to which to roll back.

NotesNotes

Specifying a savepoint name that has not been established is an error.

ROLLBACK TO SAVEPOINT is not supported within SPL programs.

ExamplesExamples

To undo the effects of the commands executed savepoint depts was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
ROLLBACK TO SAVEPOINT depts;

See AlsoSee Also

COMMIT, ROLLBACK, SAVEPOINT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1304

17.70 SAVEPOINT

NameName

SAVEPOINT -- define a new savepoint within the current transaction.

SynopsisSynopsis

SAVEPOINT <savepoint_name>

DescriptionDescription

SAVEPOINT establishes a new savepoint within the current transaction.

A savepoint is a special mark inside a transaction that allows all commands that are executed after it was established to be rolled back, restoring the
transaction state to what it was at the time of the savepoint.

ParametersParameters

savepoint_name

The name to be given to the savepoint.

NotesNotes

Use ROLLBACK TO SAVEPOINT to roll back to a savepoint.

Savepoints can only be established when inside a transaction block. There can be multiple savepoints defined within a transaction.

When another savepoint is established with the same name as a previous savepoint, the old savepoint is kept, though only the more recent one will be used
when rolling back.

SAVEPOINT is not supported within SPL programs.

ExamplesExamples

To establish a savepoint and later undo the effects of all commands executed after it was established:

\set AUTOCOMMIT off
INSERT INTO dept VALUES (50, 'HR', 'NEW YORK');
SAVEPOINT depts;
INSERT INTO emp (empno, ename, deptno) VALUES (9001, 'JONES', 50);
INSERT INTO emp (empno, ename, deptno) VALUES (9002, 'ALICE', 50);
SAVEPOINT emps;
INSERT INTO jobhist VALUES (9001,'17-SEP-07',NULL,'CLERK',800,NULL,50,'New Hire');
INSERT INTO jobhist VALUES (9002,'20-SEP-07',NULL,'CLERK',700,NULL,50,'New Hire');
ROLLBACK TO depts;
COMMIT;

The above transaction will commit a row into the dept table, but the inserts into the emp and jobhist tables are rolled back.

See AlsoSee Also

COMMIT, ROLLBACK, ROLLBACK TO SAVEPOINT

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1305

17.71 SELECT

NameName

SELECT -- retrieve rows from a table or view.

SynopsisSynopsis

SELECT [optimizer_hint] [ALL | DISTINCT | UNIQUE]
 * | expression [AS output_name] [, ...]
 FROM from_item [, ...]
 [WHERE condition]
 [[START WITH start_expression]
 CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }
 [ORDER SIBLINGS BY expression [ASC | DESC] [, ...]]]
 [GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]
 [LEVEL]]
 [HAVING condition [, ...]]
 [{ UNION [ALL] | INTERSECT | MINUS } select]
 [ORDER BY expression [ASC | DESC] [, ...]]
 [FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]]

where from_item can be one of:

table_name[@dblink] [alias]
(select) alias
from_item [NATURAL] join_type from_item
 [ON join_condition | USING (join_column [, ...])]

DescriptionDescription

SELECT retrieves rows from one or more tables. The general processing of SELECT is as follows:

1. All elements in the FROM list are computed. (Each element in the FROM list is a real or virtual table.) If more than one element is specified in the
FROM list, they are cross-joined together. (See FROM clause, below.)

2. If the WHERE clause is specified, all rows that do not satisfy the condition are eliminated from the output. (See WHERE clause, below.)
3. If the GROUP BY clause is specified, the output is divided into groups of rows that match on one or more values. If the HAVING clause is present,

it eliminates groups that do not satisfy the given condition. (See GROUP BY clause and HAVING clause below.)
4. Using the operators UNION , INTERSECT , and MINUS , the output of more than one SELECT statement can be combined to form a single result

set. The UNION operator returns all rows that are in one or both of the result sets. The INTERSECT operator returns all rows that are strictly in
both result sets. The MINUS operator returns the rows that are in the first result set but not in the second. In all three cases, duplicate rows are
eliminated. In the case of the UNION operator, if ALL is specified then duplicates are not eliminated. (See UNION clause, INTERSECT clause,
and MINUS clause below.)

5. The actual output rows are computed using the SELECT output expressions for each selected row. (See SELECT list below.)
6. The CONNECT BY clause is used to select data that has a hierarchical relationship. Such data has a parent-child relationship between rows. (See

CONNECT BY clause.)
7. If the ORDER BY clause is specified, the returned rows are sorted in the specified order. If ORDER BY is not given, the rows are returned in

whatever order the system finds fastest to produce. (See ORDER BY clause below.)
8. DISTINCT | UNIQUE eliminates duplicate rows from the result. ALL (the default) will return all candidate rows, including duplicates. (See

DISTINCT | UNIQUE clause below.)
9. The FOR UPDATE clause causes the SELECT statement to lock the selected rows against concurrent updates. (See FOR UPDATE clause

below.)

You must have SELECT privilege on a table to read its values. The use of FOR UPDATE requires UPDATE privilege as well.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1306

ParametersParameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan. See Database Compatibility for Oracle Developers Guide for information
about optimizer hints.

FROM Clause

The FROM clause specifies one or more source tables for a SELECT statement. The syntax is:

FROM source [, ...]

Where source can be one of following elements:

table_name[@dblink]

The name (optionally schema-qualified) of an existing table or view. dblink is a database link name identifying a remote database. See the CREATE
DATABASE LINK command for information on database links.

alias

A substitute name for the FROM item containing the alias. An alias is used for brevity or to eliminate ambiguity for self-joins (where the same table is
scanned multiple times). When an alias is provided, it completely hides the actual name of the table or function; for example given FROM foo AS f , the
remainder of the SELECT must refer to this FROM item as f not foo .

select

A sub- SELECT can appear in the FROM clause. This acts as though its output were created as a temporary table for the duration of this single SELECT
command. Note that the sub- SELECT must be surrounded by parentheses, and an alias must be provided for it.

join_type

One of the following:

[INNER] JOIN

LEFT [OUTER] JOIN

RIGHT [OUTER] JOIN

FULL [OUTER] JOIN

CROSS JOIN

For the INNER and OUTER join types, a join condition must be specified, namely exactly one of NATURAL , ON join_condition , or USING
(join_column [, ...]) . See below for the meaning. For CROSS JOIN , none of these clauses may appear.

A JOIN clause combines two FROM items. Use parentheses if necessary to determine the order of nesting. In the absence of parentheses, JOINs nest
left-to-right. In any case JOIN binds more tightly than the commas separating FROM items.

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from listing the two items at the top level of FROM ,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1307

CROSS JOIN and INNER JOIN produce a simple Cartesian product, the same result as you get from listing the two items at the top level of FROM ,
but restricted by the join condition (if any). CROSS JOIN is equivalent to INNER JOIN ON (TRUE) , that is, no rows are removed by qualification.
These join types are just a notational convenience, since they do nothing you couldn’t do with plain FROM and WHERE .

LEFT OUTER JOIN returns all rows in the qualified Cartesian product (i.e., all combined rows that pass its join condition), plus one copy of each row in
the left-hand table for which there was no right-hand row that passed the join condition. This left-hand row is extended to the full width of the joined table
by inserting null values for the right-hand columns. Note that only the JOIN clause’s own condition is considered while deciding which rows have
matches. Outer conditions are applied afterwards.

Conversely, RIGHT OUTER JOIN returns all the joined rows, plus one row for each unmatched right-hand row (extended with nulls on the left). This is
just a notational convenience, since you could convert it to a LEFT OUTER JOIN by switching the left and right inputs.

FULL OUTER JOIN returns all the joined rows, plus one row for each unmatched left-hand row (extended with nulls on the right), plus one row for each
unmatched right-hand row (extended with nulls on the left).

ON join_condition

join_condition is an expression resulting in a value of type BOOLEAN (similar to a WHERE clause) that specifies which rows in a join are
considered to match.

USING (join_column [, ...])

A clause of the form USING (a, b, ...) is shorthand for ON left_table.a = right_table.a AND left_table.b =
right_table.b Also, USING implies that only one of each pair of equivalent columns will be included in the join output, not both.

NATURAL

NATURAL is shorthand for a USING list that mentions all columns in the two tables that have the same names.

If multiple sources are specified, the result is the Cartesian product (cross join) of all the sources. Usually qualification conditions are added to restrict the
returned rows to a small subset of the Cartesian product.

ExampleExample

The following example selects all of the entries from the dept table:

SELECT * FROM dept;
deptno | dname | loc
-------+-------------+-----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
 (4 rows)

WHERE Clause

The optional WHERE clause has the form:

WHERE condition

where condition is any expression that evaluates to a result of type BOOLEAN . Any row that does not satisfy this condition will be eliminated from the
output. A row satisfies the condition if it returns TRUE when the actual row values are substituted for any variable references.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1308

ExampleExample

The following example joins the contents of the emp and dept tables, WHERE the value of the deptno column in the emp table is equal to the value
of the deptno column in the deptno table:

SELECT d.deptno, d.dname, e.empno, e.ename, e.mgr, e.hiredate
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

 deptno | dname | empno | ename | mgr | hiredate
--------+------------+-------+--------+------+--------------------
 10 | ACCOUNTING | 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 10 | ACCOUNTING | 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 10 | ACCOUNTING | 7839 | KING | | 17-NOV-81 00:00:00
 20 | RESEARCH | 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 20 | RESEARCH | 7566 | JONES | 7839 | 02-APR-81 00:00:00
 20 | RESEARCH | 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 20 | RESEARCH | 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 20 | RESEARCH | 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 30 | SALES | 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 30 | SALES | 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 30 | SALES | 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 30 | SALES | 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 30 | SALES | 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 30 | SALES | 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

GROUP BY Clause

The optional GROUP BY clause has the form:

GROUP BY { expression | ROLLUP (expr_list) |
 CUBE (expr_list) | GROUPING SETS (expr_list) } [, ...]

GROUP BY will condense into a single row all selected rows that share the same values for the grouped expressions. expression can be an input
column name, or the name or ordinal number of an output column (SELECT list item), or an arbitrary expression formed from input-column values. In
case of ambiguity, a GROUP BY name will be interpreted as an input-column name rather than an output column name.

ROLLUP , CUBE , and GROUPING SETS are extensions to the GROUP BY clause for supporting multidimensional analysis.

Aggregate functions, if any are used, are computed across all rows making up each group, producing a separate value for each group (whereas without
GROUP BY , an aggregate produces a single value computed across all the selected rows). When GROUP BY is present, it is not valid for the SELECT

list expressions to refer to ungrouped columns except within aggregate functions, since there would be more than one possible value to return for an
ungrouped column.

ExampleExample

The following example computes the sum of the sal column in the emp table, grouping the results by department number:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1309

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno;

 deptno | total
--------+----------
 10 | 8750.00
 20 | 10875.00
 30 | 9400.00
(3 rows)

HAVING Clause

The optional HAVING clause has the form:

HAVING condition

where condition is the same as specified for the WHERE clause.

HAVING eliminates group rows that do not satisfy the specified condition. HAVING is different from WHERE; WHERE filters individual rows before the
application of GROUP BY , while HAVING filters group rows created by GROUP BY . Each column referenced in condition must unambiguously
reference a grouping column, unless the reference appears within an aggregate function.

ExampleExample

To sum the column, sal of all employees, group the results by department number and show those group totals that are less than 10000:

SELECT deptno, SUM(sal) AS total
 FROM emp
 GROUP BY deptno
 HAVING SUM(sal) < 10000;

 deptno | total
--------+---------
 10 | 8750.00
 30 | 9400.00
(2 rows)

SELECT List

The SELECT list (between the key words SELECT and FROM) specifies expressions that form the output rows of the SELECT statement. The
expressions can (and usually do) refer to columns computed in the FROM clause. Using the clause AS output_name , another name can be specified
for an output column. This name is primarily used to label the column for display. It can also be used to refer to the column’s value in ORDER BY and
GROUP BY clauses, but not in the WHERE or HAVING clauses; there you must write out the expression instead.

Instead of an expression, * can be written in the output list as a shorthand for all the columns of the selected rows.

ExampleExample

The SELECT list in the following example specifies that the result set should include the empno column, the ename column, the mgr column and the
hiredate column:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1310

SELECT empno, ename, mgr, hiredate FROM emp;

 empno | ename | mgr | hiredate
-------+--------+------+--------------------
 7934 | MILLER | 7782 | 23-JAN-82 00:00:00
 7782 | CLARK | 7839 | 09-JUN-81 00:00:00
 7839 | KING | | 17-NOV-81 00:00:00
 7788 | SCOTT | 7566 | 19-APR-87 00:00:00
 7566 | JONES | 7839 | 02-APR-81 00:00:00
 7369 | SMITH | 7902 | 17-DEC-80 00:00:00
 7876 | ADAMS | 7788 | 23-MAY-87 00:00:00
 7902 | FORD | 7566 | 03-DEC-81 00:00:00
 7521 | WARD | 7698 | 22-FEB-81 00:00:00
 7844 | TURNER | 7698 | 08-SEP-81 00:00:00
 7499 | ALLEN | 7698 | 20-FEB-81 00:00:00
 7698 | BLAKE | 7839 | 01-MAY-81 00:00:00
 7654 | MARTIN | 7698 | 28-SEP-81 00:00:00
 7900 | JAMES | 7698 | 03-DEC-81 00:00:00
(14 rows)

UNION Clause

The UNION clause has the form:

select_statement UNION [ALL] select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause. (ORDER BY can be attached to a sub-expression if
it is enclosed in parentheses. Without parentheses, these clauses will be taken to apply to the result of the UNION , not to its right-hand input expression.)

The UNION operator computes the set union of the rows returned by the involved SELECT statements. A row is in the set union of two result sets if it
appears in at least one of the result sets. The two SELECT statements that represent the direct operands of the UNION must produce the same number
of columns, and corresponding columns must be of compatible data types.

The result of UNION does not contain any duplicate rows unless the ALL option is specified. ALL prevents elimination of duplicates.

Multiple UNION operators in the same SELECT statement are evaluated left to right, unless otherwise indicated by parentheses.

Currently, FOR UPDATE may not be specified either for a UNION result or for any input of a UNION .

INTERSECT Clause

The INTERSECT clause has the form:

select_statement INTERSECT select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The INTERSECT operator computes the set intersection of the rows returned by the involved SELECT statements. A row is in the intersection of two
result sets if it appears in both result sets.

The result of INTERSECT does not contain any duplicate rows.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1311

Multiple INTERSECT operators in the same SELECT statement are evaluated left to right, unless parentheses dictate otherwise. INTERSECT binds
more tightly than UNION . That is, A UNION B INTERSECT C will be read as A UNION (B INTERSECT C) .

MINUS Clause

The MINUS clause has this general form:

select_statement MINUS select_statement

select_statement is any SELECT statement without an ORDER BY or FOR UPDATE clause.

The MINUS operator computes the set of rows that are in the result of the left SELECT statement but not in the result of the right one.

The result of MINUS does not contain any duplicate rows.

Multiple MINUS operators in the same SELECT statement are evaluated left to right, unless parentheses dictate otherwise. MINUS binds at the same
level as UNION .

CONNECT BY Clause

The CONNECT BY clause determines the parent-child relationship of rows when performing a hierarchical query. It has the general form:

CONNECT BY { PRIOR parent_expr = child_expr |
 child_expr = PRIOR parent_expr }

parent_expr is evaluated on a candidate parent row. If parent_expr = child_expr results in TRUE for a row returned by the FROM clause,
then this row is considered a child of the parent.

The following optional clauses may be specified in conjunction with the CONNECT BY clause:

START WITH start_expression

The rows returned by the FROM clause on which start_expression evaluates to TRUE become the root nodes of the hierarchy.

ORDER SIBLINGS BY expression [ASC | DESC] [, ...]

Sibling rows of the hierarchy are ordered by expression in the result set.

NoteNote

Advanced Server does not support the use of AND (or other operators) in the CONNECT BY clause.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1312

ORDER BY Clause

The optional ORDER BY clause has the form:

ORDER BY expression [ASC | DESC] [, ...]

expression can be the name or ordinal number of an output column (SELECT list item), or it can be an arbitrary expression formed from input-column
values.

The ORDER BY clause causes the result rows to be sorted according to the specified expressions. If two rows are equal according to the leftmost
expression, they are compared according to the next expression and so on. If they are equal according to all specified expressions, they are returned in an
implementation-dependent order.

The ordinal number refers to the ordinal (left-to-right) position of the result column. This feature makes it possible to define an ordering on the basis of a
column that does not have a unique name. This is never absolutely necessary because it is always possible to assign a name to a result column using the
AS clause.

It is also possible to use arbitrary expressions in the ORDER BY clause, including columns that do not appear in the SELECT result list. Thus the
following statement is valid:

SELECT ename FROM emp ORDER BY empno;

A limitation of this feature is that an ORDER BY clause applying to the result of a UNION , INTERSECT , or MINUS clause may only specify an output
column name or number, not an expression.

If an ORDER BY expression is a simple name that matches both a result column name and an input column name, ORDER BY will interpret it as the
result column name. This is the opposite of the choice that GROUP BY will make in the same situation. This inconsistency is made to be compatible with
the SQL standard.

Optionally one may add the key word ASC (ascending) or DESC (descending) after any expression in the ORDER BY clause. If not specified, ASC is
assumed by default.

The null value sorts higher than any other value. In other words, with ascending sort order, null values sort at the end, and with descending sort order, null
values sort at the beginning.

Character-string data is sorted according to the locale-specific collation order that was established when the database cluster was initialized.

NoteNote

If SELECT DISTINCT is specified or if a SELECT statement includes the SELECT DISTINCT ...ORDER BY clause then all the
expressions in ORDER BY must be present in the select list of the SELECT DISTINCT query.

ExamplesExamples

The following two examples are identical ways of sorting the individual results according to the contents of the second column (dname):

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1313

SELECT * FROM dept ORDER BY dname;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

SELECT * FROM dept ORDER BY 2;

 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 40 | OPERATIONS | BOSTON
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
(4 rows)

The following example uses the SELECT DISTINCT ...ORDER BY clause to fetch the job and deptno from table emp :

CREATE TABLE EMP(EMPNO NUMBER(4) NOT NULL,
ENAME VARCHAR2(10),
JOB VARCHAR2(9),
DEPTNO NUMBER(2));

INSERT INTO EMP VALUES (7369, 'SMITH', 'CLERK', 20);
INSERT 0 1
INSERT INTO EMP VALUES (7499, 'ALLEN', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7521, 'WARD', 'SALESMAN', 30);
INSERT 0 1
INSERT INTO EMP VALUES (7566, 'JONES', 'MANAGER', 20);
INSERT 0 1

SELECT DISTINCT e.job, e.deptno FROM emp e ORDER BY e.job, e.deptno;
 job | deptno
----------+--------
 CLERK | 20
 MANAGER | 20
 SALESMAN | 30
(3 rows)

DISTINCT | UNIQUE Clause

If a SELECT statement specifies DISTINCT or UNIQUE , all duplicate rows are removed from the result set (one row is kept from each group of
duplicates). The DISTINCT or UNIQUE clause are synonymous when used with a SELECT statement. The ALL keyword specifies the opposite: all
rows are kept; that is the default.

Error messages resulting from the improper use of a SELECT statement that includes the DISTINCT or UNIQUE keywords will include both the
DISTINCT | UNIQUE keywords as shown below:

psql: ERROR: FOR UPDATE is not allowed with DISTINCT/UNIQUE clause

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1314

FOR UPDATE Clause

The FOR UPDATE clause takes the form:

FOR UPDATE [WAIT n|NOWAIT|SKIP LOCKED]

FOR UPDATE causes the rows retrieved by the SELECT statement to be locked as though for update. This prevents a row from being modified or
deleted by other transactions until the current transaction ends; any transaction that attempts to UPDATE , DELETE , or SELECT FOR UPDATE a
selected row will be blocked until the current transaction ends. If an UPDATE , DELETE , or SELECT FOR UPDATE from another transaction has
already locked a selected row or rows, SELECT FOR UPDATE will wait for the first transaction to complete, and will then lock and return the updated
row (or no row, if the row was deleted).

FOR UPDATE cannot be used in contexts where returned rows cannot be clearly identified with individual table rows (for example, with aggregation).

Use FOR UPDATE options to specify locking preferences:

Include the WAIT n keywords to specify the number of seconds (or fractional seconds) that the SELECT statement will wait for a row locked by
another session. Use a decimal form to specify fractional seconds; for example, WAIT 1.5 instructs the server to wait one and a half seconds.
Specify up to 4 digits to the right of the decimal.
Include the NOWAIT keyword to report an error immediately if a row cannot be locked by the current session.
Include SKIP LOCKED to instruct the server to lock rows if possible, and skip rows that are already locked by another session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1315

17.72 SET CONSTRAINTS

NameName

SET CONSTRAINTS -- set constraint checking modes for the current transaction.

SynopsisSynopsis

SET CONSTRAINTS { ALL | name [, ...] } { DEFERRED | IMMEDIATE }

DescriptionDescription

SET CONSTRAINTS sets the behavior of constraint checking within the current transaction. IMMEDIATE constraints are checked at the end of each
statement. DEFERRED constraints are not checked until transaction commit. Each constraint has its own IMMEDIATE or DEFERRED mode.

Upon creation, a constraint is given one of three characteristics: DEFERRABLE INITIALLY DEFERRED , DEFERRABLE INITIALLY IMMEDIATE ,
or NOT DEFERRABLE . The third class is always IMMEDIATE and is not affected by the SET CONSTRAINTS command. The first two classes start
every transaction in the indicated mode, but their behavior can be changed within a transaction by SET CONSTRAINTS .

SET CONSTRAINTS with a list of constraint names changes the mode of just those constraints (which must all be deferrable). If there are multiple
constraints matching any given name, all are affected. SET CONSTRAINTS ALL changes the mode of all deferrable constraints.

When SET CONSTRAINTS changes the mode of a constraint from DEFERRED to IMMEDIATE , the new mode takes effect retroactively: any
outstanding data modifications that would have been checked at the end of the transaction are instead checked during the execution of the SET
CONSTRAINTS command. If any such constraint is violated, the SET CONSTRAINTS fails (and does not change the constraint mode). Thus, SET
CONSTRAINTS can be used to force checking of constraints to occur at a specific point in a transaction.

Currently, only foreign key constraints are affected by this setting. Check and unique constraints are always effectively not deferrable.

NotesNotes

This command only alters the behavior of constraints within the current transaction. Thus, if you execute this command outside of a transaction block it will
not appear to have any effect.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1316

17.73 SET ROLE

NameName

SET ROLE -- set the current user identifier of the current session.

SynopsisSynopsis

SET ROLE { rolename | NONE }

DescriptionDescription

This command sets the current user identifier of the current SQL session context to be rolename . After SET ROLE , permissions checking for SQL
commands is carried out as though the named role is the one that had logged in originally.

The specified rolename must be a role that the current session user is a member of. If the session user is a superuser, any role can be selected.

NONE resets the current user identifier to be the current session user identifier. These forms may be executed by any user.

NotesNotes

You can use this command, to either add privileges or restrict one's privileges. If the session user role has the INHERITS attribute, then it automatically
has all the privileges of every role that it could SET ROLE to; in this case SET ROLE effectively drops all the privileges assigned directly to the session
user and to the other roles it is a member of, leaving only the privileges available to the named role. If the session user role has the NOINHERITS
attribute, SET ROLE drops the privileges assigned directly to the session user and instead acquires the privileges available to the named role. When a
superuser chooses to SET ROLE to a non-superuser role, she loses her superuser privileges.

ExamplesExamples

User mary takes on the identity of role admins :

SET ROLE admins;

User mary reverts back to her own identity:

SET ROLE NONE;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1317

17.74 SET TRANSACTION

NameName

SET TRANSACTION -- set the characteristics of the current transaction.

SynopsisSynopsis

SET TRANSACTION transaction_mode

where transaction_mode is one of:

ISOLATION LEVEL { SERIALIZABLE | READ COMMITTED }
READ WRITE | READ ONLY

DescriptionDescription

The SET TRANSACTION command sets the characteristics of the current transaction. It has no effect on any subsequent transactions. The available
transaction characteristics are the transaction isolation level and the transaction access mode (read/write or read-only). The isolation level of a transaction
determines what data the transaction can see when other transactions are running concurrently:

READ COMMITTED

A statement can only see rows committed before it began. This is the default.

SERIALIZABLE

All statements of the current transaction can only see rows committed before the first query or data-modification statement was executed in this
transaction.

The transaction isolation level cannot be changed after the first query or data-modification statement (SELECT , INSERT , DELETE , UPDATE , or
FETCH) of a transaction has been executed. The transaction access mode determines whether the transaction is read/write or read-only. Read/write is the

default.

When a transaction is read-only, the following SQL commands are disallowed: INSERT , UPDATE , and DELETE if the table they would write to is not a
temporary table; all CREATE , ALTER , and DROP commands; COMMENT , GRANT , REVOKE , TRUNCATE ; and EXECUTE if the command it would
execute is among those listed. This is a high-level notion of read-only that does not prevent all writes to disk.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1318

17.75 TRUNCATE

NameName

TRUNCATE -- empty a table.

SynopsisSynopsis

TRUNCATE TABLE <name> [DROP STORAGE]

DescriptionDescription

TRUNCATE quickly removes all rows from a table. It has the same effect as an unqualified DELETE but since it does not actually scan the table, it is
faster. This is most useful on large tables.

The DROP STORAGE clause is accepted for compatibility, but is ignored.

ParametersParameters

name

The name (optionally schema-qualified) of the table to be truncated.

NotesNotes

TRUNCATE cannot be used if there are foreign-key references to the table from other tables. Checking validity in such cases would require table scans,
and the whole point is not to do one.

TRUNCATE will not run any user-defined ON DELETE triggers that might exist for the table.

ExamplesExamples

The following command truncates a table named accounts :

TRUNCATE TABLE accounts;

See AlsoSee Also

DROP VIEW, DELETE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1319

17.76 UPDATE

NameName

UPDATE -- update rows of a table.

SynopsisSynopsis

UPDATE [<optimizer_hint>] <table>[@<dblink>]
 SET <column> = { <expression> | DEFAULT } [, ...]
 [WHERE <condition>]
 [RETURNING <return_expression> [, ...]
 { INTO { <record> | <variable> [, ...] }
 | BULK COLLECT INTO <collection> [, ...] }]

DescriptionDescription

UPDATE changes the values of the specified columns in all rows that satisfy the condition. Only the columns to be modified need be mentioned in the SET
clause; columns not explicitly modified retain their previous values.

The RETURNING INTO { record | variable [, ...] } clause may only be specified within an SPL program. In addition the result set of the
UPDATE command must not return more than one row, otherwise an exception is thrown. If the result set is empty, then the contents of the target record

or variables are set to null.

The RETURNING BULK COLLECT INTO collection [, ...] clause may only be specified if the UPDATE command is used within an SPL
program. If more than one collection is specified as the target of the BULK COLLECT INTO clause, then each collection must consist of a
single, scalar field – i.e., collection must not be a record. The result set of the UPDATE command may contain none, one, or more rows.
return_expression evaluated for each row of the result set, becomes an element in collection starting with the first element. Any existing rows

in collection are deleted. If the result set is empty, then collection will be empty.

You must have the UPDATE privilege on the table to update it, as well as the SELECT privilege to any table whose values are read in expression or
condition .

ParametersParameters

optimizer_hint

Comment-embedded hints to the optimizer for selection of an execution plan.

table

The name (optionally schema-qualified) of the table to update.

dblink

Database link name identifying a remote database. See the CREATE DATABASE LINK command for information on database links.

column

The name of a column in table.

expression

An expression to assign to the column. The expression may use the old values of this and other columns in the table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1320

DEFAULT

Set the column to its default value (which will be null if no specific default expression has been assigned to it).

condition

An expression that returns a value of type BOOLEAN . Only rows for which this expression returns true will be updated.

return_expression

An expression that may include one or more columns from table. If a column name from table is specified in return_expression , the value
substituted for the column when return_expression is evaluated is determined as follows:

If the column specified in return_expression is assigned a value in the UPDATE command, then the assigned value is used in the evaluation
of return_expression .

If the column specified in return_expression is not assigned a value in the UPDATE command, then the column’s current value in the
affected row is used in the evaluation of return_expression .

record

A record whose field the evaluated return_expression is to be assigned. The first return_expression is assigned to the first field in record ,
the second return_expression is assigned to the second field in record , etc. The number of fields in record must exactly match the number of
expressions and the fields must be type-compatible with their assigned expressions.

variable

A variable to which the evaluated return_expression is to be assigned. If more than one return_expression and variable are specified,
the first return_expression is assigned to the first variable , the second return_expression is assigned to the second variable , etc.
The number of variables specified following the INTO keyword must exactly match the number of expressions following the RETURNING keyword and
the variables must be type-compatible with their assigned expressions.

collection

A collection in which an element is created from the evaluated return_expression . There can be either a single collection which may be a collection
of a single field or a collection of a record type, or there may be more than one collection in which case each collection must consist of a single field. The
number of return expressions must match in number and order the number of fields in all specified collections. Each corresponding
return_expression and collection field must be type-compatible.

ExamplesExamples

Change the location to AUSTIN for department 20 in the dept table:

UPDATE dept SET loc = 'AUSTIN' WHERE deptno = 20;

For all employees with job = SALESMAN in the emp table, update the salary by 10% and increase the commission by 500 .

UPDATE emp SET sal = sal * 1.1, comm = comm + 500 WHERE job = 'SALESMAN';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1321

18 Database Compatibility Table Partitioning Guide

In a partitioned table, one logically large table is broken into smaller physical pieces. Partitioning can provide several benefits:

Query performance can be improved dramatically in certain situations, particularly when most of the heavily accessed rows of the table are in a
single partition or a small number of partitions. Partitioning allows you to omit the partition column from the front of an index, reducing index size
and making it more likely that the heavily used parts of the index fits in memory.
When a query or update accesses a large percentage of a single partition, performance may improve because the server will perform a sequential
scan of the partition instead of using an index and random access reads scattered across the whole table.
A bulk load (or unload) can be implemented by adding or removing partitions, if you plan that requirement into the partitioning design. ALTER
TABLE is far faster than a bulk operation. It also entirely avoids the VACUUM overhead caused by a bulk DELETE .
Seldom-used data can be migrated to less-expensive (or slower) storage media.

Table partitioning is worthwhile only when a table would otherwise be very large. The exact point at which a table will benefit from partitioning depends on
the application; a good rule of thumb is that the size of the table should exceed the physical memory of the database server.

This document discusses the aspects of table partitioning compatible with Oracle databases that are supported by Advanced Server.

NoteNote

This document and particularly the partitioning presented in this chapter do not describe the declarative partitioning feature, which has been
introduced with PostgreSQL version 10. Note that PostgreSQL declarative partitioning is supported in Advanced Server 10 in addition to the table
partitioning compatible with Oracle databases as described in this chapter. For information about declarative partitioning, see the PostgreSQL
core documentation available at: https://www.postgresql.org/docs/current/static/ddl-partitioning.html

The PostgreSQL INSERT... ON CONFLICT DO NOTHING/UPDATE clause (commonly known as UPSERT) is not supported on Oracle-styled
partitioned tables. If you include the ON CONFLICT DO NOTHING/UPDATE clause when invoking the INSERT command to add data to a partitioned
table, the server will return an error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1322

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

18.1 Selecting a Partition Type

When you create a partitioned table, you specify LIST, RANGE , or HASH partitioning rules. The partitioning rules provide a set of constraints that
define the data that is stored in each partition. As new rows are added to the partitioned table, the server uses the partitioning rules to decide which
partition should contain each row.

Advanced Server can also use the partitioning rules to enforce partition pruning, improving performance when responding to user queries. When selecting
a partitioning type and partitioning keys for a table, you should take into consideration how the data that is stored within a table will be queried, and
include often-queried columns in the partitioning rules.

NoteNote

Advanced Server does not support the creation of partitioned tables when using default_with_rowids set to ON .

List PartitioningList Partitioning

When you create a list-partitioned table, you specify a single partitioning key column. When adding a row to the table, the server compares the key values
specified in the partitioning rule to the corresponding column within the row. If the column value matches a value in the partitioning rule, the row is stored
in the partition named in the rule.

NoteNote

The List Partitioning does not support multi-column list partitioning.

Range PartitioningRange Partitioning

When you create a range-partitioned table, you specify one or more partitioning key columns. When you add a new row to the table, the server compares the
value of the partitioning key (or keys) to the corresponding column (or columns) in a table entry. If the column values satisfy the conditions specified in the
partitioning rule, the row is stored in the partition named in the rule.

Hash PartitioningHash Partitioning

When you create a hash-partitioned table, you specify one or more partitioning key columns. Data is divided into (approx.) equal-sized partitions amongst
the specified partitions. When you add a row to a hash-partitioned table, the server computes a hash value for the data in the specified column (or columns),
and stores the row in a partition according to the hash value.

NoteNote

When upgrading Advanced Server, you must rebuild each hash-partitioned table on the upgraded version server.

SubpartitioningSubpartitioning

Subpartitioning breaks a partitioned table into smaller subsets. All subsets must be stored in the same database server cluster. A table is typically
subpartitioned by a different set of columns, and may be a different subpartitioning type than the parent partition. If one partition is subpartitioned, then
each partition will have at least one subpartition.

If a table is subpartitioned, no data will be stored in any of the partition tables; the data will be stored instead in the corresponding subpartitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1323

18.1.1 Interval Range Partitioning

Interval Range Partitioning is an extension to range partitioning that allows a database to automatically create a new partition when the newly inserted
data exceeds the range of an existing partitioning. To implement interval range partitioning, include the INTERVAL clause and specify the range size for a
new partition.

The high value of a range partition (also known as the transition point) is determined by the range partitioning key value. The database creates new
partitions for inserted data with values that are beyond that high value.

If an interval is set to 1 month and if data is inserted for two months after the current transition point, only the partition for that month is created and not
the intervening partition. For example, you can create an interval range partitioned table with a monthly interval and a current transition point of February
15, 2019. Now, if you try to insert data for May 10, 2019, then the required partition for April 15 to May 15, 2019 is created and data will be inserted into
that partition. The partition for February 15, 2019 to March 15, 2019 and March 15, 2019 to April 15, 2019 is skipped.

For information about Interval Range Partitioning syntax, see CREATE TABLE...PARTITION BY.

Restrictions on Interval Range PartitioningRestrictions on Interval Range Partitioning

The following restrictions apply to the INTERVAL clause:

Interval range partitioning is restricted to a single partition key; that key must be a numerical or date range.
You must define at least one range partition.
The INTERVAL clause is not supported for index-organized tables.
A domain index cannot be created on an interval range partitioned table.
In composite partitioning, the interval range partitioning can be useful as a primary partitioning mechanism but not supported at the subpartition
level.
DEFAULT and MAXVALUE cannot be defined for an interval range partitioned table.
NULL, Not-a-Number , and Infinity values cannot be specified in the partitioning key column.

Interval range partitioning expression must yield constant value and must not be a negative value.
The partitions for an interval range partitioned table are created in increasing order only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1324

18.1.2 Automatic List Partitioning

Automatic list partitioning is an extension to LIST partitioning that allows a database to automatically create a partition for any new distinct value of the
list partitioning key. A new partition is created when data is inserted into the LIST partitioned table and the inserted value does not match any of the
existing table partition. Use the AUTOMATIC clause to implement automatic list partitioning.

For example, consider a table named sales with a sales_state column that contains the existing partition values CALIFORNIA and FLORIDA .
Each of the sales_state values will increase with a rise in the state-wise sales. A sale in a new state (for example, INDIANA and OHIO) will require
the creation of new partitions. If you have implemented automatic list partitioning, the new partitions INDIANA and OHIO are automatically created
and data is entered into the sales table.

For information about automatic list partitioning syntax, see CREATE TABLE...PARTITION BY.

Restrictions on Automatic List PartitioningRestrictions on Automatic List Partitioning

The following restrictions apply to the AUTOMATIC clause:

A table that enables automatic list partitioning cannot have a DEFAULT partition.
Automatic list partitioning does not support multi-column list partitioning.
In composite partitioning, the automatic list partitioning can be useful as a primary partitioning mechanism but is not supported at the subpartition
level.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1325

18.2 Using Partition Pruning

Advanced Server's query planner uses partition pruning to compute an efficient plan to locate a row (or rows) that matches the conditions specified in the
WHERE clause of a SELECT statement. To successfully prune partitions from an execution plan, the WHERE clause must constrain the information that

is compared to the partitioning key column specified when creating the partitioned table. When querying a:

list-partitioned table, partition pruning is effective when the WHERE clause compares a literal value to the partitioning key using operators like
equal (=) or AND.
range-partitioned table, partition pruning is effective when the WHERE clause compares a literal value to a partitioning key using operators such as
equal (=), less than (<), or greater than (>).
hash-partitioned table, partition pruning is effective when the WHERE clause compares a literal value to the partitioning key using an operator such
as equal (=).

The partition pruning mechanism uses two optimization techniques:

Fast Pruning
Constraint exclusion

Partition pruning techniques limit the search for data to only those partitions in which the values for which you are searching might reside. Both pruning
techniques remove partitions from a query's execution plan, increasing performance.

The difference between the fast pruning and constraint exclusion is that fast pruning understands the relationship between the partitions in an Oracle-
partitioned table, while constraint exclusion does not. For example, when a query searches for a specific value within a list-partitioned table, fast pruning
can reason that only a specific partition may hold that value, while constraint exclusion must examine the constraints defined for each partition. Fast
pruning occurs early in the planning process to reduce the number of partitions that the planner must consider, while constraint exclusion occurs late in
the planning process.

Using Constraint ExclusionUsing Constraint Exclusion

The constraint_exclusion parameter controls constraint exclusion. The constraint_exclusion parameter may have a value of on, off,
or partition . To enable constraint exclusion, the parameter must be set to either partition or on . By default, the parameter is set to
partition.

For more information about constraint exclusion, see:

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

When constraint exclusion is enabled, the server examines the constraints defined for each partition to determine if that partition can satisfy a query.

When you execute a SELECT statement that does not contain a WHERE clause, the query planner must recommend an execution plan that searches the
entire table. When you execute a SELECT statement that does contain a WHERE clause, the query planner determines in which partition that row would
be stored, and sends query fragments to that partition, pruning the partitions that could not contain that row from the execution plan. If you are not using
partitioned tables, disabling constraint exclusion may improve performance.

Fast PruningFast Pruning

Like constraint exclusion, fast pruning can only optimize queries that include a WHERE (or join) clause, and only when the qualifiers in the WHERE clause
match a certain form. In both cases, the query planner will avoid searching for data within partitions that cannot possibly hold the data required by the
query.

Fast pruning is controlled by a boolean configuration parameter named edb_enable_pruning. If edb_enable_pruning is ON , Advanced Server
will fast prune certain queries. If edb_enable_pruning is OFF , the server will disable fast pruning.

NoteNote

Fast pruning cannot optimize queries against subpartitioned tables or optimize queries against range-partitioned tables that are partitioned on
more than one column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1326

https://www.postgresql.org/docs/current/static/ddl-partitioning.html

For LIST-partitioned tables, Advanced Server can fast prune queries that contain a WHERE clause that constrains a partitioning column to a literal value.
For example, given a LIST-partitioned table such as:

CREATE TABLE sales_hist(..., country text, ...)
PARTITION BY LIST(country)
(
 PARTITION americas VALUES('US', 'CA', 'MX'),
 PARTITION europe VALUES('BE', 'NL', 'FR'),
 PARTITION asia VALUES('JP', 'PK', 'CN'),
 PARTITION others VALUES(DEFAULT)
)

Fast pruning can reason about WHERE clauses such as:

WHERE country = 'US'

WHERE country IS NULL;

Given the first WHERE clause, fast pruning would eliminate partitions europe, asia, and others because those partitions cannot hold rows that
satisfy the qualifier: WHERE country = 'US'.

Given the second WHERE clause, fast pruning would eliminate partitions americas, europe , and asia because those partitions cannot hold rows
where country IS NULL.

The operator specified in the WHERE clause must be an equal sign (=) or the equality operator appropriate for the data type of the partitioning column.

For range-partitioned tables, Advanced Server can fast prune queries that contain a WHERE clause that constrains a partitioning column to a literal value,
but the operator may be any of the following:

>

>=

=

<=

<

Fast pruning will also reason about more complex expressions involving AND and BETWEEN operators, such as:

WHERE size > 100 AND size <= 200
WHERE size BETWEEN 100 AND 200

Fast pruning cannot prune based on expressions involving OR or IN. For example, when querying a RANGE-partitioned table, such as:

CREATE TABLE boxes(id int, size int, color text)
 PARTITION BY RANGE(size)
(
 PARTITION small VALUES LESS THAN(100),
 PARTITION medium VALUES LESS THAN(200),
 PARTITION large VALUES LESS THAN(300)
)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1327

Fast pruning can reason about WHERE clauses such as:

WHERE size > 100 -- scan partitions 'medium' and 'large'

WHERE size >= 100 -- scan partitions 'medium' and 'large'

WHERE size = 100 -- scan partition 'medium'

WHERE size <= 100 -- scan partitions 'small' and 'medium'

WHERE size < 100 -- scan partition 'small'

WHERE size > 100 AND size < 199 -- scan partition 'medium'

WHERE size BETWEEN 100 AND 199 -- scan partition 'medium'

WHERE color = 'red' AND size = 100 -- scan 'medium'

WHERE color = 'red' AND (size > 100 AND size < 199) -- scan 'medium'

In each case, fast pruning requires that the qualifier must refer to a partitioning column and literal value (or IS NULL/IS NOT NULL).

NoteNote

Fast pruning can also optimize DELETE and UPDATE statements containing WHERE clauses of the forms described above.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1328

18.2.1 Example - Partition Pruning

The EXPLAIN statement displays the execution plan of a statement. You can use the EXPLAIN statement to confirm that Advanced Server is pruning
partitions from the execution plan of a query.

To demonstrate the efficiency of partition pruning, first create a simple table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Then, perform a constrained query that includes the EXPLAIN statement:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';

The resulting query plan shows that the server will scan only the sales_asia table - the table in which a row with a country value of INDIA would
be stored:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'INDIA';
 QUERY PLAN

 Append
 -> Seq Scan on sales_asia
 Filter: ((country)::text = 'INDIA'::text)
(3 rows)

If you perform a query that searches for a row that matches a value not included in the partitioning key:

EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';

The resulting query plan shows that the server must look in all of the partitions to locate the rows that satisfy the query:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE dept_no = '30';
 QUERY PLAN

 Append
 -> Seq Scan on sales_americas
 Filter: (dept_no = '30'::numeric)
 -> Seq Scan on sales_europe
 Filter: (dept_no = '30'::numeric)
 -> Seq Scan on sales_asia
 Filter: (dept_no = '30'::numeric)
(7 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1329

Constraint exclusion also applies when querying subpartitioned tables:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2015')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

When you query the table, the query planner prunes any partitions or subpartitions from the search path that cannot possibly contain the desired result set:

edb=# EXPLAIN (COSTS OFF) SELECT * FROM sales WHERE country = 'US' AND date = 'Dec 12, 2012';
 QUERY PLAN

 Append
 -> Seq Scan on sales_americas_2012
 Filter: (((country)::text = 'US'::text) AND (date = '12-DEC-12
 00:00:00'::timestamp without time zone))
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1330

18.3 Partitioning Commands Compatible with Oracle Databases

The following sections provide information about using the table partitioning syntax compatible with Oracle databases supported by Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1331

18.3.1 CREATE TABLE...PARTITION BY

Use the PARTITION BY clause of the CREATE TABLE command to create a partitioned table with data distributed amongst one or more partitions
(and subpartitions). The command syntax comes in the following forms:

List Partitioning SyntaxList Partitioning Syntax

Use the first form to create a list-partitioned table:

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY LIST(<column>) [AUTOMATIC]
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)]
 (<list_partition_definition>[, <list_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where list_partition_definition is:

 PARTITION [<partition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Range Partitioning SyntaxRange Partitioning Syntax

Use the second form to create a range-partitioned table:

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY RANGE(<column>[, <column>]...)
 [INTERVAL (<constant> | <expression>)]
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)]
 (<range_partition_definition>[, <range_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where range_partition_definition is:

 PARTITION [<partition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Hash Partitioning SyntaxHash Partitioning Syntax

Use the third form to create a hash-partitioned table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1332

CREATE TABLE [schema.]<table_name>
 <table_definition>
 PARTITION BY HASH(<column>[, <column>]...)
 [SUBPARTITION BY {RANGE|LIST|HASH} (<column>[, <column>]...)]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]]
 [PARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)] |
 (<hash_partition_definition>[, <hash_partition_definition>]...)
 [ENABLE ROW MOVEMENT];

Where hash_partition_definition is:

 PARTITION [<partition_name>]
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Subpartitioning SyntaxSubpartitioning Syntax

subpartition may be one of the following:

{<list_subpartition> | <range_subpartition> | <hash_subpartition>}

where list_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

where range_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

where hash_subpartition is:

 SUBPARTITION [<subpartition_name>]
 [TABLESPACE <tablespace_name>] |
 SUBPARTITIONS <num> [STORE IN (<tablespace_name> [, <tablespace_name>]...)]

DescriptionDescription

The CREATE TABLE… PARTITION BY command creates a table with one or more partitions; each partition may have one or more subpartitions. There
is no upper limit to the number of defined partitions, but if you include the PARTITION BY clause, you must specify at least one partitioning rule. The
resulting table will be owned by the user that creates it.

Use the PARTITION BY LIST clause to divide a table into partitions based on the values entered in a specified column. Each partitioning rule must
specify at least one literal value, but there is no upper limit placed on the number of values you may specify. Include a rule that specifies a matching value
of DEFAULT to direct any un-qualified rows to the given partition; for more information about using the DEFAULT keyword, see Handling Stray Values in
a LIST or RANGE Partitioned Table.

Use the AUTOMATIC clause to specify the table should use automatic list partitioning. By specifying the AUTOMATIC clause, the database automatically
creates partitions when new data is inserted into a table that does not correspond to any value declared for an existing partition.

For more information about AUTOMATIC LIST PARTITIONING , see Automatic List Partitioning.

Use the PARTITION BY RANGE clause to specify boundary rules by which to create partitions. Each partitioning rule must contain at least one column
of a data type that has two operators (i.e., a greater-than or equal to operator, and a less-than operator). Range boundaries are evaluated against a LESS
THAN clause and are non-inclusive; a date boundary of January 1, 2013 will include only those date values that fall on or before December 31, 2012.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1333

Range partition rules must be specified in ascending order. INSERT commands that store rows with values that exceed the top boundary of a range-
partitioned table will fail unless the partitioning rules include a boundary rule that specifies a value of MAXVALUE . If you do not include a MAXVALUE
partitioning rule, any row that exceeds the maximum limit specified by the boundary rules will result in an error.

For more information about using the MAXVALUE keyword, see Handling Stray Values in a LIST or RANGE Partitioned Table.

Use the INTERVAL clause to specify an interval range partitioned table. By specifying an INTERVAL clause, the range partitioning is extended by the
database automatically to create partitions of a specified interval when new data is inserted into a table that exceeds an existing range partition.

For more information about INTERVAL RANGE PARTITION , see Interval Range Partitioning.

Use the PARTITION BY HASH clause to create a hash-partitioned table. In a HASH partitioned table, data is divided amongst equal-sized partitions
based on the hash value of the column specified in the partitioning syntax. When specifying a HASH partition, choose a column (or combination of
columns) that is as close to unique as possible to help ensure that data is evenly distributed amongst the partitions. When selecting a partitioning column
(or combination of columns), select a column (or columns) that you frequently search for exact matches for best performance.

Use the STORE IN clause to specify the tablespace list across which the autogenerated partitions or subpartitions will be stored.

NoteNote

If you are upgrading Advanced Server, you must rebuild the hash-partitioned table on the upgraded version server.

Use the TABLESPACE keyword to specify the name of a tablespace on which a partition or subpartition will reside; if you do not specify a tablespace, the
partition or subpartition will reside in the default tablespace.

If a table definition includes the SUBPARTITION BY clause, each partition within that table will have at least one subpartition. Each subpartition may be
explicitly defined or system-defined.

If the subpartition is system-defined, the server-generated subpartition will reside in the default tablespace, and the name of the subpartition will be
assigned by the server. The server will create:

A DEFAULT subpartition if the SUBPARTITION BY clause specifies LIST .
A MAXVALUE subpartition if the SUBPARTITION BY clause specifies RANGE .

The server will generate a subpartition name that is a combination of the partition table name and a unique identifier. You can query the
ALL_TAB_SUBPARTITIONS table to review a complete list of subpartition names.

Use the ENABLE ROW MOVEMENT with a list, range, or hash partition tables to support the migration of tables with similar syntax from oracle databases,
however it doesnot enable the actual row movement. Also, this syntax is not supported with ALTER TABLE command.

ParametersParameters

table_name

The name (optionally schema-qualified) of the table to be created.

table_definition

The column names, data types, and constraint information as described in the PostgreSQL core documentation for the CREATE TABLE statement,
available at:

https://www.postgresql.org/docs/current/static/sql-createtable.html

partition_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1334

https://www.postgresql.org/docs/current/static/sql-createtable.html

The name of the partition to be created. Partition names must be unique amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

num

The PARTITIONS num clause can be used to specify the number of HASH partitions to be created. Alternatively, you can use the partition definition to
specify individual partitions and their tablespaces.

NoteNote: You can either use PARTITIONS or PARTITION DEFINITION when creating a table.

The SUBPARTITIONS num clause is only supported for HASH partitions, and can be used to specify the number of hash subpartitions to be created.
Alternatively, you can use the subpartition definition to specify individual subpartitions and their tablespaces. If no SUBPARTITIONS or
SUBPARTITION DEFINITION is specified, then the partition creates a subpartition based on the SUBPARTITION TEMPLATE .

column

The name of a column on which the partitioning rules are based. Each row will be stored in a partition that corresponds to the value of the specified
column(s).

constant | expression

The constant and expression specifies a NUMERIC, DATE or TIME value.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal values) by which table entries will be grouped into partitions. Each
partitioning rule must specify at least one value, but there is no limit placed on the number of values specified within a rule. value may be NULL,
DEFAULT (if specifying a LIST partition), or MAXVALUE (if specifying a RANGE partition).

When specifying rules for a list-partitioned table, include the DEFAULT keyword in the last partition rule to direct any un-matched rows to the given
partition. If you do not include a rule that includes a value of DEFAULT , any INSERT statement that attempts to add a row that does not match the
specified rules of at least one partition will fail, and return an error.

When specifying rules for a list-partitioned table, include the MAXVALUE keyword in the last partition rule to direct any un-categorized rows to the given
partition. If you do not include a MAXVALUE partition, any INSERT statement that attempts to add a row where the partitioning key is greater than the
highest value specified will fail, and return an error.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1335

18.3.1.1 Example - PARTITION BY LIST

The following example creates a partitioned table (sales) using the PARTITION BY LIST clause. The sales table stores information in three
partitions (europe, asia , and americas).

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The resulting table is partitioned by the value specified in the country column.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

Rows with a value of FRANCE or ITALY in the country column are stored in the europe partition.
Rows with a value of INDIA or PAKISTAN in the country column are stored in the asia partition.
Rows with a value of US or CANADA in the country column are stored in the americas partition.

The server would evaluate the following statement against the partitioning rules, and store the row in the europe partition.

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1336

18.3.1.2 Example - AUTOMATIC LIST PARTITION

The following example shows a (sales) table that uses an AUTOMATIC clause to create an automatic list partitioned table on the sales_state
column. The database creates a new partition and adds data to a table.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 sales_state varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(sales_state) AUTOMATIC
(
 PARTITION P_CAL VALUES('CALIFORNIA'),
 PARTITION P_FLO VALUES('FLORIDA')
);

Query the ALL_TAB_PARTITIONS view to see an existing partition that is successfully created.

edb=# SELECT table_name, partition_name, high_value from ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+--------------
 SALES | P_CAL | 'CALIFORNIA'
 SALES | P_FLO | 'FLORIDA'
(2 rows)

Now, insert data into a sales table that cannot fit into an existing partition. For the regular list partitioned table, you will encounter an error but
automatic list partitioning creates and inserts the data into a new partition.

edb=# INSERT INTO sales VALUES (1, 'IND', 'INDIANA');
INSERT 0 1
edb=# INSERT INTO sales VALUES (2, 'OHI', 'OHIO');
INSERT 0 1

Then, query the ALL_TAB_PARTITIONS view again after the insert. The partition is automatically created and data is inserted to hold a new value. A
system-generated name of the partition is created that varies for each session.

edb=# SELECT table_name, partition_name, high_value from ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+--------------
 SALES | P_CAL | 'CALIFORNIA'
 SALES | P_FLO | 'FLORIDA'
 SALES | SYS106900103 | 'INDIANA'
 SALES | SYS106900104 | 'OHIO'
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1337

18.3.1.3 Example - PARTITION BY RANGE

The following example creates a partitioned table (sales) using the PARTITION BY RANGE clause. The sales table stores information in four
partitions (q1_2012, q2_2012, q3_2012 and q4_2012) .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The resulting table is partitioned by the value specified in the date column.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
(4 rows)

Any row with a value in the date column before April 1, 2012 is stored in a partition named q1_2012 .
Any row with a value in the date column before July 1, 2012 is stored in a partition named q2_2012 .
Any row with a value in the date column before October 1, 2012 is stored in a partition named q3_2012 .
Any row with a value in the date column before January 1, 2013 is stored in a partition named q4_2012 .

The server would evaluate the following statement against the partitioning rules and store the row in the q3_2012 partition.

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1338

18.3.1.4 Example - INTERVAL RANGE PARTITION

The following example shows a (sales) table that is partitioned by interval on the sold_month column. The range partition is created to establish a
transition point and new partitions are created beyond that transition point. The database creates a new interval range partition and adds data into a table.

CREATE TABLE sales
(
 prod_id int,
 prod_quantity int,
 sold_month date
)
PARTITION BY RANGE(sold_month)
INTERVAL(NUMTOYMINTERVAL(1, 'MONTH'))
(
 PARTITION p1
 VALUES LESS THAN('15-JAN-2019'),
 PARTITION p2
 VALUES LESS THAN('15-FEB-2019')
);

First, query the ALL_TAB_PARTITIONS view before an interval range partition is created by the database.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
(2 rows)

Now, insert data into a sales table that exceeds the high value of a range partition.

edb=# INSERT INTO sales VALUES (1,200,'10-MAY-2019');
INSERT 0 1

Then, query the ALL_TAB_PARTITIONS view again after the insert. The data is successfully inserted and a system generated name of the interval range
partition is created that varies for each session.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
 SYS916340103 | '15-MAY-19 00:00:00'
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1339

18.3.1.5 Example - PARTITION BY HASH

The following example creates a partitioned table (sales) using the PARTITION BY HASH clause. The sales table stores information in three
partitions (p1, p2 , and p3).

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no)
(
 PARTITION p1,
 PARTITION p2,
 PARTITION p3
);

The table will return an empty string for the hash partition value specified in the part_no column.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+------------
 P1 |
 P2 |
 P3 |
(3 rows)

Use the following command to view the hash value of the part_no column.

edb=# \d+ sales
 Partitioned table "public.sales"
 Column | Type |Collation|Nullable|Default|Storage |
---------+----------------------------+----------+--------+------+---------+-
 dept_no | numeric | | | | main |
 part_no | character varying | | | | extended|
 country | character varying(20) | | | | extended|
 date | timestamp without time zone| | | | plain |
 amount | numeric | | | | main |
Partition key: HASH (part_no)
Partitions: sales_p1 FOR VALUES WITH (modulus 3, remainder 0),
 sales_p2 FOR VALUES WITH (modulus 3, remainder 1),
 sales_p3 FOR VALUES WITH (modulus 3, remainder 2)

The table is partitioned by the hash value of the values specified in the part_no column.

edb=# SELECT partition_name, partition_position from ALL_TAB_PARTITIONS;
 partition_name | partition_position
----------------+--------------------
 P1 | 1
 P2 | 2
 P3 | 3
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1340

The server will evaluate the hash value of the part_no column and distribute the rows into approximately equal partitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1341

18.3.1.6 Example - PARTITION BY HASH...PARTITIONS num...

The following example creates a hash-partitioned table (sales) using the PARTITION BY HASH clause. The partitioning column is part_no ; the
number of partitions to be created is specified.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) PARTITIONS 8;

The eight partitions are created and assigned a system-generated name. The partitions are stored in the default tablespace of the table.

edb=# SELECT table_name, partition_name FROM ALL_TAB_PARTITIONS WHERE
table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name
------------+----------------
 SALES | SYS0101
 SALES | SYS0102
 SALES | SYS0103
 SALES | SYS0104
 SALES | SYS0105
 SALES | SYS0106
 SALES | SYS0107
 SALES | SYS0108
(8 rows)

Example - PARTITION BY HASH...PARTITIONS num...STORE IN

The following example creates a hash-partitioned table named (sales) . The number of partitions to be created and the tablespaces in which the
partition will reside are specified.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) PARTITIONS 5 STORE IN (ts1, ts2, ts3);

The STORE IN clause evenly distributes the partitions across specified tablespaces (ts1, ts2, ts3) .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1342

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 | TS1
 SALES | SYS0102 | TS2
 SALES | SYS0103 | TS3
 SALES | SYS0104 | TS1
 SALES | SYS0105 | TS2
(5 rows)

Example - HASH/RANGE PARTITIONS num...

The HASH partition clause allows you to define a partitioning strategy. You can extend the PARTITION BY HASH clause to include SUBPARTITION
BY either [RANGE | LIST | HASH] to create subpartitions in an HASH partitioned table.

The following example creates a table (sales) that is hash-partitioned by part_no and subpartitioned using range by dept_no . The number of
partitions is specified when creating a table (sales) .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY RANGE (dept_no) PARTITIONS 5;

The five partitions are created with default subpartitions and assigned system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | SYS0101 | SYS0102
 SALES | SYS0103 | SYS0104
 SALES | SYS0105 | SYS0106
 SALES | SYS0107 | SYS0108
 SALES | SYS0109 | SYS0110
(5 rows)

Example - LIST/HASH SUBPARTITIONS num...

The following example shows a table (sales) that is list-partitioned by country and subpartitioned using hash partitioning by the dept_no
column. The number of subpartitions is specified when creating the table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1343

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
(
 PARTITION p1 VALUES('FRANCE', 'ITALY'),
 PARTITION p2 VALUES('INDIA', 'PAKISTAN'),
 PARTITION p3 VALUES('US', 'CANADA')
);

The three partitions p1, p2 and p3 each contain three subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | SYS0101
 SALES | P1 | SYS0102
 SALES | P1 | SYS0103
 SALES | P2 | SYS0104
 SALES | P2 | SYS0105
 SALES | P2 | SYS0106
 SALES | P3 | SYS0107
 SALES | P3 | SYS0108
 SALES | P3 | SYS0109
(9 rows)

Example - HASH/HASH PARTITIONS num... SUBPARTITIONS num...

The following example creates the (sales) table, hash-partitioned by part_no and hash-subpartitioned by dept_no .

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
PARTITIONS 2;

The two partitions are created and each partition includes three subpartitions with the system-generated name assigned to them.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1344

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | SYS0101 | SYS0102
 SALES | SYS0101 | SYS0103
 SALES | SYS0101 | SYS0104
 SALES | SYS0105 | SYS0106
 SALES | SYS0105 | SYS0107
 SALES | SYS0105 | SYS0108
(6 rows)

Example - HASH/HASH SUBPARTITIONS num... STORE IN

The following example creates a hash-partitioned table (sales) . The number of partitions and subpartitions to be created are specified along with the
tablespaces in which the subpartitions will reside when creating a hash partitioned table.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
PARTITIONS 2 STORE IN (ts1, ts2);

The two partitions are created and assigned a system-generated name. The partitions are stored in the default tablespace and subpartitions are stored in
tablespaces (ts1) and (ts2) .

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 |
 SALES | SYS0105 |
(2 rows)

The STORE IN clause assigns the hash subpartitions to the tablespaces and stores them in two named tablespaces (ts1, ts2) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | SYS0101 | SYS0102 | TS1
 SALES | SYS0101 | SYS0103 | TS2
 SALES | SYS0101 | SYS0104 | TS1
 SALES | SYS0105 | SYS0106 | TS1
 SALES | SYS0105 | SYS0107 | TS2
 SALES | SYS0105 | SYS0108 | TS1
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1345

Example - HASH/HASH PARTITIONS num ...STORE IN SUBPARTITIONS num... STORE IN

The following example creates a hash-partitioned table (sales) . The number of partitions and subpartitions to be created are specified, along with the
tablespaces in which the partitions and subpartitions will reside.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY HASH (part_no) SUBPARTITION BY HASH (dept_no) SUBPARTITIONS 3
STORE IN (ts3) PARTITIONS 2 STORE IN (ts1, ts2);

The two partitions are created with a system-generated name and stored in the default tablespace.

edb=# SELECT table_name, partition_name, tablespace_name FROM
ALL_TAB_PARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | tablespace_name
------------+----------------+-----------------
 SALES | SYS0101 |
 SALES | SYS0105 |
(2 rows)

Each partition includes three subpartitions; the STORE IN clause stores the subpartitions in tablespaces (ts1) and (ts2) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | SYS0101 | SYS0102 | TS1
 SALES | SYS0101 | SYS0103 | TS2
 SALES | SYS0101 | SYS0104 | TS1
 SALES | SYS0105 | SYS0106 | TS1
 SALES | SYS0105 | SYS0107 | TS2
 SALES | SYS0105 | SYS0108 | TS1
(6 rows)

NoteNote

If the STORE IN clause is specified for partitions and subpartitions, then the subpartitions are stored in the tablespaces defined in the
PARTITIONS...STORE IN clause and the SUBPARTITIONS...STORE IN clause is ignored.

Example - RANGE/HASH SUBPARTITIONS num...

The following example creates a range-partitioned table (sales) that is first partitioned by the transaction date; two range partitions are created and
then hash-subpartitioned using the value of the country column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1346

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION p1 VALUES LESS THAN ('2012-Apr-01') (SUBPARTITION q1_europe),
 PARTITION p2 VALUES LESS THAN ('2012-Jul-01')
);

This statement creates a table with two partitions; the subpartition explicitly named q1_europe is created for partition p1 . Because subpartitions are
not named for partition p2 , the subpartitions are created based on the subpartition number, and are assigned a system-generated name.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | Q1_EUROPE
 SALES | P2 | SYS0101
 SALES | P2 | SYS0102
(3 rows)

Example - RANGE/HASH SUBPARTITIONS num... IN PARTITION DESCRIPTION

The following example creates a range-partitioned table (sales) that is first partitioned by the transaction date; two range partitions are created and
then hash-subpartitioned using the value of the country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION p1 VALUES LESS THAN ('2012-Apr-01') SUBPARTITIONS 3,
 PARTITION p2 VALUES LESS THAN ('2012-Jul-01')
);

The partition p1 explicitly defines the subpartition count in the partition description. By default, two subpartitions will be created for partition p2 ; since
subpartitions are not named, system-generated names are assigned.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1347

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | P1 | SYS0101
 SALES | P1 | SYS0102
 SALES | P1 | SYS0103
 SALES | P2 | SYS0104
 SALES | P2 | SYS0105
(5 rows)

Example - LIST/HASH SUBPARTITIONS num STORE IN... IN PARTITION DESCRIPTION

The following example creates a list-partitioned table (sales) with two list partitions. Partition p1 consists of three subpartitions and partition p2
consists of two subpartitions. Since the subpartitions are not named, system-generated names are assigned.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
STORE IN (ts1)
(
 PARTITION p1 VALUES ('FRANCE', 'ITALY'),
 PARTITION p2 VALUES ('INDIA', 'PAKISTAN') SUBPARTITIONS 2 STORE IN
 (ts2)
);

The partition p2 explicitly defines the subpartition count in the partition description. Based on the definition, two subpartitions are created and stored in
the tablespace named (ts2) . The subpartitions for partition p1 will be stored in the tablespace named (ts1) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P1 | SYS0101 | TS1
 SALES | P1 | SYS0102 | TS1
 SALES | P1 | SYS0103 | TS1
 SALES | P2 | SYS0104 | TS2
 SALES | P2 | SYS0105 | TS2
(5 rows)

Example - LIST/HASH STORE IN...TABLESPACES

The following example creates a list-partitioned table (sales) with partition p1 consisting of three subpartitions stored explicitly in the tablespace
(ts2) .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1348

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
STORE IN (ts1)
(
 PARTITION p1 VALUES ('FRANCE', 'ITALY') TABLESPACE ts2
);

The SELECT statement shows partition p1 , consisting of three subpartitions stored in the tablespace (ts2) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P1 | SYS0101 | TS2
 SALES | P1 | SYS0102 | TS2
 SALES | P1 | SYS0103 | TS2
(3 rows)

The following command adds a new partition p2 to the sales table, five subpartitions will be created and distributed across the tablespace listed by the
STORE IN clause.

ALTER TABLE sales ADD PARTITION p2 VALUES ('US', 'CANADA') SUBPARTITIONS 5
STORE IN (ts1);

A query of the ALL_TAB_PARTITIONS view shows the sales table with a partition named p2 , with five subpartitions. The STORE IN clause
distributes the subpartitions across a tablespace named (ts1) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'P2' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | P2 | SYS0105 | TS1
 SALES | P2 | SYS0106 | TS1
 SALES | P2 | SYS0107 | TS1
 SALES | P2 | SYS0108 | TS1
 SALES | P2 | SYS0109 | TS1
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1349

18.3.1.7 Example - PARTITION BY RANGE, SUBPARTITION BY LIST

The following example creates a partitioned table (sales) that is first partitioned by the transaction date; the range partitions (q1_2012, q2_2012,
q3_2012 and q4_2012) are then list-subpartitioned using the value of the country column.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST(country)
 (
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION q1_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q1_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q1_americas VALUES ('US', 'CANADA')
),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01')
 (
 SUBPARTITION q2_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q2_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q2_americas VALUES ('US', 'CANADA')
),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01')
 (
 SUBPARTITION q3_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q3_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q3_americas VALUES ('US', 'CANADA')
),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
 (
 SUBPARTITION q4_europe VALUES ('FRANCE', 'ITALY'),
 SUBPARTITION q4_asia VALUES ('INDIA', 'PAKISTAN'),
 SUBPARTITION q4_americas VALUES ('US', 'CANADA')
)
);

This statement creates a table with four partitions; each partition has three subpartitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1350

edb=# SELECT subpartition_name, high_value, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value | partition_name
-------------------+---------------------+----------------
 Q1_EUROPE | 'FRANCE', 'ITALY' | Q1_2012
 Q1_ASIA | 'INDIA', 'PAKISTAN' | Q1_2012
 Q1_AMERICAS | 'US', 'CANADA' | Q1_2012
 Q2_EUROPE | 'FRANCE', 'ITALY' | Q2_2012
 Q2_ASIA | 'INDIA', 'PAKISTAN' | Q2_2012
 Q2_AMERICAS | 'US', 'CANADA' | Q2_2012
 Q3_EUROPE | 'FRANCE', 'ITALY' | Q3_2012
 Q3_ASIA | 'INDIA', 'PAKISTAN' | Q3_2012
 Q3_AMERICAS | 'US', 'CANADA' | Q3_2012
 Q4_EUROPE | 'FRANCE', 'ITALY' | Q4_2012
 Q4_ASIA | 'INDIA', 'PAKISTAN' | Q4_2012
 Q4_AMERICAS | 'US', 'CANADA' | Q4_2012
(12 rows)

When a row is added to this table, the value in the date column is compared to the values specified in the range partitioning rules, and the server selects
the partition in which the row should reside. The value in the country column is then compared to the values specified in the list subpartitioning rules;
when the server locates a match for the value, the row is stored in the corresponding subpartition.

Any row added to the table will be stored in a subpartition, so the partitions will contain no data.

The server would evaluate the following statement against the partitioning and subpartitioning rules and store the row in the q3_europe partition.

INSERT INTO sales VALUES (10, '9519a', 'FRANCE', '18-Aug-2012', '650000');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1351

18.3.2 ALTER TABLE...ADD PARTITION

Use the ALTER TABLE… ADD PARTITION command to add a partition to an existing partitioned table. The syntax is:

ALTER TABLE <table_name> ADD PARTITION <partition_definition>;

Where partition_definition is:

 {<list_partition> | <range_partition>}

and list_partition is:

 PARTITION [<partition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

and range_partition is:

 PARTITION [<partition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]
 [(<subpartition>, ...)]

Where subpartition is:

 {<list_subpartition> | <range_subpartition> | <hash_subpartition>}

and list_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

and range_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

and hash_subpartition is:

 SUBPARTITION [<subpartition_name>]
 [TABLESPACE <tablespace_name>] |
 SUBPARTITIONS <num> [STORE IN (<tablespace_name> [, <tablespace_name>]...)]

DescriptionDescription

The ALTER TABLE… ADD PARTITION command adds a partition to an existing partitioned table. There is no upper limit to the number of defined
partitions in a partitioned table.

New partitions must be of the same type (LIST, RANGE , or HASH) as existing partitions. The new partition rules must reference the same column
specified in the partitioning rules that define the existing partition(s).

You can use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a DEFAULT rule as long as there are no conflicting
values between existing rows in the table and the values of the partition to be added.

You cannot use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a MAXVALUE rule.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1352

You can alternatively use the ALTER TABLE… SPLIT PARTITION statement to split an existing partition, effectively increasing the number of
partitions in a table.

RANGE partitions must be specified in ascending order. You cannot add a new partition that precedes existing partitions in a RANGE partitioned table.

Include the TABLESPACE clause to specify the tablespace in which the new partition will reside. If you do not specify a tablespace, the partition will
reside in the default tablespace.

Use the STORE IN clause to specify the tablespace list across which the autogenerated subpartitions will be stored.

If the table is indexed, the index will be created on the new partition.

To use the ALTER TABLE... ADD PARTITION command you must be the table owner, or have superuser (or administrative) privileges.

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be created. Partition names must be unique amongst all partitions and subpartitions, and must follow the naming conventions
for object identifiers.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal values) by which rows will be distributed into partitions. Each partitioning
rule must specify at least one value , but there is no limit placed on the number of values specified within a rule. value may also be NULL,
DEFAULT (if specifying a LIST partition), or MAXVALUE (if specifying a RANGE partition).

For information about creating a DEFAULT or MAXVALUE partition, see Handling Stray Values in a LIST or RANGE Partitioned Table.

num

The SUBPARTITIONS num clause is only supported for HASH and can be used to specify the number of hash subpartitions. Alternatively, you can use
the subpartition definition to specify individual subpartitions and their tablespaces. If no SUBPARTITIONS or SUBPARTITION DEFINITION is
specified, then the partition creates a subpartition based on the SUBPARTITION TEMPLATE .

tablespace_name

The name of the tablespace in which a partition or subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1353

18.3.2.1 Example - Adding a Partition to a LIST Partitioned Table

The example that follows adds a partition to the list-partitioned sales table. The table was created using the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions (americas, asia , and europe).

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

The following command adds a partition named east_asia to the sales table.

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA');

After invoking the command, the table includes the east_asia partition.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 EAST_ASIA | 'CHINA', 'KOREA'
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1354

18.3.2.2 Example - Adding a Partition to a RANGE Partitioned Table

The example that follows adds a partition to a range-partitioned table named sales :

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table contains four partitions (q1_2012, q2_2012, q3_2012 , and q4_2012).

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
(4 rows)

The following command adds a partition named q1_2013 to the sales table.

ALTER TABLE sales ADD PARTITION q1_2013
 VALUES LESS THAN('01-APR-2013');

After invoking the command, the table includes the q1_2013 partition.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 Q1_2012 | '01-APR-12 00:00:00'
 Q2_2012 | '01-JUL-12 00:00:00'
 Q3_2012 | '01-OCT-12 00:00:00'
 Q4_2012 | '01-JAN-13 00:00:00'
 Q1_2013 | '01-APR-13 00:00:00'
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1355

18.3.2.3 Example - Adding a Partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION

The following example adds a partition to a list-partitioned sales table, you can specify a SUBPARTITIONS clause to add a specified number of
subpartitions. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 2
(
 PARTITION europe VALUES ('FRANCE', 'ITALY'),
 PARTITION asia VALUES ('INDIA', 'PAKISTAN')
);

The table contains two partitions europe and asia , each containing two subpartitions. Because the subpartitions are not named, system-generated
names are assigned to them.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(4 rows)

The following command adds a new partition americas to the sales table and will create a number of subpartitions as specified in the partition
description.

ALTER TABLE sales ADD PARTITION americas
 VALUES ('US', 'CANADA');

After invoking the command the table includes the partition americas and two newly added subpartitions.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1356

Example - Adding a Partition with SUBPARTITIONS num...

The following example adds a partition a list-partitioned table sales consisting of three subpartitions. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES ('FRANCE', 'ITALY'),
 PARTITION asia VALUES ('INDIA', 'PAKISTAN')
);

The table contains partitions europe and asia , each containing three subpartitions.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
 SALES | EUROPE | SYS0103
(6 rows)

The following command adds a new partition americas and five subpartitions as specified in the ADD PARTITION clause.

ALTER TABLE sales ADD PARTITION americas
 VALUES ('US', 'CANADA') SUBPARTITIONS 5;

After invoking the command sales table includes the partition americas and five newly added subpartitions.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'AMERICAS' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0110
 SALES | AMERICAS | SYS0111
 SALES | AMERICAS | SYS0112
 SALES | AMERICAS | SYS0113
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1357

Example - Adding a Partition with SUBPARTITIONS num... STORE IN

The following example adds a partition to a list-partitioned table sales consisting of three subpartitions. The table was created using the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions (americas, asia , and europe) , each containing three subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(9 rows)

The following command adds a new partition east_asia with five subpartitions as specified in the ADD PARTITION clause and stores them in the
tablespace named (ts1) .

ALTER TABLE sales ADD PARTITION east_asia
 VALUES ('CHINA', 'KOREA') SUBPARTITIONS 5 STORE IN (ts1);

After invoking the command table includes the partition east_asia and five newly added subpartitions stored in tablespace (ts1) .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'EAST_ASIA' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | EAST_ASIA | SYS0113 | TS1
 SALES | EAST_ASIA | SYS0114 | TS1
 SALES | EAST_ASIA | SYS0115 | TS1
 SALES | EAST_ASIA | SYS0116 | TS1
 SALES | EAST_ASIA | SYS0117 | TS1
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1358

18.3.3 ALTER TABLE...ADD SUBPARTITION

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing subpartitioned partition. The syntax is:

ALTER TABLE <table_name> MODIFY PARTITION <partition_name>
 ADD SUBPARTITION <subpartition_definition>;

Where subpartition_definition is:

{<list_subpartition> | <range_subpartition>}

and list_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

and range_subpartition is:

 SUBPARTITION [<subpartition_name>]
 VALUES LESS THAN (<value>[, <value>]...)
 [TABLESPACE <tablespace_name>]

DescriptionDescription

The ALTER TABLE… ADD SUBPARTITION command adds a subpartition to an existing partition; the partition must already be subpartitioned. There is
no upper limit to the number of defined subpartitions.

New subpartitions must be of the same type (LIST, RANGE or HASH) as existing subpartitions. The new subpartition rules must reference the same
column specified in the subpartitioning rules that define the existing subpartition(s).

You can use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a DEFAULT rule as long as there are no
conflicting values between existing rows in the table and the values of the subpartition to be added.

You cannot use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a MAXVALUE rule.

You can split an existing subpartition with the ALTER TABLE… SPLIT SUBPARTITION statement, effectively adding a subpartition to a table.

You cannot add a new subpartition that precedes existing subpartitions in a range subpartitioned table; range subpartitions must be specified in ascending
order.

Include the TABLESPACE clause to specify the tablespace in which the subpartition will reside. If you do not specify a tablespace, the subpartition will be
created in the default tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... ADD SUBPARTITION command you must be the table owner, or have superuser (or administrative) privileges.

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table in which the subpartition will reside.

partition_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1359

The name of the partition in which the new subpartition will reside.

subpartition_name

The name of the subpartition to be created. Subpartition names must be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal values) by which table entries will be grouped into partitions. Each
partitioning rule must specify at least one value, but there is no limit placed on the number of values specified within a rule. value may also be NULL,
DEFAULT (if specifying a LIST partition), or MAXVALUE (if specifying a RANGE partition).

For information about creating a DEFAULT or MAXVALUE partition, see Handling Stray Values in a LIST or RANGE Partitioned Table.

tablespace_name

The name of the tablespace in which the subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1360

18.3.3.1 Example - Adding a Subpartition to a LIST/RANGE Partitioned Table

The following example adds a RANGE subpartition to the list-partitioned sales table. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions, named europe, asia , and americas . Each partition has two range-defined subpartitions.

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(6 rows)

The following command adds a subpartition named europe_2013 .

ALTER TABLE sales MODIFY PARTITION europe
 ADD SUBPARTITION europe_2013
 VALUES LESS THAN('2015-Jan-01');

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1361

After invoking the command, the table includes a subpartition named europe_2013 .

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 EUROPE | EUROPE_2013 | '01-JAN-15 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(7 rows)

NoteNote

When adding a new range subpartition, the subpartitioning rules must specify a range that falls after any existing subpartitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1362

18.3.3.2 Example - Adding a Subpartition to a RANGE/LIST Partitioned Table

The following example adds a LIST subpartition to the RANGE partitioned sales table. The sales table was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION asia VALUES ('INDIA', 'PAKISTAN')
)
);

After executing the above command, the sales table will have two partitions, named first_half_2012 and second_half_2012 . The
first_half_2012 partition has two subpartitions, named europe and americas , and the second_half_2012 partition has one

partition, named asia .

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 SECOND_HALF_2012 | ASIA | 'INDIA', 'PAKISTAN'
 FIRST_HALF_2012 | AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | EUROPE | 'ITALY', 'FRANCE'
(3 rows)

The following command adds a subpartition to the second_half_2012 partition, named east_asia .

ALTER TABLE sales MODIFY PARTITION second_half_2012
 ADD SUBPARTITION east_asia VALUES ('CHINA');

After invoking the command, the table includes a subpartition named east_asia .

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+---------------------
 SECOND_HALF_2012 | ASIA | 'INDIA', 'PAKISTAN'
 SECOND_HALF_2012 | EAST_ASIA | 'CHINA'
 FIRST_HALF_2012 | AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | EUROPE | 'ITALY', 'FRANCE'
(4 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1363

18.3.4 ALTER TABLE...SPLIT PARTITION

Use the ALTER TABLE… SPLIT PARTITION command to divide a single partition into two partitions, maintaining the partitioning of the original table
in the newly created partitions, and redistributing the partition's contents between the new partitions. The command syntax comes in two forms.

The first form splits a RANGE partition into two partitions:

ALTER TABLE <table_name> SPLIT PARTITION <partition_name>
 AT (<range_part_value>)
 INTO
 (
 PARTITION <new_part1>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)],
 PARTITION <new_part2>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]
);

The second form splits a LIST partition into two partitions:

ALTER TABLE <table_name> SPLIT PARTITION <partition_name>
 VALUES (<value>[, <value>]...)
 INTO
 (
 PARTITION <new_part1>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)],
 PARTITION <new_part2>
 [TABLESPACE <tablespace_name>]
 [SUBPARTITIONS <num>] [STORE IN (<tablespace_name> [, <tablespace_name>]...)]
);

DescriptionDescription

The ALTER TABLE...SPLIT PARTITION command adds a partition to an existing LIST or RANGE partitioned table. Please note that the ALTER
TABLE… SPLIT PARTITION command cannot add a partition to a HASH partitioned table. There is no upper limit to the number of partitions that a
table may have.

When you execute an ALTER TABLE...SPLIT PARTITION command, Advanced Server creates two new partitions, maintains the partitioning of the
original table in the newly created partitions, and redistributes the content of the old partition between them (as constrained by the partitioning rules).

Include the TABLESPACE clause to specify the tablespace in which a partition will reside. If you do not specify a tablespace, the partition will reside in the
tablespace of the original partitioned table.

Use the STORE IN clause to specify the tablespace list across which the autogenerated subpartitions will be stored.

If the table is indexed, the index will be created on the new partition.

To use the ALTER TABLE... SPLIT PARTITION command you must be the table owner, or have superuser (or administrative) privileges.

ParametersParameters

table_name

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1364

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition that is being split.

new_part1

The name of the first new partition to be created. Partition names must be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new_part1 will receive the rows that meet the partitioning constraints specified in the ALTER TABLE… SPLIT PARTITION command.

new_part2

The name of the second new partition to be created. Partition names must be unique amongst all partitions and subpartitions, and must follow the naming
conventions for object identifiers.

new_part2 will receive the rows are not directed to new_part1 by the partitioning constraints specified in the ALTER TABLE… SPLIT
PARTITION command.

range_part_value

Use range_part_value to specify the boundary rules by which to create the new partition. The partitioning rule must contain at least one column of a
data type that has two operators (i.e., a greater-than-or-equal to operator, and a less-than operator). Range boundaries are evaluated against a LESS
THAN clause and are non-inclusive; a date boundary of January 1, 2010 will include only those date values that fall on or before December 31, 2009.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal values) by which rows will be distributed into partitions. Each partitioning
rule must specify at least one value, but there is no limit placed on the number of values specified within a rule.

For information about creating a DEFAULT or MAXVALUE partition, see Handling Stray Values in a LIST or RANGE Partitioned Table.

num

The SUBPARTITIONS num clause is only supported for HASH subpartitions; use the clause to specify the number of hash subpartitions. Alternatively,
you can use the subpartition definition to specify individual subpartitions and their tablespaces. If no SUBPARTITIONS or SUBPARTITION
DEFINITION is specified, then the partition creates a subpartition based on the SUBPARTITION TEMPLATE .

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1365

18.3.4.1 Example - Splitting a LIST Partition

This example will divide one of the partitions in the list-partitioned sales table into two new partitions, and redistribute the contents of the partition
between them. The sales table is created with the statement:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates three partitions (europe, asia , and americas). The following command adds rows to each partition.

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

The rows are distributed amongst the partitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1366

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

The following command splits the americas partition into two partitions named us and canada .

ALTER TABLE sales SPLIT PARTITION americas
 VALUES ('US')
 INTO (PARTITION us, PARTITION canada);

A SELECT statement confirms that the rows have been redistributed.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_canada | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_canada | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_us | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_us | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1367

18.3.4.2 Example - Splitting a RANGE Partition

This example divides the q4_2012 partition (of the range-partitioned sales table) into two partitions, and redistribute the partition's contents. Use the
following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions (q1_2012, q2_2012, q3_2012 , and q4_2012). The following command adds rows to each partition.

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed amongst the partitions as expected.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1368

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

The following command splits the q4_2012 partition into two partitions named q4_2012_p1 and q4_2012_p2 .

ALTER TABLE sales SPLIT PARTITION q4_2012
 AT ('15-Nov-2012')
 INTO
 (
 PARTITION q4_2012_p1,
 PARTITION q4_2012_p2
);

A SELECT statement confirms that the rows have been redistributed across the new partitions.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
-----------------+---------+---------+----------+--------------------+------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012_p1| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012_p1| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012_p1| 20 | 4519a | INDIA | 18-OCT-12 00:00:00 |650000
 sales_q4_2012_p2| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012_p2| 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1369

18.3.4.3 Example - Splitting a RANGE/LIST Partition

The following example will divide one of the partitions in the range-partitioned sales table into new partitions, maintaining the partitioning of the
original table in the newly created partitions, and redistributing the contents of the partition between them.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01')
 (
 SUBPARTITION europe VALUES('FRANCE', 'ITALY'),
 SUBPARTITION americas VALUES('US', 'CANADA'),
 SUBPARTITION asia VALUES('INDIA', 'PAKISTAN')
)
);

The sales table contains partition q1_2012 and three subpartitions europe, americas , and asia .

edb=# SELECT table_name, partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name | high_value
------------+----------------+-------------------+---------------------
 SALES | Q1_2012 | EUROPE | 'FRANCE', 'ITALY'
 SALES | Q1_2012 | AMERICAS | 'US', 'CANADA'
 SALES | Q1_2012 | ASIA | 'INDIA', 'PAKISTAN'
(3 rows)

The following command splits the q1_2012 partition into two partitions named q1_2012_p1 and q1_2012_p2 .

ALTER TABLE sales SPLIT PARTITION q1_2012
 AT ('01-Mar-2012')
 INTO
 (
 PARTITION q1_2012_p1,
 PARTITION q1_2012_p2
);

A SELECT statement confirms that the same number of subpartitions is created in the newly created partitions q1_2012_p1 and q1_2012_p2 with
system-generated names.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1370

edb=# SELECT table_name, partition_name, subpartition_name, high_value FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name | high_value
------------+----------------+-------------------+---------------------
 SALES | Q1_2012_P1 | SYS0105 | 'US', 'CANADA'
 SALES | Q1_2012_P1 | SYS0106 | 'FRANCE', 'ITALY'
 SALES | Q1_2012_P1 | SYS0107 | 'INDIA', 'PAKISTAN'
 SALES | Q1_2012_P2 | SYS0108 | 'US', 'CANADA'
 SALES | Q1_2012_P2 | SYS0109 | 'FRANCE', 'ITALY'
 SALES | Q1_2012_P2 | SYS0110 | 'INDIA', 'PAKISTAN'
(6 rows)

Example - Splitting a Partition with SUBPARTITIONS num...

The following example will divide one of the partitions in the list-partitioned sales table into new partitions, maintaining the partitioning of the original
table in the newly created partitions, and redistributing the contents of the partition between them. The SUBPARTITIONS clause lets you add a specified
number of subpartitions. If no SUBPARTITIONS clause is specified then the new partitions inherit the default number of subpartitions. The sales table
is created with the statement:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 2
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table definition creates three partitions (europe, asia , and americas) each containing two subpartitions.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0105
 SALES | AMERICAS | SYS0106
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
(6 rows)

The following command splits the americas partition into two partitions named partition_us and partition_canada .

ALTER TABLE sales SPLIT PARTITION americas VALUES ('US') INTO (PARTITION
partition_us SUBPARTITIONS 5, PARTITION partition_canada);

A SELECT statement confirms that the americas partition is split into partition_us and partition_canada . The partition_us contains
five subpartitions and partition_canada contains default two subpartitions and assigned system-generated names.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1371

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name
------------+------------------+-------------------
 SALES | ASIA | SYS0103
 SALES | ASIA | SYS0104
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0102
 SALES | PARTITION_CANADA | SYS0115
 SALES | PARTITION_CANADA | SYS0116
 SALES | PARTITION_US | SYS0110
 SALES | PARTITION_US | SYS0111
 SALES | PARTITION_US | SYS0112
 SALES | PARTITION_US | SYS0113
 SALES | PARTITION_US | SYS0114
(11 rows)

Example - Splitting a Partition with SUBPARTITIONS num...STORE IN

The following example will divide the europe partition of the list-partitioned sales table into two partitions, maintaining the partitioning of the
original table in the newly created partitions, and redistributing the partition's contents. The SUBPARTITIONS clause lets you add a specified number of
subpartitions. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 4
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The sales table contains three partitions (europe, asia , and americas) each containing four subpartitions with system-generated names
assigned to them.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1372

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0112
 SALES | AMERICAS | SYS0111
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0110
 SALES | ASIA | SYS0107
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0106
 SALES | ASIA | SYS0108
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0104
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(12 rows)

The following command splits the europe partition into two partitions named france and italy .

ALTER TABLE sales SPLIT PARTITION europe VALUES ('FRANCE') INTO (PARTITION
france SUBPARTITIONS 10 STORE IN (ts1), PARTITION italy);

A SELECT statement confirms that the europe partition is split into two partitions. The partition france contains ten subpartitions that are stored in
the tablespace ts1 and partition italy contains four subpartitions as in the original partition europe .

edb=# SELECT table_name, partition_name, subpartition_name, tablespace_name
FROM ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2,3;
 table_name | partition_name | subpartition_name | tablespace_name
------------+----------------+-------------------+-----------------
 SALES | AMERICAS | SYS0109 |
 SALES | AMERICAS | SYS0110 |
 SALES | AMERICAS | SYS0111 |
 SALES | AMERICAS | SYS0112 |
 SALES | ASIA | SYS0105 |
 SALES | ASIA | SYS0106 |
 SALES | ASIA | SYS0107 |
 SALES | ASIA | SYS0108 |
 SALES | FRANCE | SYS0116 | TS1
 SALES | FRANCE | SYS0117 | TS1
 SALES | FRANCE | SYS0118 | TS1
 SALES | FRANCE | SYS0119 | TS1
 SALES | FRANCE | SYS0120 | TS1
 SALES | FRANCE | SYS0121 | TS1
 SALES | FRANCE | SYS0122 | TS1
 SALES | FRANCE | SYS0123 | TS1
 SALES | FRANCE | SYS0124 | TS1
 SALES | FRANCE | SYS0125 | TS1
 SALES | ITALY | SYS0126 |
 SALES | ITALY | SYS0127 |
 SALES | ITALY | SYS0128 |
 SALES | ITALY | SYS0129 |
(22 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1373

18.3.5 ALTER TABLE...SPLIT SUBPARTITION

Use the ALTER TABLE… SPLIT SUBPARTITION command to divide a single subpartition into two subpartitions, and redistribute the subpartition's
contents. The command comes in two variations.

The first variation splits a range subpartition into two subpartitions:

ALTER TABLE <table_name> SPLIT SUBPARTITION <subpartition_name>
 AT (range_part_value)
 INTO
 (
 SUBPARTITION <new_subpart1>
 [TABLESPACE <tablespace_name>],
 SUBPARTITION <new_subpart2>
 [TABLESPACE <tablespace_name>]
);

The second variation splits a list subpartition into two subpartitions:

ALTER TABLE <table_name> SPLIT SUBPARTITION <subpartition_name>
 VALUES (<value>[, <value>]...)
 INTO
 (
 SUBPARTITION <new_subpart1>
 [TABLESPACE <tablespace_name>],
 SUBPARTITION <new_subpart2>
 [TABLESPACE <tablespace_name>]
);

DescriptionDescription

The ALTER TABLE...SPLIT SUBPARTITION command adds a subpartition to an existing subpartitioned table. There is no upper limit to the number
of defined subpartitions. When you execute an ALTER TABLE...SPLIT SUBPARTITION command, Advanced Server creates two new subpartitions,
moving any rows that contain values that are constrained by the specified subpartition rules into new_subpart1 , and any remaining rows into
new_subpart2 .

The new subpartition rules must reference the column specified in the rules that define the existing subpartition(s).

Include the TABLESPACE clause to specify a tablespace in which a new subpartition will reside. If you do not specify a tablespace, the subpartition will be
created in the default tablespace.

If the table is indexed, the index will be created on the new subpartition.

To use the ALTER TABLE... SPLIT SUBPARTITION command you must be the table owner, or have superuser (or administrative) privileges.

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition that is being split.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1374

new_subpart1

The name of the first new subpartition to be created. Subpartition names must be unique amongst all partitions and subpartitions, and must follow the
naming conventions for object identifiers.

new_subpart1 will receive the rows that meet the subpartitioning constraints specified in the ALTER TABLE… SPLIT SUBPARTITION command.

new_subpart2

The name of the second new subpartition to be created. Subpartition names must be unique amongst all partitions and subpartitions, and must follow the
naming conventions for object identifiers.

new_subpart2 will receive the rows are not directed to new_subpart1 by the subpartitioning constraints specified in the ALTER TABLE… SPLIT
SUBPARTITION command.

(value[, value]...)

Use value to specify a quoted literal value (or comma-delimited list of literal values) by which table entries will be grouped into partitions. Each
partitioning rule must specify at least one value, but there is no limit placed on the number of values specified within a rule. value may also be NULL,
DEFAULT (if specifying a LIST subpartition), or MAXVALUE (if specifying a RANGE subpartition).

For information about creating a DEFAULT or MAXVALUE partition, see Handling Stray Values in a LIST or RANGE Partitioned Table.

tablespace_name

The name of the tablespace in which the partition or subpartition resides.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1375

18.3.5.1 Example - Splitting a LIST Subpartition

The following example splits a list subpartition, redistributing the subpartition's contents between two new subpartitions. The sample table (sales) was
created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION p1_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p1_americas VALUES ('US', 'CANADA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION p2_europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION p2_americas VALUES ('US', 'CANADA')
)
);

The sales table has two partitions, named first_half_2012 , and second_half_2012 . Each partition has two range-defined subpartitions that
distribute the partition's contents into subpartitions based on the value of the country column.

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 SECOND_HALF_2012 | P2_AMERICAS | 'US', 'CANADA'
 SECOND_HALF_2012 | P2_EUROPE | 'ITALY', 'FRANCE'
 FIRST_HALF_2012 | P1_AMERICAS | 'US', 'CANADA'
 FIRST_HALF_2012 | P1_EUROPE | 'ITALY', 'FRANCE'
(4 rows)

The following command adds rows to each subpartition.

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

A SELECT statement confirms that the rows are correctly distributed amongst the subpartitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1376

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
-----------------+---------+---------+---------+--------------------+--------
sales_p1_americas| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
sales_p1_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
sales_p1_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
sales_p1_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_p2_americas| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_p2_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_p2_americas| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
sales_p2_americas| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
sales_p2_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
(12 rows)

The following command splits the p2_americas subpartition into two new subpartitions, and redistributes the contents.

ALTER TABLE sales SPLIT SUBPARTITION p2_americas
 VALUES ('US')
 INTO
 (
 SUBPARTITION p2_us,
 SUBPARTITION p2_canada
);

After invoking the command, the p2_americas subpartition has been deleted; in its place, the server has created two new subpartitions (p2_us and
p2_canada) .

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
------------------+-------------------+-------------------
 FIRST_HALF_2012 | P1_EUROPE | 'ITALY', 'FRANCE'
 FIRST_HALF_2012 | P1_AMERICAS | 'US', 'CANADA'
 SECOND_HALF_2012 | P2_EUROPE | 'ITALY', 'FRANCE'
 SECOND_HALF_2012 | P2_US | 'US'
 SECOND_HALF_2012 | P2_CANADA | 'CANADA'
(5 rows)

Querying the sales table demonstrates that the content of the p2_americas subpartition has been redistributed.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date |amount
------------------+---------+---------+---------+--------------------+------
 sales_p1_americas| 40 | 9519b | US | 12-APR-12 00:00:00 |145000
 sales_p1_americas| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_p1_americas| 30 | 4519b | CANADA | 08-APR-12 00:00:00 |120000
 sales_p1_americas| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_p1_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_p2_canada | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_p2_europ | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_p2_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 |650000
 sales_p2_us | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_p2_us | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_p2_us | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
(12 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1377

18.3.5.2 Example - Splitting a RANGE Subpartition

The following example splits a range subpartition, redistributing the subpartition's contents between two new subpartitions. The sample table (sales)
was created with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
 SUBPARTITION BY RANGE(date)
(
 PARTITION europe VALUES('FRANCE', 'ITALY')
 (
 SUBPARTITION europe_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION europe_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION asia VALUES('INDIA', 'PAKISTAN')
 (
 SUBPARTITION asia_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION asia_2012
 VALUES LESS THAN('2013-Jan-01')
),
 PARTITION americas VALUES('US', 'CANADA')
 (
 SUBPARTITION americas_2011
 VALUES LESS THAN('2012-Jan-01'),
 SUBPARTITION americas_2012
 VALUES LESS THAN('2013-Jan-01')
)
);

The sales table has three partitions (europe, asia , and americas). Each partition has two range-defined subpartitions that sort the partitions
contents into subpartitions by the value of the date column.

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_2012 | '01-JAN-13 00:00:00'
(6 rows)

The following command adds rows to each subpartition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1378

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

A SELECT statement confirms that the rows are distributed amongst the subpartitions.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no|part_no| country | date | amount
--------------------+-------+-------+---------+--------------------+---------
 sales_americas_2012| 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas_2012| 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas_2012| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas_2012| 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas_2012| 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas_2012| 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas_2012| 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas_2012| 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia_2012 | 20 | 3788a | PAKISTAN| 04-JUN-12 00:00:00 | 37500
 sales_asia_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

The following command splits the americas_2012 subpartition into two new subpartitions, and redistributes the contents.

ALTER TABLE sales
 SPLIT SUBPARTITION americas_2012
 AT('2012-Jun-01')
 INTO
 (
 SUBPARTITION americas_p1_2012,
 SUBPARTITION americas_p2_2012
);

After invoking the command, the americas_2012 subpartition has been deleted; in its place, the server has created two new subpartitions
(americas_p1_2012 and americas_p2_2012).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1379

edb=# SELECT partition_name, subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 partition_name | subpartition_name | high_value
----------------+-------------------+----------------------
 EUROPE | EUROPE_2011 | '01-JAN-12 00:00:00'
 EUROPE | EUROPE_2012 | '01-JAN-13 00:00:00'
 ASIA | ASIA_2011 | '01-JAN-12 00:00:00'
 ASIA | ASIA_2012 | '01-JAN-13 00:00:00'
 AMERICAS | AMERICAS_2011 | '01-JAN-12 00:00:00'
 AMERICAS | AMERICAS_P1_2012 | '01-JUN-12 00:00:00'
 AMERICAS | AMERICAS_P2_2012 | '01-JAN-13 00:00:00'
(7 rows)

Querying the sales table demonstrates that the subpartition's contents are redistributed.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no|part_no|country | date | amount
-----------------------+-------+-------+---------+-------------------+-------
 sales_americas_p1_2012| 40 | 9519b | US | 12-APR-12 00:00:00|145000
 sales_americas_p1_2012| 30 | 9519b | CANADA | 01-FEB-12 00:00:00|75000
 sales_americas_p1_2012| 30 | 4519b | CANADA | 08-APR-12 00:00:00|120000
 sales_americas_p1_2012| 40 | 3788a | US | 12-MAY-12 00:00:00| 4950
 sales_americas_p2_2012| 40 | 4577b | US | 11-NOV-12 00:00:00|25000
 sales_americas_p2_2012| 30 | 7588b | CANADA | 14-DEC-12 00:00:00|50000
 sales_americas_p2_2012| 40 | 4788a | US | 23-SEP-12 00:00:00| 4950
 sales_americas_p2_2012| 40 | 4788b | US | 09-OCT-12 00:00:00|15000
 sales_europe_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00|45000
 sales_europe_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00|15000
 sales_europe_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00|650000
 sales_europe_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00|650000
 sales_asia_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00|75000
 sales_asia_2012 | 20 | 3788a | PAKISTAN| 04-JUN-12 00:00:00|37500
 sales_asia_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00|5090
 sales_asia_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00|650000
 sales_asia_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00| 5090
(17 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1380

18.3.6 ALTER TABLE...EXCHANGE PARTITION

The ALTER TABLE…EXCHANGE PARTITION command swaps an existing table with a partition. If you plan to add a large quantity of data to a
partitioned table, you can use the ALTER TABLE… EXCHANGE PARTITION command to implement a bulk load. You can also use the ALTER TABLE…
EXCHANGE PARTITION command to remove old or unneeded data for storage.

The command syntax is available in two forms.

The first form swaps a table for a partition:

ALTER TABLE <target_table>
 EXCHANGE PARTITION <target_partition>
 WITH TABLE <source_table>
 [(INCLUDING | EXCLUDING) INDEXES]
 [(WITH | WITHOUT) VALIDATION];

The second form swaps a table for a subpartition:

ALTER TABLE <target_table>
 EXCHANGE SUBPARTITION <target_subpartition>
 WITH TABLE <source_table>
 [(INCLUDING | EXCLUDING) INDEXES]
 [(WITH | WITHOUT) VALIDATION];

DescriptionDescription

When the ALTER TABLE… EXCHANGE PARTITION command completes, the data originally located in the target_partition will be located in
the source_table , and the data originally located in the source_table will be located in the target_partition .

The ALTER TABLE… EXCHANGE PARTITION command can exchange partitions in a LIST, RANGE or HASH partitioned table. The structure of the
source_table must match the structure of the target_table (both tables must have matching columns and data types), and the data contained

within the table must adhere to the partitioning constraints.

If the INCLUDING INDEXES clause is specified with EXCHANGE PARTITION , then matching indexes in the target_partition and
source_table are swapped. Indexes in the target_partition with no match in the source_table are rebuilt and vice versa (that is, indexes

in the source_table with no match in the target_partition are also rebuilt).

If the EXCLUDING INDEXES clause is specified with EXCHANGE PARTITION , then matching indexes in the target_partition and
source_table are swapped, but the target_partition indexes with no match in the source_table are marked as invalid and vice versa (that

is, indexes in the source_table with no match in the target_partition are also marked as invalid).

The previously used matching index term refers to indexes that have the same attributes such as the collation order, ascending or descending direction,
ordering of nulls first or nulls last, and so forth as determined by the CREATE INDEX command.

If both INCLUDING INDEXES and EXCLUDING INDEXES are omitted, then the default action is the EXCLUDING INDEXES behavior.

The same behavior as previously described applies for the target_subpartition used with the EXCHANGE SUBPARTITION clause.

You must own a table to invoke ALTER TABLE… EXCHANGE PARTITION or ALTER TABLE… EXCHANGE SUBPARTITION against that table.

ParametersParameters

target_table

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1381

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

target_partition

The name of the partition to be replaced.

target_subpartition

The name of the subpartition to be replaced.

source_table

The name of the table that will replace the target_partition or target_subpartition .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1382

18.3.6.1 Example - Exchanging a Table for a Partition

The example that follows demonstrates swapping a table for a partition (americas) of the sales table. You can create the sales table with the
following command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Use the following command to add sample data to the sales table.

INSERT INTO sales VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that only one row resides in the americas partition.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(10 rows)

The following command creates a table (n_america) that matches the definition of the sales table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1383

CREATE TABLE n_america
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
);

The following command adds data to the n_america table. The data conforms to the partitioning rules of the americas partition.

INSERT INTO n_america VALUES
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000');

The following command swaps the table into the partitioned table.

ALTER TABLE sales
 EXCHANGE PARTITION americas
 WITH TABLE n_america;

Querying the sales table shows that the contents of the n_america table has been exchanged for the content of the americas partition.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

Querying the n_america table shows that the row that was previously stored in the americas partition has been moved to the n_america table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1384

edb=# SELECT tableoid::regclass, * FROM n_america;
 tableoid | dept_no | part_no | country | date | amount
-----------+---------+---------+---------+--------------------+--------
 n_america | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1385

18.3.7 ALTER TABLE...MOVE PARTITION

Use the ALTER TABLE… MOVE PARTITION command to move a partition to a different tablespace. The command takes two forms.

The first form moves a partition to a new tablespace:

ALTER TABLE <table_name>
 MOVE PARTITION <partition_name>
 TABLESPACE <tablespace_name>;

The second form moves a subpartition to a new tablespace:

ALTER TABLE <table_name>
 MOVE SUBPARTITION <subpartition_name>
 TABLESPACE <tablespace_name>;

DescriptionDescription

The ALTER TABLE…MOVE PARTITION command moves a partition from its current tablespace to a different tablespace. The ALTER TABLE… MOVE
PARTITION command can move partitions of a LIST, RANGE or HASH partitioned table.

The same behavior as previously described applies for the subpartition_name used with the MOVE SUBPARTITION clause.

You must own the table to invoke ALTER TABLE… MOVE PARTITION or ALTER TABLE… MOVE SUBPARTITION .

ParametersParameters

table_name

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

partition_name

The name of the partition to be moved.

subpartition_name

The name of the subpartition to be moved.

tablespace_name

The name of the tablespace to which the partition or subpartition will be moved.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1386

18.3.7.1 Example - Moving a Partition to a Different Tablespace

The following example moves a partition of the sales table from one tablespace to another. First, create the sales table with the command:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN ('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN ('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN ('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN ('2013-Jan-01') TABLESPACE ts_1,
 PARTITION q1_2013 VALUES LESS THAN ('2013-Mar-01') TABLESPACE ts_2
);

Querying the ALL_TAB_PARTITIONS view confirms that the partitions reside on the expected servers and tablespaces.

edb=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 Q1_2012 |
 Q2_2012 |
 Q3_2012 |
 Q4_2012 | TS_1
 Q1_2013 | TS_2
(5 rows)

After preparing the target tablespace, invoke the ALTER TABLE… MOVE PARTITION command to move the q1_2013 partition from a tablespace
named ts_2 to a tablespace named ts_3 .

ALTER TABLE sales MOVE PARTITION q1_2013 TABLESPACE ts_3;

Querying the ALL_TAB_PARTITIONS view shows that the move was successful.

edb=# SELECT partition_name, tablespace_name FROM ALL_TAB_PARTITIONS;
 partition_name | tablespace_name
----------------+-----------------
 Q1_2012 |
 Q2_2012 |
 Q3_2012 |
 Q4_2012 | TS_1
 Q1_2013 | TS_3
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1387

18.3.8 ALTER TABLE...RENAME PARTITION

Use the ALTER TABLE… RENAME PARTITION command to rename a table partition. The syntax takes two forms.

The first form renames a partition:

ALTER TABLE <table_name>
 RENAME PARTITION <partition_name>
 TO <new_name>;

The second form renames a subpartition:

ALTER TABLE <table_name>
 RENAME SUBPARTITION <subpartition_name>
 TO <new_name>;

DescriptionDescription

The ALTER TABLE… RENAME PARTITION command renames a partition.

The same behavior as previously described applies for the subpartition_name used with the RENAME SUBPARTITION clause.

You must own the specified table to invoke ALTER TABLE… RENAME PARTITION or ALTER TABLE… RENAME SUBPARTITION .

ParametersParameters

table_name

The name (optionally schema-qualified) of the table in which the partition or subpartition resides.

partition_name

The name of the partition to be renamed.

subpartition_name

The name of the subpartition to be renamed.

new_name

The new name of the partition or subpartition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1388

18.3.8.1 Example - Renaming a Partition

The following command creates a list-partitioned table named sales :

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Query the ALL_TAB_PARTITIONS view to display the partition names.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

The following command renames the americas partition to n_america .

ALTER TABLE sales
 RENAME PARTITION americas TO n_america;

Querying the ALL_TAB_PARTITIONS view demonstrates that the partition has been successfully renamed.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 N_AMERICA | 'US', 'CANADA'
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1389

18.3.9 ALTER TABLE...SET INTERVAL

Use the ALTER TABLE… SET INTERVAL command to convert an existing range-partitioned table to an interval range partitioned table. The database
automatically creates a new partition of a specified range or interval for the partitioned table when INTERVAL is set. The syntax is:

ALTER TABLE <table_name> SET INTERVAL (<constant> | <expression>);

To disable an interval range partitioned table and convert it to a range-partitioned table, the syntax is:

ALTER TABLE <table_name> SET INTERVAL ();

ParametersParameters

table_name

The name (optionally schema-qualified) of the range-partitioned table.

constant | expression

Specifies a NUMERIC, DATE , or TIME value.

DescriptionDescription

The ALTER TABLE… SET INTERVAL command can be used to convert the range-partitioned table to use interval range partitioning. A new partition of
a specified interval is created and data can be inserted into the new partition.

The SET INTERVAL () command can be used to disable interval range partitioning. The database converts an interval range partitioned table to range-
partitioned and sets the boundaries of the interval range partitions to the boundaries for the range partitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1390

18.3.9.1 Example - Setting an Interval Range Partition

The example that follows sets an interval range partition of the sales table from range partitioning to start using monthly interval range partitioning.
Use the following command to create the sales table:

CREATE TABLE sales
(
 prod_id int,
 prod_quantity int,
 sold_month date
)
PARTITION BY RANGE(sold_month)
(
 PARTITION p1
 VALUES LESS THAN('15-JAN-2019'),
 PARTITION p2
 VALUES LESS THAN('15-FEB-2019')
);

To set the interval range partitioning from the sales table, invoke the following command:

ALTER TABLE sales SET INTERVAL (NUMTOYMINTERVAL(1, 'MONTH'));

Query the ALL_TAB_PARTITIONS view before a database creates an interval range partition.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
(2 rows)

Now, add data to the sales table that exceeds the high value of a range partition.

edb=# INSERT INTO sales VALUES (1,100,'05-APR-2019');
INSERT 0 1

Then, query the ALL_TAB_PARTITIONS view again after the INSERT statement. The interval range partition is successfully created and data is
inserted. A system-generated name of the interval range partition is created that varies for each session.

edb=# SELECT partition_name, high_value from ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+----------------------
 P1 | '15-JAN-19 00:00:00'
 P2 | '15-FEB-19 00:00:00'
 SYS916340103 | '15-APR-19 00:00:00'
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1391

18.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC

Use the ALTER TABLE… SET [PARTITIONING] AUTOMATIC command to convert an existing list partitioned table to automatic list partitioning.
The database automatically creates a partition based on a new value inserted into a table when AUTOMATIC is set. The syntax is:

ALTER TABLE <table_name> SET [PARTITIONING] AUTOMATIC;

To disable AUTOMATIC LIST PARTITIONING and convert to regular LIST partition, the syntax is:

ALTER TABLE <table_name> SET [PARTITIONING] MANUAL;

ParametersParameters

table_name

The name (optionally schema-qualified) of the list-partitioned table.

DescriptionDescription

The ALTER TABLE… SET [PARTITIONING] AUTOMATIC command can be used to convert the regular list partitioned table to use automatic
partitioning. A partition is created and data can be inserted into the new partition.

The ALTER TABLE… SET [PARTITIONING] MANUAL command can be used to disable the automatic list partitioning; the database converts an
automatic list partitioned table to a regular list partitioned table.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1392

18.3.10.1 Example - Setting an AUTOMATIC List Partition

The example that follows modifies a table sales to use automatic list partition instead of regular list partitioning. Use the following command to create a
sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 sales_state varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(sales_state)
(
 PARTITION P_KAN VALUES('KANSAS'),
 PARTITION P_TEX VALUES('TEXAS')
);

To implement automatic list partitioning on the sales table, invoke the following command:

ALTER TABLE sales SET AUTOMATIC;

Query the ALL_TAB_PARTITIONS view to see that an existing partition is successfully created.

edb=# SELECT table_name, partition_name, high_value FROM ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+------------
 SALES | P_KAN | 'KANSAS'
 SALES | P_TEX | 'TEXAS'
(2 rows)

Now, insert data into the sales table to create a new partition and add the new value.

edb=# INSERT INTO sales VALUES (1, 'VIR', 'VIRGINIA');
INSERT 0 1

Then, query the ALL_TAB_PARTITIONS view again after the insert. The automatic list partition is successfully created and data is inserted. A system-
generated name of the partition is created that varies for each session.

edb=# SELECT table_name, partition_name, high_value FROM ALL_TAB_PARTITIONS;
 table_name | partition_name | high_value
------------+----------------+------------
 SALES | P_KAN | 'KANSAS'
 SALES | P_TEX | 'TEXAS'
 SALES | SYS106900103 | 'VIRGINIA'
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1393

18.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE

Use the ALTER TABLE… SET SUBPARTITION TEMPLATE command to update the subpartition template for a table. The syntax is:

ALTER TABLE <table_name> SET SUBPARTITION TEMPLATE <num>;

To reset the subpartitions number to default using the subpartition template, the syntax is:

ALTER TABLE <table_name> SET SUBPARTITION TEMPLATE ();

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

num

The number of subpartitions to be added for a partition.

DescriptionDescription

The ALTER TABLE… SET SUBPARTITION TEMPLATE command can be used to update the subpartition template in the table. If you are specifying a
subpartition descriptor for a partition then a subpartition descriptor is used instead of a subpartition template. The subpartition template can be used
whenever a subpartition descriptor is not specified for a partition. If either subpartition descriptor or subpartition template is not specified, then by default
a single subpartition is created.

NoteNote

The partitions added to a table after invoking ALTER TABLE… SET SUBPARTITION TEMPLATE command will use the new
SUBPARTITION TEMPLATE .

The ALTER TABLE… SET SUBPARTITION TEMPLATE () command can be used to reset the subpartitions number to default 1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1394

18.3.11.1 Example - Setting a SUBPARTITION TEMPLATE

The following example creates a table sales that is range partitioned by date and hash subpartitioned by country . Use the following command to
create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE (date) SUBPARTITION BY HASH (country) SUBPARTITIONS 2
(
 PARTITION q1_2012
 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012
 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012
 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012
 VALUES LESS THAN('2013-Jan-01')
);

The table definition creates four partitions (q1_2012, q2_2012, q3_2012 , and q4_2012) , each partition consisting of two subpartitions with
system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | Q1_2012 | SYS0101
 SALES | Q1_2012 | SYS0102
 SALES | Q2_2012 | SYS0103
 SALES | Q2_2012 | SYS0104
 SALES | Q3_2012 | SYS0105
 SALES | Q3_2012 | SYS0106
 SALES | Q4_2012 | SYS0107
 SALES | Q4_2012 | SYS0108
(8 rows)

To set the subpartition template on the sales table, invoke the following command:

ALTER TABLE sales SET SUBPARTITION TEMPLATE 8;

The sales table is modified with the subpartition template set to eight. Now, if you try to add a new partition q1_2013 , a new partition will be created
consisting of eight subpartitions as described in the subpartition template.

ALTER TABLE sales ADD PARTITION q1_2013 VALUES LESS THAN ('2013-Apr-01');

Query the ALL_TAB_PARTITIONS view, the q1_2013 partition is successfully added comprising of eight subpartitions with system-generated names
assigned to them.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1395

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'Q1_2013' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | Q1_2013 | SYS0113
 SALES | Q1_2013 | SYS0114
 SALES | Q1_2013 | SYS0115
 SALES | Q1_2013 | SYS0116
 SALES | Q1_2013 | SYS0117
 SALES | Q1_2013 | SYS0118
 SALES | Q1_2013 | SYS0119
 SALES | Q1_2013 | SYS0120
(8 rows)

Example - Resetting a SUBPARTITION TEMPLATE

The following example creates a list-partitioned table sales that is list partitioned by country and hash subpartitioned by part_no . Use the
following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST (country) SUBPARTITION BY HASH (part_no) SUBPARTITIONS 3
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

The table contains three partitions (americas , asia , and europe), each partition consists of three subpartitions with system-generated names.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | AMERICAS | SYS0109
 SALES | AMERICAS | SYS0107
 SALES | AMERICAS | SYS0108
 SALES | ASIA | SYS0105
 SALES | ASIA | SYS0104
 SALES | ASIA | SYS0106
 SALES | EUROPE | SYS0101
 SALES | EUROPE | SYS0103
 SALES | EUROPE | SYS0102
(9 rows)

The following command resets the subpartition template on the sales table.

ALTER TABLE sales SET SUBPARTITION TEMPLATE ();

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1396

The sales table is modified with the subpartition template reset to default 1 . Now, try to add a new partition east_asia using the following
command:

ALTER TABLE sales ADD PARTITION east_asia VALUES ('CHINA', 'KOREA');

Query the ALL_TAB_PARTITIONS view, a new partition east_asia will be created consisting of one subpartition with a system-generated name
assigned to them.

edb=# SELECT table_name, partition_name, subpartition_name FROM
ALL_TAB_SUBPARTITIONS WHERE table_name = 'SALES' and partition_name =
'EAST_ASIA' ORDER BY 1,2;
 table_name | partition_name | subpartition_name
------------+----------------+-------------------
 SALES | EAST_ASIA | SYS0113
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1397

18.3.12 DROP TABLE

Use the PostgreSQL DROP TABLE command to remove a partitioned table definition, it's partitions and subpartitions, and delete the table contents. The
syntax is:

DROP TABLE <table_name>

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

DescriptionDescription

The DROP TABLE command removes an entire table, and the data that resides in that table. When you delete a table, any partitions or subpartitions (of
that table) are deleted as well.

To use the DROP TABLE command, you must be the owner of the partitioning root, a member of a group that owns the table, the schema owner, or a
database superuser.

ExampleExample

To delete a table, connect to the controller node (the host of the partitioning root), and invoke the DROP TABLE command. For example, to delete the
sales table, invoke the following command:

DROP TABLE sales;

The server will confirm that the table has been dropped.

edb=# drop table sales;
DROP TABLE
edb=#

For more information about the DROP TABLE command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-droptable.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1398

https://www.postgresql.org/docs/current/static/sql-droptable.html

18.3.13 ALTER TABLE...DROP PARTITION

Use the ALTER TABLE… DROP PARTITION command to delete a partition definition, and the data stored in that partition. The syntax is:

ALTER TABLE <table_name> DROP PARTITION <partition_name>;

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be deleted.

DescriptionDescription

The ALTER TABLE… DROP PARTITION command deletes a partition and any data stored on that partition. The ALTER TABLE… DROP
PARTITION command can drop partitions of a LIST or RANGE partitioned table; please note that this command does not work on a HASH partitioned
table. When you delete a partition, any subpartitions (of that partition) are deleted as well.

To use the DROP PARTITION clause, you must be the owner of the partitioning root, a member of a group that owns the table, or have database
superuser or administrative privileges.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1399

18.3.13.1 Example - Deleting a Partition

The example that follows deletes a partition of the sales table. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Querying the ALL_TAB_PARTITIONS view displays the partition names.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

To delete the americas partition from the sales table, invoke the following command:

ALTER TABLE sales DROP PARTITION americas;

Querying the ALL_TAB_PARTITIONS view demonstrates that the partition has been successfully deleted.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
(2 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1400

18.3.14 ALTER TABLE...DROP SUBPARTITION

Use the ALTER TABLE… DROP SUBPARTITION command to drop a subpartition definition, and the data stored in that subpartition. The syntax is:

ALTER TABLE <table_name> DROP SUBPARTITION <subpartition_name>;

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to be deleted.

DescriptionDescription

The ALTER TABLE… DROP SUBPARTITION command deletes a subpartition, and the data stored in that subpartition. To use the DROP
SUBPARTITION clause, you must be the owner of the partitioning root, a member of a group that owns the table, or have superuser or administrative
privileges.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1401

18.3.14.1 Example - Deleting a Subpartition

The example that follows deletes a subpartition of the sales table. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
 SUBPARTITION BY LIST (country)
 (
 PARTITION first_half_2012 VALUES LESS THAN('01-JUL-2012')
 (
 SUBPARTITION europe VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION americas VALUES ('CANADA', 'US'),
 SUBPARTITION asia VALUES ('PAKISTAN', 'INDIA')
),
 PARTITION second_half_2012 VALUES LESS THAN('01-JAN-2013')
);

Querying the ALL_TAB_SUBPARTITIONS view displays the subpartition names.

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE | 'ITALY', 'FRANCE'
 AMERICAS | 'CANADA', 'US'
 ASIA | 'PAKISTAN', 'INDIA'
 SYS0101 | DEFAULT
(4 rows)

To delete the americas subpartition from the sales table, invoke the following command:

ALTER TABLE sales DROP SUBPARTITION americas;

Querying the ALL_TAB_SUBPARTITIONS view demonstrates that the subpartition has been successfully deleted.

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE | 'ITALY', 'FRANCE'
 ASIA | 'PAKISTAN', 'INDIA'
 SYS0101 | DEFAULT
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1402

18.3.15 TRUNCATE TABLE

Use the TRUNCATE TABLE command to remove the contents of a table, while preserving the table definition. When you truncate a table, any partitions
or subpartitions of that table are also truncated. The syntax is:

TRUNCATE TABLE <table_name>

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

DescriptionDescription

The TRUNCATE TABLE command removes an entire table, and the data that resides in that table. When you delete a table, any partitions or subpartitions
(of that table) are deleted as well.

To use the TRUNCATE TABLE command, you must be the owner of the partitioning root, a member of a group that owns the table, the schema owner, or
a database superuser.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1403

18.3.15.1 Example - Emptying a Table

The example that follows removes the data from the sales table. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1404

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

To delete the contents of the sales table, invoke the following command:

TRUNCATE TABLE sales;

Now, querying the sales table shows that the data has been removed but the structure is intact.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------+---------+---------+---------+------+--------
(0 rows)

For more information about the TRUNCATE TABLE command, see the PostgreSQL documentation at:

https://www.postgresql.org/docs/current/static/sql-truncate.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1405

https://www.postgresql.org/docs/current/static/sql-truncate.html

18.3.16 ALTER TABLE...TRUNCATE PARTITION

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the specified partition, leaving the partition structure intact. The
syntax is:

ALTER TABLE <table_name> TRUNCATE PARTITION <partition_name>
 [{DROP|REUSE} STORAGE]

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

partition_name

The name of the partition to be deleted.

DescriptionDescription

Use the ALTER TABLE… TRUNCATE PARTITION command to remove the data from the specified partition, leaving the partition structure intact.
When you truncate a partition, any subpartitions of that partition are also truncated.

ALTER TABLE… TRUNCATE PARTITION will not cause ON DELETE triggers that might exist for the table to fire, but it will fire ON TRUNCATE
triggers. If an ON TRUNCATE trigger is defined for the partition, all BEFORE TRUNCATE triggers are fired before any truncation happens, and all
AFTER TRUNCATE triggers are fired after the last truncation occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE… TRUNCATE PARTITION .

DROP STORAGE and REUSE STORAGE are included for compatibility only; the clauses are parsed and ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1406

18.3.16.1 Example - Emptying a Partition

The example that follows removes the data from a partition of the sales table. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA')
);

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (30, '9519b', 'CANADA', '01-Feb-2012', '75000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2012', '4950'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (10, '9519a', 'FRANCE', '18-Aug-2012', '650000'),
 (10, '9519b', 'FRANCE', '18-Aug-2012', '650000'),
 (20, '3788b', 'INDIA', '21-Sept-2012', '5090'),
 (40, '4788a', 'US', '23-Sept-2012', '4950'),
 (40, '4788b', 'US', '09-Oct-2012', '15000'),
 (20, '4519a', 'INDIA', '18-Oct-2012', '650000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the partitions are populated with data.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1407

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(17 rows)

To delete the contents of the americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE PARTITION americas;

Now, querying the sales table shows that the content of the americas partition has been removed.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
--------------+---------+---------+----------+--------------------+--------
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(9 rows)

While the rows have been removed, the structure of the americas partition is still intact.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
(3 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1408

18.3.17 ALTER TABLE...TRUNCATE SUBPARTITION

Use the ALTER TABLE… TRUNCATE SUBPARTITION command to remove all of the data from the specified subpartition, leaving the subpartition
structure intact. The syntax is:

ALTER TABLE <table_name>
 TRUNCATE SUBPARTITION <subpartition_name>
 [{DROP|REUSE} STORAGE]

ParametersParameters

table_name

The name (optionally schema-qualified) of the partitioned table.

subpartition_name

The name of the subpartition to be truncated.

DescriptionDescription

The ALTER TABLE… TRUNCATE SUBPARTITION command removes all data from a specified subpartition, leaving the subpartition structure intact.

ALTER TABLE… TRUNCATE SUBPARTITION will not cause ON DELETE triggers that might exist for the table to fire, but it will fire ON TRUNCATE
triggers. If an ON TRUNCATE trigger is defined for the subpartition, all BEFORE TRUNCATE triggers are fired before any truncation happens, and all
AFTER TRUNCATE triggers are fired after the last truncation occurs.

You must have the TRUNCATE privilege on a table to invoke ALTER TABLE… TRUNCATE SUBPARTITION .

The DROP STORAGE and REUSE STORAGE clauses are included for compatibility only; the clauses are parsed and ignored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1409

18.3.17.1 Example - Emptying a Subpartition

The example that follows removes the data from a subpartition of the sales table. Use the following command to create the sales table:

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date) SUBPARTITION BY LIST (country)
(
 PARTITION "2011" VALUES LESS THAN('01-JAN-2012')
 (
 SUBPARTITION europe_2011 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2011 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2011 VALUES ('US', 'CANADA')
),
 PARTITION "2012" VALUES LESS THAN('01-JAN-2013')
 (
 SUBPARTITION europe_2012 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2012 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2012 VALUES ('US', 'CANADA')
),
 PARTITION "2013" VALUES LESS THAN('01-JAN-2015')
 (
 SUBPARTITION europe_2013 VALUES ('ITALY', 'FRANCE'),
 SUBPARTITION asia_2013 VALUES ('PAKISTAN', 'INDIA'),
 SUBPARTITION americas_2013 VALUES ('US', 'CANADA')
)
);

Populate the sales table with the command:

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2011', '45000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (40, '9519b', 'US', '12-Apr-2012', '145000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (40, '4577b', 'US', '11-Nov-2012', '25000'),
 (30, '7588b', 'CANADA', '14-Dec-2011', '50000'),
 (30, '4519b', 'CANADA', '08-Apr-2012', '120000'),
 (40, '3788a', 'US', '12-May-2011', '4950'),
 (20, '3788a', 'US', '04-Apr-2012', '37500'),
 (40, '4577b', 'INDIA', '11-Jun-2011', '25000'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (20, '4519b', 'INDIA', '2-Dec-2012', '5090');

Querying the sales table shows that the rows have been distributed amongst the subpartitions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1410

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country| date | amount
-------------------+--------+---------+--------+--------------------+--------
sales_americas_2011| 30| 7588b | CANADA | 14-DEC-11 00:00:00 | 50000
sales_americas_2011| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
sales_europe_2011 | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 | 45000
sales_asia_2011 | 40| 4577b | INDIA | 11-JUN-11 00:00:00 | 25000
sales_americas_2012| 40| 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas_2012| 40| 4577b | US | 11-NOV-12 00:00:00 | 25000
sales_americas_2012| 30| 4519b | CANADA | 08-APR-12 00:00:00 |120000
sales_americas_2012| 20| 3788a | US | 04-APR-12 00:00:00 | 37500
sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia_2012 | 20| 3788a |PAKISTAN| 04-JUN-12 00:00:00 | 37500
sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(12 rows)

To delete the contents of the 2012_americas partition, invoke the following command:

ALTER TABLE sales TRUNCATE SUBPARTITION "americas_2012";

Now, querying the sales table shows that the content of the americas_2012 partition has been removed.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date |amount
-------------------+--------+---------+----------+--------------------+------
sales_americas_2011| 30| 7588b | CANADA | 14-DEC-11 00:00:00 |50000
sales_americas_2011| 40| 3788a | US | 12-MAY-11 00:00:00 | 4950
sales_europe_2011 | 10| 4519b | FRANCE | 17-JAN-11 00:00:00 |45000
sales_asia_2011 | 40| 4577b | INDIA | 11-JUN-11 00:00:00 |25000
sales_europe_2012 | 10| 9519b | ITALY | 07-JUL-12 00:00:00 |15000
sales_asia_2012 | 20| 3788a | INDIA | 01-MAR-12 00:00:00 |75000
sales_asia_2012 | 20| 3788a | PAKISTAN | 04-JUN-12 00:00:00 |37500
sales_asia_2012 | 20| 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
(8 rows)

While the rows have been removed, the structure of the 2012_americas partition is still intact.

edb=# SELECT subpartition_name, high_value FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | high_value
-------------------+---------------------
 EUROPE_2011 | 'ITALY', 'FRANCE'
 ASIA_2011 | 'PAKISTAN', 'INDIA'
 AMERICAS_2011 | 'US', 'CANADA'
 EUROPE_2012 | 'ITALY', 'FRANCE'
 ASIA_2012 | 'PAKISTAN', 'INDIA'
 AMERICAS_2012 | 'US', 'CANADA'
 EUROPE_2013 | 'ITALY', 'FRANCE'
 ASIA_2013 | 'PAKISTAN', 'INDIA'
 AMERICAS_2013 | 'US', 'CANADA'
(9 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1411

18.4 Handling Stray Values in a LIST or RANGE Partitioned Table

A DEFAULT or MAXVALUE partition or subpartition will capture any rows that do not meet the other partitioning rules defined for a table.

Defining a DEFAULT PartitionDefining a DEFAULT Partition

A DEFAULT partition will capture any rows that do not fit into any other partition in a LIST partitioned (or subpartitioned) table. If you do not include a
DEFAULT rule, any row that does not match one of the values in the partitioning constraints will result in an error. Each LIST partition or subpartition

may have its own DEFAULT rule.

The syntax of a DEFAULT rule is:

PARTITION [<partition_name>] VALUES (DEFAULT)

Where partition_name specifies the name of the partition or subpartition that will store any rows that do not match the rules specified for other
partitions.

The last example created a list partitioned table in which the server decided which partition to store the data based upon the value of the country
column. If you attempt to add a row in which the value of the country column contains a value not listed in the rules, Advanced Server reports an error.

edb=# INSERT INTO sales VALUES
edb-# (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');
ERROR: no partition of relation "sales_2012" found for row
DETAIL: Partition key of the failing row contains (country) = (IRELAND).

The following example creates the same table, but adds a DEFAULT partition. The server will store any rows that do not match a value specified in the
partitioning rules for europe, asia , or americas partitions in the others partition.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY LIST(country)
(
 PARTITION europe VALUES('FRANCE', 'ITALY'),
 PARTITION asia VALUES('INDIA', 'PAKISTAN'),
 PARTITION americas VALUES('US', 'CANADA'),
 PARTITION others VALUES (DEFAULT)
);

To test the DEFAULT partition, add row with a value in the country column that does not match one of the countries specified in the partitioning
constraints.

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2012', '45000');

Querying the contents of the sales table confirms that the previously rejected row is now stored in the sales_others partition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1412

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
----------------+---------+---------+----------+--------------------+--------
 sales_americas | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_americas | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_americas | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_americas | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_americas | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_americas | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_americas | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_europe | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_europe | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_asia | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_asia | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_asia | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-12 00:00:00 | 45000
(18 rows)

Advanced Server provides the following methods to re-assign the contents of a DEFAULT partition or subpartition:

You can use the ALTER TABLE… ADD PARTITION command to add a partition to a table with a DEFAULT rule as long as there are no
conflicting values between existing rows in the table and the values of the partition to be added. You can alternatively use the ALTER TABLE…
SPLIT PARTITION command to split an existing partition. Examples are shown following this bullet point list.
You can use the ALTER TABLE… ADD SUBPARTITION command to add a subpartition to a table with a DEFAULT rule as long as there are no
conflicting values between existing rows in the table and the values of the subpartition to be added. You can alternatively use the ALTER TABLE…
SPLIT SUBPARTITION command to split an existing subpartition.

Adding a Partition to a Table with a DEFAULT PartitionAdding a Partition to a Table with a DEFAULT Partition

Using the table that was created with the CREATE TABLE sales command shown at the beginning of this section, the following shows use of the
ALTER TABLE... ADD PARTITION command assuming there is no conflict of values between the existing rows in the table and the values of the

partition to be added.

edb=# ALTER TABLE sales ADD PARTITION africa values ('SOUTH AFRICA', 'KENYA');
ALTER TABLE

However, the following shows the error when there are conflicting values when the following rows have been inserted into the table.

edb=# INSERT INTO sales (dept_no, country) VALUES
(1,'FRANCE'),(2,'INDIA'),(3,'US'),(4,'SOUTH AFRICA'),(5,'NEPAL');
INSERT 0 5

Row (4,'SOUTH AFRICA') conflicts with the VALUES list in the ALTER TABLE... ADD PARTITION statement, thus resulting in an error.

edb=# ALTER TABLE sales ADD PARTITION africa values ('SOUTH AFRICA', 'KENYA');
ERROR: updated partition constraint for default partition "sales_others"
would be violated by some row

Splitting a DEFAULT PartitionSplitting a DEFAULT Partition

The following example splits a DEFAULT partition, redistributing the partition's content between two new partitions. The table was created with the
CREATE TABLE sales command shown at the beginning of this section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1413

The following inserts rows into the table including rows into the DEFAULT partition.

INSERT INTO sales VALUES
 (10, '4519b', 'FRANCE', '17-Jan-2012', '45000'),
 (10, '9519b', 'ITALY', '07-Jul-2012', '15000'),
 (20, '3788a', 'INDIA', '01-Mar-2012', '75000'),
 (20, '3788a', 'PAKISTAN', '04-Jun-2012', '37500'),
 (30, '9519b', 'US', '12-Apr-2012', '145000'),
 (30, '7588b', 'CANADA', '14-Dec-2012', '50000'),
 (40, '4519b', 'SOUTH AFRICA', '08-Apr-2012', '120000'),
 (40, '4519b', 'KENYA', '08-Apr-2012', '120000'),
 (50, '3788a', 'CHINA', '12-May-2012', '4950');

The partitions include the DEFAULT others partition.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+---------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 OTHERS | DEFAULT
(4 rows)

The following shows the rows distributed amongst the partitions.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no| part_no | country | date | amount
--------------+--------+---------+--------------+--------------------+-------
sales_americas| 30 | 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas| 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_others | 40 | 4519b | SOUTH AFRICA | 08-APR-12 00:00:00 |120000
sales_others | 40 | 4519b | KENYA | 08-APR-12 00:00:00 |120000
sales_others | 50 | 3788a | CHINA | 12-MAY-12 00:00:00 | 4950
(9 rows)

The following command splits the DEFAULT others partition into two partitions named africa and others .

ALTER TABLE sales SPLIT PARTITION others VALUES
 ('SOUTH AFRICA', 'KENYA')
 INTO (PARTITION africa, PARTITION others);

The partitions now include the africa partition along with the DEFAULT others partition.

edb=# SELECT partition_name, high_value FROM ALL_TAB_PARTITIONS;
 partition_name | high_value
----------------+-------------------------
 EUROPE | 'FRANCE', 'ITALY'
 ASIA | 'INDIA', 'PAKISTAN'
 AMERICAS | 'US', 'CANADA'
 AFRICA | 'SOUTH AFRICA', 'KENYA'
 OTHERS | DEFAULT
(5 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1414

The following shows that the rows have been redistributed across the new partitions.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid |dept_no | part_no | country | date | amount
---------------+--------+---------+-------------+--------------------+-------
sales_americas | 30 | 9519b | US | 12-APR-12 00:00:00 |145000
sales_americas | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
sales_europe | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
sales_europe | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
sales_asia | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
sales_asia | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
sales_africa | 40 | 4519b | SOUTH AFRICA| 08-APR-12 00:00:00 |120000
sales_africa | 40 | 4519b | KENYA | 08-APR-12 00:00:00 |120000
sales_others_1 | 50 | 3788a | CHINA | 12-MAY-12 00:00:00 | 4950
(9 rows)

Defining a MAXVALUE PartitionDefining a MAXVALUE Partition

A MAXVALUE partition (or subpartition) will capture any rows that do not fit into any other partition in a range-partitioned (or subpartitioned) table. If you
do not include a MAXVALUE rule, any row that exceeds the maximum limit specified by the partitioning rules will result in an error. Each partition or
subpartition may have its own MAXVALUE partition.

The syntax of a MAXVALUE rule is:

PARTITION [<partition_name>] VALUES LESS THAN (MAXVALUE)

Where partition_name specifies the name of the partition that will store any rows that do not match the rules specified for other partitions.

The last example created a range-partitioned table in which the data was partitioned based upon the value of the date column. If you attempt to add a
row with a date that exceeds a date listed in the partitioning constraints, Advanced Server reports an error.

edb=# INSERT INTO sales VALUES
edb-# (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');
ERROR: no partition of relation "sales" found for row
DETAIL: Partition key of the failing row contains (date) = (01-MAR-13 00:00:00).

The following CREATE TABLE command creates the same table, but with a MAXVALUE partition. Instead of throwing an error, the server will store any
rows that do not match the previous partitioning constraints in the others partition.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 date date,
 amount number
)
PARTITION BY RANGE(date)
(
 PARTITION q1_2012 VALUES LESS THAN('2012-Apr-01'),
 PARTITION q2_2012 VALUES LESS THAN('2012-Jul-01'),
 PARTITION q3_2012 VALUES LESS THAN('2012-Oct-01'),
 PARTITION q4_2012 VALUES LESS THAN('2013-Jan-01'),
 PARTITION others VALUES LESS THAN (MAXVALUE)
);

To test the MAXVALUE partition, add a row with a value in the date column that exceeds the last date value listed in a partitioning rule. The server will

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1415

To test the MAXVALUE partition, add a row with a value in the date column that exceeds the last date value listed in a partitioning rule. The server will
store the row in the others partition.

INSERT INTO sales VALUES
 (40, '3000x', 'IRELAND', '01-Mar-2013', '45000');

Querying the contents of the sales table confirms that the previously rejected row is now stored in the sales_others partition.

edb=# SELECT tableoid::regclass, * FROM sales;
 tableoid | dept_no | part_no | country | date | amount
---------------+---------+---------+----------+--------------------+--------
 sales_q1_2012 | 10 | 4519b | FRANCE | 17-JAN-12 00:00:00 | 45000
 sales_q1_2012 | 20 | 3788a | INDIA | 01-MAR-12 00:00:00 | 75000
 sales_q1_2012 | 30 | 9519b | CANADA | 01-FEB-12 00:00:00 | 75000
 sales_q2_2012 | 40 | 9519b | US | 12-APR-12 00:00:00 | 145000
 sales_q2_2012 | 20 | 3788a | PAKISTAN | 04-JUN-12 00:00:00 | 37500
 sales_q2_2012 | 30 | 4519b | CANADA | 08-APR-12 00:00:00 | 120000
 sales_q2_2012 | 40 | 3788a | US | 12-MAY-12 00:00:00 | 4950
 sales_q3_2012 | 10 | 9519b | ITALY | 07-JUL-12 00:00:00 | 15000
 sales_q3_2012 | 10 | 9519a | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 10 | 9519b | FRANCE | 18-AUG-12 00:00:00 | 650000
 sales_q3_2012 | 20 | 3788b | INDIA | 21-SEP-12 00:00:00 | 5090
 sales_q3_2012 | 40 | 4788a | US | 23-SEP-12 00:00:00 | 4950
 sales_q4_2012 | 40 | 4577b | US | 11-NOV-12 00:00:00 | 25000
 sales_q4_2012 | 30 | 7588b | CANADA | 14-DEC-12 00:00:00 | 50000
 sales_q4_2012 | 40 | 4788b | US | 09-OCT-12 00:00:00 | 15000
 sales_q4_2012 | 20 | 4519a | INDIA | 18-OCT-12 00:00:00 | 650000
 sales_q4_2012 | 20 | 4519b | INDIA | 02-DEC-12 00:00:00 | 5090
 sales_others | 40 | 3000x | IRELAND | 01-MAR-13 00:00:00 | 45000
(18 rows)

Please note that Advanced Server does not have a way to re-assign the contents of a MAXVALUE partition or subpartition.

You cannot use the ALTER TABLE… ADD PARTITION statement to add a partition to a table with a MAXVALUE rule, but you can use the
ALTER TABLE… SPLIT PARTITION statement to split an existing partition.

You cannot use the ALTER TABLE… ADD SUBPARTITION statement to add a subpartition to a table with a MAXVALUE rule , but you can split
an existing subpartition with the ALTER TABLE… SPLIT SUBPARTITION statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1416

18.5 Specifying Multiple Partitioning Keys in a RANGE Partitioned Table

You can often improve performance by specifying multiple key columns for a RANGE partitioned table. If you often select rows using comparison operators
(based on a greater-than or less-than value) on a small set of columns, consider using those columns in RANGE partitioning rules.

Specifying Multiple Keys in a Range-Partitioned TableSpecifying Multiple Keys in a Range-Partitioned Table

Range-partitioned table definitions may include multiple columns in the partitioning key. To specify multiple partitioning keys for a range-partitioned table,
include the column names in a comma-separated list after the PARTITION BY RANGE clause.

CREATE TABLE sales
(
 dept_no number,
 part_no varchar2,
 country varchar2(20),
 sale_year number,
 sale_month number,
 sale_day number,
 amount number
)
PARTITION BY RANGE(sale_year, sale_month)
(
 PARTITION q1_2012
 VALUES LESS THAN(2012, 4),
 PARTITION q2_2012
 VALUES LESS THAN(2012, 7),
 PARTITION q3_2012
 VALUES LESS THAN(2012, 10),
 PARTITION q4_2012
 VALUES LESS THAN(2013, 1)
);

If a table is created with multiple partitioning keys, you must specify multiple key values when querying the table to take full advantage of partition
pruning.

edb=# EXPLAIN SELECT * FROM sales WHERE sale_year = 2012 AND sale_month = 8;
 QUERY PLAN
--
 Append (cost=0.00..14.35 rows=1 width=250)
 -> Seq Scan on sales_q3_2012 (cost=0.00..14.35 rows=1 width=250)
 Filter: ((sale_year = '2012'::numeric) AND (sale_month = '8'::numeric))
(3 rows)

Since all rows with a value of 8 in the sale_month column and a value of 2012 in the sale_year column will be stored in the q3_2012
partition, Advanced Server searches only that partition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1417

18.6 Retrieving Information about a Partitioned Table

Advanced Server provides five system catalog views that you can use to view information about the structure of partitioned tables.

Querying the Partitioning ViewsQuerying the Partitioning Views

You can query the following views to retrieve information about partitioned and subpartitioned tables:

ALL_PART_TABLES
ALL_TAB_PARTITIONS
ALL_TAB_SUBPARTITIONS
ALL_PART_KEY_COLUMNS
ALL_SUBPART_KEY_COLUMNS

The structure of each view is explained in Table Partitioning Views - Reference. If you are using the EDB-PSQL client, you can also discover the structure of a
view by entering:

\d <view_name>

Where view_name specifies the name of the table partitioning view.

Querying a view can provide information about the structure of a partitioned or subpartitioned table. For example, the following code snippet displays the
names of a subpartitioned table:

edb=# SELECT subpartition_name, partition_name FROM ALL_TAB_SUBPARTITIONS;
 subpartition_name | partition_name
-------------------+----------------
 EUROPE_2011 | EUROPE
 EUROPE_2012 | EUROPE
 ASIA_2011 | ASIA
 ASIA_2012 | ASIA
 AMERICAS_2011 | AMERICAS
 AMERICAS_2012 | AMERICAS
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1418

18.6.1 Table Partitioning Views - Reference

Query the following catalog views (compatible with Oracle databases), to review detailed information about your partitioned tables.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1419

18.6.1.1 ALL_PART_TABLES

The following table lists the information available in the ALL_PART_TABLES view:

Column Type Description

owner name The owner of the table.

schema_name name The schema in which the table resides.

table_name name The name of the table.

partitioning_type text RANGE, LIST, or HASH.

subpartitioning_type text RANGE, LIST, HASH, or NONE.

partition_count bigint The number of partitions.

def_subpartition_count integer The default subpartition count - this will always be 0.

partitioning_key_count integer The number of columns listed in the partition by clause.

subpartitioning_key_count integer The number of columns in the subpartition by clause.

status character varying(8) This column will always be VALID.

def_tablespace_name character varying(30) This column will always be NULL.

def_pct_free numeric This column will always be NULL.

def_pct_used numeric This column will always be NULL.

def_ini_trans numeric This column will always be NULL.

def_max_trans numeric This column will always be NULL.

def_initial_extent character varying(40) This column will always be NULL.

def_next_extent character varying(40) This column will always be NULL.

def_min_extents character varying(40) This column will always be NULL.

def_max_extents character varying(40) This column will always be NULL.

def_pct_increase character varying(40) This column will always be NULL.

def_freelists numeric This column will always be NULL.

def_freelist_groups numeric This column will always be NULL.

def_logging character varying(7) This column will always be YES.

def_compression character varying(8) This column will always be NONE.

def_buffer_pool character varying(7) This column will always be DEFAULT.

ref_ptn_constraint_name character varying(30) This column will always be NULL.

interval character varying(1000) This column will always be NULL.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1420

18.6.1.2 ALL_TAB_PARTITIONS

The following table lists the information available in the ALL_TAB_PARTITIONS view:

Column Type Description

table_owner name The owner of the table.

schema_name name The schema in which the table resides.

table_name name The name of the table.

composite text YES if the table is subpartitioned; NO if it is not subpartitioned.

partition_name name The name of the partition.

subpartition_count bigint The number of subpartitions for this partition.

high_value text The high partitioning value specified in the CREATE TABLE statement.

high_value_length integer The length of high partitioning value.

partition_position integer The ordinal position of this partition.

tablespace_name name The tablespace in which this partition resides.

pct_free numeric This column will always be 0.

pct_used numeric This column will always be 0.

ini_trans numeric This column will always be 0.

max_trans numeric This column will always be 0.

initial_extent numeric This column will always be NULL.

next_extent numeric This column will always be NULL.

min_extent numeric This column will always be 0.

max_extent numeric This column will always be 0.

pct_increase numeric This column will always be 0.

freelists numeric This column will always be NULL.

freelist_groups numeric This column will always be NULL.

logging character varying(7) This column will always be YES.

compression character varying(8) This column will always be NONE.

num_rows numeric The approx. number of rows in this partition.

blocks integer The approx. number of blocks in this partition.

empty_blocks numeric This column will always be NULL.

avg_space numeric This column will always be NULL.

chain_cnt numeric This column will always be NULL.

avg_row_len numeric This column will always be NULL.

sample_size numeric This column will always be NULL.

last_analyzed timestamp without time zone This column will always be NULL.

buffer_pool character varying(7) This column will always be NULL.

global_stats character varying(3) This column will always be YES.

user_stats character varying(3) This column will always be NO.

backing_table regclass OID of the backing table for this partition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1421

18.6.1.3 ALL_TAB_SUBPARTITIONS

The following table lists the information available in the ALL_TAB_SUBPARTITIONS view:

Column Type Description

table_owner name The name of the owner of the table.

schema_name name The name of the schema in which the table resides.

table_name name The name of the table.

partition_name name The name of the partition.

subpartition_name name The name of the subpartition.

high_value text The high partitioning value specified in the CREATE TABLE statement.

high_value_length integer The length of high partitioning value.

subpartition_position integer The ordinal position of this subpartition.

tablespace_name name The tablespace in which this subpartition resides.

pct_free numeric This column will always be 0.

pct_used numeric This column will always be 0.

ini_trans numeric This column will always be 0.

max_trans numeric This column will always be 0.

initial_extent numeric This column will always be NULL.

next_extent numeric This column will always be NULL.

min_extent numeric This column will always be 0.

max_extent numeric This column will always be 0.

pct_increase numeric This column will always be 0.

freelists numeric This column will always be NULL.

freelist_groups numeric This column will always be NULL.

logging character varying(7) This column will always be YES.

compression character varying(8) This column will always be NONE.

num_rows numeric The approx. number of rows in this subpartition.

blocks integer The approx. number of blocks in this subpartition.

empty_blocks numeric This column will always be NULL.

avg_space numeric This column will always be NULL.

chain_cnt numeric This column will always be NULL.

avg_row_len numeric This column will always be NULL.

sample_size numeric This column will always be NULL.

last_analyzed timestamp without time zone This column will always be NULL.

buffer_pool character varying(7) This column will always be NULL.

global_stats character varying(3) This column will always be YES.

user_stats character varying(3) This column will always be NO.

backing_table regclass OID of the backing table for this subpartition.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1422

18.6.1.4 ALL_PART_KEY_COLUMNS

The following table lists the information available in the ALL_PART_KEY_COLUMNS view:

Column Type Description

owner name The name of the table owner.

schema_name name The name of the schema on which the table resides.

name name The name of the table.

object_type character
(5)

This column will always be TABLE .

column_name name The name of the partitioning key column.

column_posi
tion

integer The position of this column within the partitioning key (the first column has a column position of 1, the second
column has a column position of 2...)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1423

18.6.1.5 ALL_SUBPART_KEY_COLUMNS

The following table lists the information available in the ALL_SUBPART_KEY_COLUMNS view:

Column Type Description

owner name The name of the table owner.

schema_name name The name of the schema on which the table resides.

name name The name of the table.

object_type characte
r(5)

This column will always be TABLE .

column_name name The name of the partitioning key column.

column_posi
tion

integer The position of this column within the subpartitioning key (the first column has a column position of 1, the second
column has a column position of 2...)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1424

19 ECPGPlus Guide

EDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus. ECPGPlus allows you to include Pro*C compatible embedded SQL commands
in C applications when connected to an EDB Postgres Advanced Server (Advanced Server) database. When you use ECPGPlus to compile an application, the
SQL code is syntax-checked and translated into C.

ECPGPlus supports:

Oracle Dynamic SQL – Method 4 (ODS-M4).
Pro*C compatible anonymous blocks.
A CALL statement compatible with Oracle databases.

As part of ECPGPlus's Pro*C compatibility, you do not need to include the BEGIN DECLARE SECTION and END DECLARE SECTION directives.

PostgreSQL CompatibilityPostgreSQL Compatibility

While most ECPGPlus statements will work with community PostgreSQL, the CALL statement, and the EXECUTE…END EXEC statement work only when
the client application is connected to EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1425

19.1 ECPGPlus - Overview

EDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus. ECPGPlus is a Pro*C-compatible version of the PostgreSQL C pre-compiler.
ECPGPlus translates a program that combines C code and embedded SQL statements into an equivalent C program. As it performs the translation,
ECPGPlus verifies that the syntax of each SQL construct is correct.

The following diagram charts the path of a program containing embedded SQL statements as it is compiled into an executable:

Fig. 1: Compilation of a program containing embedded SQL statements

To produce an executable from a C program that contains embedded SQL statements, pass the program (my_program.pgc in the diagram above) to the
ECPGPlus pre-compiler. ECPGPlus translates each SQL statement in my_program.pgc into C code that calls the ecpglib API, and produces a C
program (my_program.c). Then, pass the C program to a C compiler; the C compiler generates an object file (my_program.o). Finally, pass the
object file (my_program.o), as well as the ecpglib library file, and any other required libraries to the linker, which in turn produces the executable
(my_program).

While the ECPGPlus preprocessor validates the syntax of each SQL statement, it cannot validate the semantics. For example, the preprocessor will confirm
that an INSERT statement is syntactically correct, but it cannot confirm that the table mentioned in the INSERT statement actually exists.

Behind the ScenesBehind the Scenes

A client application contains a mix of C code and SQL code comprised of the following elements:

C preprocessor directives
C declarations (variables, types, functions, ...)
C definitions (variables, types, functions, ...)
SQL preprocessor directives
SQL statements

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1426

For example:

1 #include <stdio.h>
2 EXEC SQL INCLUDE sqlca;
3
4 extern void printInt(char *label, int val);
5 extern void printStr(char *label, char *val);
6 extern void printFloat(char *label, float val);
7
8 void displayCustomer(int custNumber)
9 {
10 EXEC SQL BEGIN DECLARE SECTION;
11 VARCHAR custName[50];
12 float custBalance;
13 int custID = custNumber;
14 EXEC SQL END DECLARE SECTION;
15
16 EXEC SQL SELECT name, balance
17 INTO :custName, :custBalance
18 FROM customer
19 WHERE id = :custID;
20
21 printInt("ID", custID);
22 printStr("Name", custName);
23 printFloat("Balance", custBalance);
24 }

In the above code fragment:

Line 1 specifies a directive to the C preprocessor.

C preprocessor directives may be interpreted or ignored; the option is controlled by a command line option (-C PROC) entered when you invoke
ECPGPlus. In either case, ECPGPlus copies each C preprocessor directive to the output file (4) without change; any C preprocessor directive found in
the source file will appear in the output file.

Line 2 specifies a directive to the SQL preprocessor.

SQL preprocessor directives are interpreted by the ECPGPlus preprocessor, and are not copied to the output file.

Lines 4 through 6 contain C declarations.

C declarations are copied to the output file without change, except that each VARCHAR declaration is translated into an equivalent struct
declaration.

Lines 10 through 14 contain an embedded-SQL declaration section.

C variables that you refer to within SQL code are known as host variables . If you invoke the ECPGPlus preprocessor in Pro*C mode (-C
PROC), you may refer to any C variable within a SQL statement; otherwise you must declare each host variable within a BEGIN/END
DECLARATION SECTION pair.

Lines 16 through 19 contain a SQL statement.

SQL statements are translated into calls to the ECPGPlus run-time library.

Lines 21 through 23 contain C code.

C code is copied to the output file without change.

Any SQL statement must be prefixed with EXEC SQL and extends to the next (unquoted) semicolon. For example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1427

Any SQL statement must be prefixed with EXEC SQL and extends to the next (unquoted) semicolon. For example:

printf(“Updating employee salaries\n”);

EXEC SQL UPDATE emp SET sal = sal * 1.25;
EXEC SQL COMMIT;

printf(“Employee salaries updated\n”);

When the preprocessor encounters the code fragment shown above, it passes the C code (the first line and the last line) to the output file without
translation and converts each EXEC SQL statement into a call to an ecpglib function. The result would appear similar to the following:

printf("Updating employee salaries\n");

{
 ECPGdo(__LINE__, 0, 1, NULL, 0, ECPGst_normal,
 "update emp set sal = sal * 1.25",
 ECPGt_EOIT, ECPGt_EORT);
}

{
 ECPGtrans(__LINE__, NULL, "commit");
}

printf(“Employee salaries updated\n”);

Installation and Configuration

On Windows, ECPGPlus is installed by the Advanced Server installation wizard as part of the Database Server component. On Linux, install with the
edb-asxx-server-devel RPM package where xx is the Advanced Server version number. By default, the executable is located in:

On Windows:

C:\Program Files\edb\as13\bin

On Linux:

/usr/edb/as13/bin

When invoking the ECPGPlus compiler, the executable must be in your search path (%PATH% on Windows, $PATH on Linux). For example, the following
commands set the search path to include the directory that holds the ECPGPlus executable file ecpg .

On Windows:

set EDB_PATH=C:\Program Files\edb\as13\bin
set PATH=%EDB_PATH%;%PATH%

On Linux:

export EDB_PATH==/usr/edb/as13/bin
export PATH=$EDB_PATH:$PATH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1428

Constructing a Makefile

A makefile contains a set of instructions that tell the make utility how to transform a program written in C (that contains embedded SQL) into a C
program. To try the examples in this guide, you will need:

a C compiler (and linker)
the make utility
ECPGPlus preprocessor and library
a makefile that contains instructions for ECPGPlus

The following code is an example of a makefile for the samples included in this guide. To use the sample code, save it in a file named makefile in the
directory that contains the source code file.

INCLUDES = -I$(shell pg_config --includedir)
LIBPATH = -L $(shell pg_config --libdir)
CFLAGS += $(INCLUDES) -g
LDFLAGS += -g
LDLIBS += $(LIBPATH) -lecpg -lpq

.SUFFIXES: .pgc,.pc

.pgc.c:
 ecpg -c $(INCLUDES) $?

.pc.c:
 ecpg -C PROC -c $(INCLUDES) $?

The first two lines use the pg_config program to locate the necessary header files and library directories:

INCLUDES = -I$(shell pg_config --includedir)
LIBPATH = -L $(shell pg_config --libdir)

The pg_config program is shipped with Advanced Server.

make knows that it should use the CFLAGS variable when running the C compiler and LDFLAGS and LDLIBS when invoking the linker. ECPG
programs must be linked against the ECPG run-time library (-lecpg) and the libpq library (-lpq)

CFLAGS += $(INCLUDES) -g
LDFLAGS += -g
LDLIBS += $(LIBPATH) -lecpg -lpq

The sample makefile instructs make how to translate a .pgc or a .pc file into a C program. Two lines in the makefile specify the mode in which
the source file will be compiled. The first compile option is:

.pgc.c:
 ecpg -c $(INCLUDES) $?

The first option tells make how to transform a file that ends in .pgc (presumably, an ECPG source file) into a file that ends in .c (a C program), using
community ECPG (without the ECPGPlus enhancements). It invokes the ECPG pre-compiler with the -c flag (instructing the compiler to convert SQL code
into C), using the value of the INCLUDES variable and the name of the .pgc file.

.pc.c:
 ecpg -C PROC -c $(INCLUDES) $?

The second option tells make how to transform a file that ends in .pg (an ECPG source file) into a file that ends in .c (a C program), using the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1429

The second option tells make how to transform a file that ends in .pg (an ECPG source file) into a file that ends in .c (a C program), using the
ECPGPlus extensions. It invokes the ECPG pre-compiler with the -c flag (instructing the compiler to convert SQL code into C), as well as the -C PROC
flag (instructing the compiler to use ECPGPlus in Pro*C-compatibility mode), using the value of the INCLUDES variable and the name of the .pgc file.

When you run make , pass the name of the ECPG source code file you wish to compile. For example, to compile an ECPG source code file named
customer_list.pgc , use the command:

make customer_list

The make utility consults the makefile (located in the current directory), discovers that the makefile contains a rule that will compile
customer_list.pgc into a C program (customer_list.c), and then uses the rules built into make to compile customer_list.c into an

executable program.

ECPGPlus Command Line Options

In the sample makefile shown above, make includes the -C option when invoking ECPGPlus to specify that ECPGPlus should be invoked in Pro*C
compatible mode.

If you include the -C PROC keywords on the command line, in addition to the ECPG syntax, you may use Pro*C command line syntax; for example:

$ ecpg -C PROC INCLUDE=/usr/edb/as13/include acct_update.c

To display a complete list of the other ECPGPlus options available, navigate to the ECPGPlus installation directory, and enter:

./ecpg --help

The command line options are:

OptionOption DescriptionDescription

-c Automatically generate C code from embedded SQL code.

-C mode

Use the -C option to specify a compatibility mode:

INFORMIX

INFORMIX_SE

PROC

-D symbol
Define a preprocessor symbol.

The -D keyword is not supported when compiling in PROC mode. Instead, use the Oracle-style ‘DEFINE=’ clause.

-h Parse a header file, this option includes option '-c' .

-i Parse system, include files as well.

-I directory Search directory for include files.

-o outfile Write the result to outfile.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1430

-r option

Specify run-time behavior; option can be:

no_indicator - Do not use indicators, but instead use special values to represent NULL values.

prepare - Prepare all statements before using them.

questionmarks - Allow use of a question mark as a placeholder.

usebulk - Enable bulk processing for INSERT , UPDATE and DELETE statements that operate on host variable arrays.

--regression Run in regression testing mode.

-t Turn on autocommit of transactions.

-l Disable #line directives.

--help Display the help options.

--version Output version information.

OptionOption DescriptionDescription

NoteNote

If you do not specify an output file name when invoking ECPGPlus, the output file name is created by stripping off the .pgc filename extension,
and appending .c to the file name.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1431

19.2 Using Embedded SQL

Each of the following sections leads with a code sample, followed by an explanation of each section within the code sample.

Example - A Simple Query

The first code sample demonstrates how to execute a SELECT statement (which returns a single row), storing the results in a group of host variables.
After declaring host variables, it connects to the edb sample database using a hard-coded role name and the associated password, and queries the emp
table. The query returns the values into the declared host variables; after checking the value of the NULL indicator variable, it prints a simple result set
onscreen and closes the connection.

/**
 * print_emp.pgc
 *
 */
#include <stdio.h>

int main(void)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb
 USER 'alice' IDENTIFIED BY '1safepwd';

 EXEC SQL
 SELECT
 empno, ename, sal, comm
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR:v_comm_ind
 FROM
 emp
 WHERE
 empno = 7369;

 if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
 else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
 EXEC SQL DISCONNECT;
}
/**

The code sample begins by including the prototypes and type definitions for the C stdio library, and then declares the main function:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1432

#include <stdio.h>

int main(void)
{

Next, the application declares a set of host variables used to interact with the database server:

EXEC SQL BEGIN DECLARE SECTION;
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
EXEC SQL END DECLARE SECTION;

Please note that if you plan to pre-compile the code in PROC mode, you may omit the BEGIN DECLARE…END DECLARE section. For more information
about declaring host variables, refer to the Declaring Host Variables.

The data type associated with each variable within the declaration section is a C data type. Data passed between the server and the client application must
share a compatible data type; for more information about data types, see the Supported C Data Types.

The next statement instructs the server how to handle an error:

EXEC SQL WHENEVER SQLERROR sqlprint;

If the client application encounters an error in the SQL code, the server will print an error message to stderr (standard error), using the sqlprint()
function supplied with ecpglib . The next EXEC SQL statement establishes a connection with Advanced Server:

EXEC SQL CONNECT TO edb
 USER 'alice' IDENTIFIED BY '1safepwd';

In our example, the client application connects to the edb database, using a role named alice with a password of 1safepwd .

The code then performs a query against the emp table:

EXEC SQL
 SELECT
 empno, ename, sal, comm
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind
 FROM
 emp
 WHERE
 empno = 7369;

The query returns information about employee number 7369 .

The SELECT statement uses an INTO clause to assign the retrieved values (from the empno , ename , sal and comm columns) into the
:v_empno , :v_ename , :v_sal and :v_comm host variables (and the :v_comm_ind null indicator). The first value retrieved is assigned to the

first variable listed in the INTO clause, the second value is assigned to the second variable, and so on.

The comm column contains the commission values earned by an employee, and could potentially contain a NULL value. The statement includes the
INDICATOR keyword, and a host variable to hold a null indicator.

The code checks the null indicator, and displays the appropriate on-screen results:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1433

if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);

If the null indicator is 0 (that is, false), the comm column contains a meaningful value, and the printf function displays the commission. If the null
indicator contains a non-zero value, comm is NULL , and printf displays a value of NULL . Please note that a host variable (other than a null
indicator) contains no meaningful value if you fetch a NULL into that host variable; you must use null indicators to identify any value which may be
NULL .

The final statement in the code sample closes the connection to the server:

EXEC SQL DISCONNECT;
}

Using Indicator Variables

The previous example included an indicator variable that identifies any row in which the value of the comm column (when returned by the server) was
NULL . An indicator variable is an extra host variable that denotes if the content of the preceding variable is NULL or truncated. The indicator variable is

populated when the contents of a row are stored. An indicator variable may contain the following values:

Indicator Value Denotes

If an indicator variable is less than 0 . The value returned by the server was NULL .

If an indicator variable is equal to 0 . The value returned by the server was not NULL , and was not truncated.

If an indicator variable is greater than 0 . The value returned by the server was truncated when stored in the host variable.

When including an indicator variable in an INTO clause, you are not required to include the optional INDICATOR keyword.

You may omit an indicator variable if you are certain that a query will never return a NULL value into the corresponding host variable. If you omit an
indicator variable and a query returns a NULL value, ecpglib will raise a run-time error.

Declaring Host Variables

You can use a host variable in a SQL statement at any point that a value may appear within that statement. A host variable is a C variable that you can use
to pass data values from the client application to the server, and return data from the server to the client application. A host variable can be:

an array
a typedef
a pointer
a struct
any scalar C data type

The code fragments that follow demonstrate using host variables in code compiled in PROC mode, and in non- PROC mode. The SQL statement adds a row
to the dept table, inserting the values returned by the variables v_deptno , v_dname and v_loc into the deptno column, the dname column
and the loc column, respectively.

If you are compiling in PROC mode, you may omit the EXEC SQL BEGIN DECLARE SECTION and EXEC SQL END DECLARE SECTION
directives. PROC mode permits you to use C function parameters as host variables:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1434

void addDept(int v_deptno, char v_dname, char v_loc)
{
 EXEC SQL INSERT INTO dept VALUES(:v_deptno, :v_dname, :v_loc);
}

If you are not compiling in PROC mode, you must wrap embedded variable declarations with the EXEC SQL BEGIN DECLARE SECTION and the
EXEC SQL END DECLARE SECTION directives, as shown below:

void addDept(int v_deptno, char v_dname, char v_loc)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int v_deptno_copy = v_deptno;
 char v_dname_copy[14+1] = v_dname;
 char v_loc_copy[13+1] = v_loc;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL INSERT INTO dept VALUES(:v_deptno, :v_dname, :v_loc);
}

You can also include the INTO clause in a SELECT statement to use the host variables to retrieve information:

EXEC SQL SELECT deptno, dname, loc
 INTO :v_deptno, :v_dname, v_loc FROM dept;

Each column returned by the SELECT statement must have a type-compatible target variable in the INTO clause. This is a simple example that retrieves
a single row; to retrieve more than one row, you must define a cursor, as demonstrated in the next example.

Example - Using a Cursor to Process a Result Set

The code sample that follows demonstrates using a cursor to process a result set. There are four basic steps involved in creating and using a cursor:

1. Use the DECLARE CURSOR statement to define a cursor.
2. Use the OPEN CURSOR statement to open the cursor.
3. Use the FETCH statement to retrieve data from a cursor.
4. Use the CLOSE CURSOR statement to close the cursor.

After declaring host variables, our example connects to the edb database using a user-supplied role name and password, and queries the emp table. The
query returns the values into a cursor named employees . The code sample then opens the cursor, and loops through the result set a row at a time,
printing the result set. When the sample detects the end of the result set, it closes the connection.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1435

/**
 * print_emps.pgc
 *
 */
#include <stdio.h>

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

 EXEC SQL OPEN employees;

 EXEC SQL WHENEVER NOT FOUND DO break;

 for (;;)
 {
 EXEC SQL FETCH NEXT FROM employees
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

 if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
 else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
 }
 EXEC SQL CLOSE employees;
 EXEC SQL DISCONNECT;
}
/**

The code sample begins by including the prototypes and type definitions for the C stdio library, and then declares the main function:

#include <stdio.h>

int main(int argc, char *argv[])
{

Next, the application declares a set of host variables used to interact with the database server:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1436

EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 int v_empno;
 char v_ename[40];
 double v_sal;
 double v_comm;
 short v_comm_ind;
EXEC SQL END DECLARE SECTION;

argv[] is an array that contains the command line arguments entered when the user runs the client application. argv[1] contains the first command
line argument (in this case, a username), and argv[2] contains the second command line argument (a password); please note that we have
omitted the error-checking code you would normally include a real-world application. The declaration initializes the values of username and
password , setting them to the values entered when the user invoked the client application.

You may be thinking that you could refer to argv[1] and argv[2] in a SQL statement (instead of creating a separate copy of each variable); that will
not work. All host variables must be declared within a BEGIN/END DECLARE SECTION (unless you are compiling in PROC mode). Since argv is a
function parameter (not an automatic variable), it cannot be declared within a BEGIN/END DECLARE SECTION . If you are compiling in PROC mode,
you can refer to any C variable within a SQL statement.

The next statement instructs the server to respond to an SQL error by printing the text of the error message returned by ECPGPlus or the database server:

EXEC SQL WHENEVER SQLERROR sqlprint;

Then, the client application establishes a connection with Advanced Server:

EXEC SQL CONNECT TO edb USER :username IDENTIFIED BY :password;

The CONNECT statement creates a connection to the edb database, using the values found in the :username and :password host variables to
authenticate the application to the server when connecting.

The next statement declares a cursor named employees :

EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

employees will contain the result set of a SELECT statement on the emp table. The query returns employee information from the following columns:
empno , ename , sal and comm . Notice that when you declare a cursor, you do not include an INTO clause - instead, you specify the target variables

(or descriptors) when you FETCH from the cursor.

Before fetching rows from the cursor, the client application must OPEN the cursor:

EXEC SQL OPEN employees;

In the subsequent FETCH section, the client application will loop through the contents of the cursor; the client application includes a WHENEVER
statement that instructs the server to break (that is, terminate the loop) when it reaches the end of the cursor:

EXEC SQL WHENEVER NOT FOUND DO break;

The client application then uses a FETCH statement to retrieve each row from the cursor INTO the previously declared host variables:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1437

for (;;)
{
 EXEC SQL FETCH NEXT FROM employees
 INTO
 :v_empno, :v_ename, :v_sal, :v_comm INDICATOR :v_comm_ind;

The FETCH statement uses an INTO clause to assign the retrieved values into the :v_empno , :v_ename , :v_sal and :v_comm host variables
(and the :v_comm_ind null indicator). The first value in the cursor is assigned to the first variable listed in the INTO clause, the second value is
assigned to the second variable, and so on.

The FETCH statement also includes the INDICATOR keyword and a host variable to hold a null indicator. If the comm column for the retrieved record
contains a NULL value, v_comm_ind is set to a non-zero value, indicating that the column is NULL .

The code then checks the null indicator, and displays the appropriate on-screen results:

if (v_comm_ind)
 printf("empno(%d), ename(%s), sal(%.2f) comm(NULL)\n",
 v_empno, v_ename, v_sal);
else
 printf("empno(%d), ename(%s), sal(%.2f) comm(%.2f)\n",
 v_empno, v_ename, v_sal, v_comm);
}

If the null indicator is 0 (that is, false), v_comm contains a meaningful value, and the printf function displays the commission. If the null
indicator contains a non-zero value, comm is NULL , and printf displays the string 'NULL' . Please note that a host variable (other than a null
indicator) contains no meaningful value if you fetch a NULL into that host variable; you must use null indicators for any value which may be NULL .

The final statements in the code sample close the cursor (employees) , and the connection to the server:

EXEC SQL CLOSE employees;
EXEC SQL DISCONNECT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1438

19.3 Using Descriptors

Dynamic SQL allows a client application to execute SQL statements that are composed at runtime. This is useful when you don't know the content or form a
statement will take when you are writing a client application. ECPGPlus does not allow you to use a host variable in place of an identifier (such as a table
name, column name or index name); instead, you should use dynamic SQL statements to build a string that includes the information, and then execute that
string. The string is passed between the client and the server in the form of a descriptor. A descriptor is a data structure that contains both the data and the
information about the shape of the data.

A client application must use a GET DESCRIPTOR statement to retrieve information from a descriptor. The following steps describe the basic flow of a
client application using dynamic SQL:

1. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the result set (select list).
2. Use an ALLOCATE DESCRIPTOR statement to allocate a descriptor for the input parameters (bind variables).
3. Obtain, assemble or compute the text of an SQL statement.
4. Use a PREPARE statement to parse and syntax-check the SQL statement.
5. Use a DESCRIBE statement to describe the select list into the select-list descriptor.
6. Use a DESCRIBE statement to describe the input parameters into the bind-variables descriptor.
7. Prompt the user (if required) for a value for each input parameter. Use a SET DESCRIPTOR statement to assign the values into a descriptor.
8. Use a DECLARE CURSOR statement to define a cursor for the statement.
9. Use an OPEN CURSOR statement to open a cursor for the statement.

10. Use a FETCH statement to fetch each row from the cursor, storing each row in select-list descriptor.
11. Use a GET DESCRIPTOR command to interrogate the select-list descriptor to find the value of each column in the current row.
12. Use a CLOSE CURSOR statement to close the cursor and free any cursor resources.

A descriptor may contain the attributes listed in the table below:

FieldField TypeType Attribute DescriptionAttribute Description

CARDINALITY integer The number of rows in the result set.

DATA N/A The data value.

DATETIME_INTERVAL_CODE integer

If TYPE is 9 :

1 - DATE

2 - TIME

3 - TIMESTAMP

4 - TIME WITH TIMEZONE

5 - TIMESTAMP WITH TIMEZONE

DATETIME_INTERVAL_PRECISION integer Unused.

INDICATOR integer Indicates a NULL or truncated value.

KEY_MEMBER integer Unused (returns FALSE).

LENGTH integer The data length (as stored on server).

NAME string The name of the column in which the data resides.

NULLABLE integer Unused (returns TRUE).

OCTET_LENGTH integer The data length (in bytes) as stored on server.

PRECISION integer The data precision (if the data is of numeric type).

RETURNED_LENGTH integer Actual length of data item.

RETURNED_OCTET_LENGTH integer Actual length of data item.

SCALE integer The data scale (if the data is of numeric type).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1439

TYPE integer

A numeric code that represents the data type of the column:

1 - SQL3_CHARACTER

2 - SQL3_NUMERIC

3 - SQL3_DECIMAL

4 - SQL3_INTEGER

5 - SQL3_SMALLINT

6 - SQL3_FLOAT

7 - SQL3_REAL

8 - SQL3_DOUBLE_PRECISION

9 - SQL3_DATE_TIME_TIMESTAMP

10 - SQL3_INTERVAL

12 - SQL3_CHARACTER_VARYING

13 - SQL3_ENUMERATED

14 - SQL3_BIT

15 - SQL3_BIT_VARYING

16 - SQL3_BOOLEAN

FieldField TypeType Attribute DescriptionAttribute Description

Example - Using a Descriptor to Return Data

The following simple application executes an SQL statement entered by an end user. The code sample demonstrates:

how to use a SQL descriptor to execute a SELECT statement.
how to find the data and metadata returned by the statement.

The application accepts an SQL statement from an end user, tests the statement to see if it includes the SELECT keyword, and executes the statement.

When invoking the application, an end user must provide the name of the database on which the SQL statement will be performed, and a string that
contains the text of the query.

For example, a user might invoke the sample with the following command:

./exec_stmt edb "SELECT * FROM emp"

/**
/* exec_stmt.pgc
*
*/

#include <stdio.h>
#include <stdlib.h>
#include <sql3types.h>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1440

#include <sqlca.h>

EXEC SQL WHENEVER SQLERROR SQLPRINT;
static void print_meta_data(char * desc_name);

char *md1 = "col field data ret";
char *md2 = "num name type len";
char *md3 = "--- -------------------- ----------------- ---";

int main(int argc, char *argv[])
{

 EXEC SQL BEGIN DECLARE SECTION;
 char *db = argv[1];
 char *stmt = argv[2];
 int col_count;
 EXEC SQL END DECLARE SECTION;

 EXEC SQL CONNECT TO :db;

 EXEC SQL ALLOCATE DESCRIPTOR parse_desc;
 EXEC SQL PREPARE query FROM :stmt;
 EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;
 EXEC SQL GET DESCRIPTOR 'parse_desc' :col_count = COUNT;

if(col_count == 0)
{
 EXEC SQL EXECUTE IMMEDIATE :stmt;

 if(sqlca.sqlcode >= 0)
 EXEC SQL COMMIT;
}
else
{
 int row;

 EXEC SQL ALLOCATE DESCRIPTOR row_desc;
 EXEC SQL DECLARE my_cursor CURSOR FOR query;
 EXEC SQL OPEN my_cursor;

 for(row = 0; ; row++)
 {
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL FETCH IN my_cursor
 INTO SQL DESCRIPTOR row_desc;

 if(sqlca.sqlcode != 0)
 break;

 if(row == 0)
 print_meta_data("row_desc");

 printf("[RECORD %d]\n", row+1);

 for(col = 1; col <= col_count; col++)
 {
 EXEC SQL BEGIN DECLARE SECTION;
 short ind;
 varchar val[40+1];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1441

 varchar name[20+1];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL GET DESCRIPTOR 'row_desc'
 VALUE :col
 :val = DATA, :ind = INDICATOR, :name = NAME;

 if(ind == -1)
 printf(" %-20s : <null>\n", name.arr);
 else if(ind > 0)
 printf(" %-20s : <truncated>\n", name.arr);
 else
 printf(" %-20s : %s\n", name.arr, val.arr);
 }

 printf("\n");

 }
 printf("%d rows\n", row);
}

exit(0);
}

static void print_meta_data(char *desc_name)
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *desc = desc_name;
 int col_count;
 int col;
 EXEC SQL END DECLARE SECTION;

static char *types[] =
{
 "unused ",
 "CHARACTER ",
 "NUMERIC ",
 "DECIMAL ",
 "INTEGER ",
 "SMALLINT ",
 "FLOAT ",
 "REAL ",
 "DOUBLE ",
 "DATE_TIME ",
 "INTERVAL ",
 "unused ",
 "CHARACTER_VARYING",
 "ENUMERATED ",
 "BIT ",
 "BIT_VARYING ",
 "BOOLEAN ",
 "abstract "
};

EXEC SQL GET DESCRIPTOR :desc :col_count = count;

printf("%s\n", md1);
printf("%s\n", md2);
printf("%s\n", md3);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1442

for(col = 1; col <= col_count; col++)
{

 EXEC SQL BEGIN DECLARE SECTION;
 int type;
 int ret_len;
 varchar name[21];
 EXEC SQL END DECLARE SECTION;
 char *type_name;

 EXEC SQL GET DESCRIPTOR :desc
 VALUE :col
 :name = NAME,
 :type = TYPE,
 :ret_len = RETURNED_OCTET_LENGTH;

 if(type > 0 && type < SQL3_abstract)
 type_name = types[type];
 else
 type_name = "unknown";

 printf("%02d: %-20s %-17s %04d\n",
 col, name.arr, type_name, ret_len);
}
printf("\n");
}

/**

The code sample begins by including the prototypes and type definitions for the C stdio and stdlib libraries, SQL data type symbols, and the SQLCA
(SQL communications area) structure:

#include <stdio.h>
#include <stdlib.h>
#include <sql3types.h>
#include <sqlca.h>

The sample provides minimal error handling; when the application encounters an SQL error, it prints the error message to screen:

EXEC SQL WHENEVER SQLERROR SQLPRINT;

The application includes a forward-declaration for a function named print_meta_data() that will print the metadata found in a descriptor:

static void print_meta_data(char * desc_name);

The following code specifies the column header information that the application will use when printing the metadata:

char *md1 = "col field data ret";
char *md2 = "num name type len";
char *md3 = "--- -------------------- ----------------- ---";

int main(int argc, char *argv[])
{

The following declaration section identifies the host variables that will contain the name of the database to which the application will connect, the content
of the SQL Statement, and a host variable that will hold the number of columns in the result set (if any).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1443

EXEC SQL BEGIN DECLARE SECTION;
 char *db = argv[1];
 char *stmt = argv[2];
 int col_count;
EXEC SQL END DECLARE SECTION;

The application connects to the database (using the default credentials):

EXEC SQL CONNECT TO :db;

Next, the application allocates an SQL descriptor to hold the metadata for a statement:

EXEC SQL ALLOCATE DESCRIPTOR parse_desc;

The application uses a PREPARE statement to syntax check the string provided by the user:

EXEC SQL PREPARE query FROM :stmt;

and a DESCRIBE statement to move the metadata for the query into the SQL descriptor.

EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;

Then, the application interrogates the descriptor to discover the number of columns in the result set, and stores that in the host variable col_count .

EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT;

If the column count is zero, the end user did not enter a SELECT statement; the application uses an EXECUTE IMMEDIATE statement to process the
contents of the statement:

if(col_count == 0)
{
 EXEC SQL EXECUTE IMMEDIATE :stmt;

If the statement executes successfully, the application performs a COMMIT :

if(sqlca.sqlcode >= 0)
 EXEC SQL COMMIT;
}
else
{

If the statement entered by the user is a SELECT statement (which we know because the column count is non-zero), the application declares a variable
named row .

int row;

Then, the application allocates another descriptor that holds the description and the values of a specific row in the result set:

EXEC SQL ALLOCATE DESCRIPTOR row_desc;

The application declares and opens a cursor for the prepared statement:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1444

EXEC SQL DECLARE my_cursor CURSOR FOR query;
EXEC SQL OPEN my_cursor;

Loops through the rows in result set:

for(row = 0; ; row++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;

Then, uses a FETCH to retrieve the next row from the cursor into the descriptor:

EXEC SQL FETCH IN my_cursor INTO SQL DESCRIPTOR row_desc;

The application confirms that the FETCH did not fail; if the FETCH fails, the application has reached the end of the result set, and breaks the loop:

if(sqlca.sqlcode != 0)
 break;

The application checks to see if this is the first row of the cursor; if it is, the application prints the metadata for the row.

if(row == 0)
 print_meta_data("row_desc");

Next, it prints a record header containing the row number:

printf("[RECORD %d]\n", row+1);

Then, it loops through each column in the row:

for(col = 1; col <= col_count; col++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 short ind;
 varchar val[40+1];
 varchar name[20+1];
 EXEC SQL END DECLARE SECTION;

The application interrogates the row descriptor (row_desc) to copy the column value (:val) , null indicator (:ind) and column name (:name)
into the host variables declared above. Notice that you can retrieve multiple items from a descriptor using a comma-separated list.

EXEC SQL GET DESCRIPTOR row_desc
 VALUE :col
 :val = DATA, :ind = INDICATOR, :name = NAME;

If the null indicator (ind) is negative, the column value is NULL ; if the null indicator is greater than 0 , the column value is too long to fit into the val
host variable (so we print <truncated>) ; otherwise, the null indicator is 0 (meaning NOT NULL) so we print the value. In each case, we prefix the
value (or <null> or <truncated>) with the name of the column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1445

if(ind == -1)
 printf(" %-20s : <null>\n", name.arr);
else if(ind > 0)
 printf(" %-20s : <truncated>\n", name.arr);
else
 printf(" %-20s : %s\n", name.arr, val.arr);
}

printf("\n");
}

When the loop terminates, the application prints the number of rows fetched, and exits:

 printf("%d rows\n", row);
 }

exit(0);
}

The print_meta_data() function extracts the metadata from a descriptor and prints the name, data type, and length of each column:

static void print_meta_data(char *desc_name)
{

The application declares host variables:

EXEC SQL BEGIN DECLARE SECTION;
 char *desc = desc_name;
 int col_count;
 int col;
EXEC SQL END DECLARE SECTION;

The application then defines an array of character strings that map data type values (numeric) into data type names. We use the numeric value found in
the descriptor to index into this array. For example, if we find that a given column is of type 2 , we can find the name of that type (NUMERIC) by writing
types[2] .

static char *types[] =
{
 "unused ",
 "CHARACTER ",
 "NUMERIC ",
 "DECIMAL ",
 "INTEGER ",
 "SMALLINT ",
 "FLOAT ",
 "REAL ",
 "DOUBLE ",
 "DATE_TIME ",
 "INTERVAL ",
 "unused ",
 "CHARACTER_VARYING",
 "ENUMERATED ",
 "BIT ",
 "BIT_VARYING ",
 "BOOLEAN ",
 "abstract "
};

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1446

The application retrieves the column count from the descriptor. Notice that the program refers to the descriptor using a host variable (desc) that
contains the name of the descriptor. In most scenarios, you would use an identifier to refer to a descriptor, but in this case, the caller provided the
descriptor name, so we can use a host variable to refer to the descriptor.

EXEC SQL GET DESCRIPTOR :desc :col_count = count;

The application prints the column headers (defined at the beginning of this application):

printf("%s\n", md1);
printf("%s\n", md2);
printf("%s\n", md3);

Then, loops through each column found in the descriptor, and prints the name, type and length of each column.

for(col = 1; col <= col_count; col++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int type;
 int ret_len;
 varchar name[21];
 EXEC SQL END DECLARE SECTION;
 char *type_name;

It retrieves the name, type code, and length of the current column:

EXEC SQL GET DESCRIPTOR :desc
 VALUE :col
 :name = NAME,
 :type = TYPE,
 :ret_len = RETURNED_OCTET_LENGTH;

If the numeric type code matches a 'known' type code (that is, a type code found in the types[] array), it sets type_name to the name of the
corresponding type; otherwise, it sets type_name to "unknown" .

if(type > 0 && type < SQL3_abstract)
 type_name = types[type];
else
 type_name = "unknown";

and prints the column number, name, type name, and length:

 printf("%02d: %-20s %-17s %04d\n",
 col, name.arr, type_name, ret_len);
 }
 printf("\n");
}

If you invoke the sample application with the following command:

./exec_stmt test "SELECT * FROM emp WHERE empno IN(7902, 7934)"

The application returns:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1447

col field data ret
num name type len
--- -------------------- ----------------- ---
01: empno NUMERIC 0004
02: ename CHARACTER_VARYING 0004
03: job CHARACTER_VARYING 0007
04: mgr NUMERIC 0004
05: hiredate DATE_TIME 0018
06: sal NUMERIC 0007
07: comm NUMERIC 0000
08: deptno NUMERIC 0002

[RECORD 1]
 empno : 7902
 ename : FORD
 job : ANALYST
 mgr : 7566
 hiredate : 03-DEC-81 00:00:00
 sal : 3000.00
 comm : <null>
 deptno : 20

[RECORD 2]
 empno : 7934
 ename : MILLER
 job : CLERK
 mgr : 7782
 hiredate : 23-JAN-82 00:00:00
 sal : 1300.00
 comm : <null>
 deptno : 10

2 rows

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1448

19.4 Building and Executing Dynamic SQL Statements

The following examples demonstrate four techniques for building and executing dynamic SQL statements. Each example demonstrates processing a
different combination of statement and input types:

The first example demonstrates processing and executing a SQL statement that does not contain a SELECT statement and does not require input
variables. This example corresponds to the techniques used by Oracle Dynamic SQL Method 1.
The second example demonstrates processing and executing a SQL statement that does not contain a SELECT statement, and contains a known
number of input variables. This example corresponds to the techniques used by Oracle Dynamic SQL Method 2.
The third example demonstrates processing and executing a SQL statement that may contain a SELECT statement, and includes a known number
of input variables. This example corresponds to the techniques used by Oracle Dynamic SQL Method 3.
The fourth example demonstrates processing and executing a SQL statement that may contain a SELECT statement, and includes an unknown
number of input variables. This example corresponds to the techniques used by Oracle Dynamic SQL Method 4.

Example - Executing a Non-query Statement Without Parameters

The following example demonstrates how to use the EXECUTE IMMEDIATE command to execute a SQL statement where the text of the statement is not
known until you run the application. You cannot use EXECUTE IMMEDIATE to execute a statement that returns a result set. You cannot use EXECUTE
IMMEDIATE to execute a statement that contains parameter placeholders.

The EXECUTE IMMEDIATE statement parses and plans the SQL statement each time it executes, which can have a negative impact on the performance
of your application. If you plan to execute the same statement repeatedly, consider using the PREPARE/EXECUTE technique described in the next
example.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1449

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *insertStmt;

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 insertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

 EXEC SQL EXECUTE IMMEDIATE :insertStmt;

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 fprintf(stderr, "%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

/***/

The code sample begins by including the prototypes and type definitions for the C stdio, string , and stdlib libraries, and providing basic
infrastructure for the program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

static void handle_error(void);
int main(int argc, char *argv[])
{
 char *insertStmt;

The example then sets up an error handler; ECPGPlus calls the handle_error() function whenever a SQL error occurs:

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EXEC SQL CONNECT :argv[1];

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1450

Next, the program uses an EXECUTE IMMEDIATE statement to execute a SQL statement, adding a row to the dept table:

insertStmt = "INSERT INTO dept VALUES(50, 'ACCTG', 'SEATTLE')";

EXEC SQL EXECUTE IMMEDIATE :insertStmt;

If the EXECUTE IMMEDIATE command fails for any reason, ECPGPlus will invoke the handle_error() function (which terminates the application
after displaying an error message to the user). If the EXECUTE IMMEDIATE command succeeds, the application displays a message (ok) to the user,
commits the changes, disconnects from the server, and terminates the application.

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the error
message, resets the error handler, rolls back any changes, disconnects from the database, and terminates the application.

static void handle_error(void)
{
 fprintf(stderr, "%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

Example - Executing a Non-query Statement with a Specified Number of Placeholders

To execute a non-query command that includes a known number of parameter placeholders, you must first PREPARE the statement (providing a
statement handle), and then EXECUTE the statement using the statement handle. When the application executes the statement, it must provide a value
for each placeholder found in the statement.

When an application uses the PREPARE/EXECUTE mechanism, each SQL statement is parsed and planned once, but may execute many times (providing
different values each time).

ECPGPlus will convert each parameter value to the type required by the SQL statement, if possible; if not possible, ECPGPlus will report an error.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1451

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *stmtText;

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 stmtText = "INSERT INTO dept VALUES(?, ?, ?)";

 EXEC SQL PREPARE stmtHandle FROM :stmtText;

 EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);
 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}
/***/

The code sample begins by including the prototypes and type definitions for the C stdio, string, stdlib , and sqlca libraries, and providing
basic infrastructure for the program:

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 char *stmtText;

The example then sets up an error handler; ECPGPlus calls the handle_error() function whenever a SQL error occurs:

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1452

EXEC SQL CONNECT :argv[1];

Next, the program uses a PREPARE statement to parse and plan a statement that includes three parameter markers - if the PREPARE statement
succeeds, it will create a statement handle that you can use to execute the statement (in this example, the statement handle is named stmtHandle). You
can execute a given statement multiple times using the same statement handle.

stmtText = "INSERT INTO dept VALUES(?, ?, ?)";

EXEC SQL PREPARE stmtHandle FROM :stmtText;

After parsing and planning the statement, the application uses the EXECUTE statement to execute the statement associated with the statement handle,
substituting user-provided values for the parameter markers:

EXEC SQL EXECUTE stmtHandle USING :argv[2], :argv[3], :argv[4];

If the EXECUTE command fails for any reason, ECPGPlus will invoke the handle_error() function (which terminates the application after displaying
an error message to the user). If the EXECUTE command succeeds, the application displays a message (ok) to the user, commits the changes,
disconnects from the server, and terminates the application.

 fprintf(stderr, "ok\n");

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

ECPGPlus calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the error
message, resets the error handler, rolls back any changes, disconnects from the database, and terminates the application.

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;
 exit(EXIT_FAILURE);
}

Example - Executing a Query With a Known Number of Placeholders

This example demonstrates how to execute a query with a known number of input parameters, and with a known number of columns in the result set. This
method uses the PREPARE statement to parse and plan a query, before opening a cursor and iterating through the result set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1453

/***/
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 VARCHAR empno[10];
 VARCHAR ename[20];

 EXEC SQL WHENEVER SQLERROR DO handle_error();

 EXEC SQL CONNECT :argv[1];

 EXEC SQL PREPARE queryHandle
 FROM "SELECT empno, ename FROM emp WHERE deptno = ?";

 EXEC SQL DECLARE empCursor CURSOR FOR queryHandle;

 EXEC SQL OPEN empCursor USING :argv[2];

 EXEC SQL WHENEVER NOT FOUND DO break;

 while(true)
 {

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("%-10s %s\n", empno.arr, ename.arr);
 }

 EXEC SQL CLOSE empCursor;

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

/***/

The code sample begins by including the prototypes and type definitions for the C stdio, string, stdlib, stdbool , and sqlca libraries, and
providing basic infrastructure for the program:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1454

#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <stdbool.h>
#include <sqlca.h>

static void handle_error(void);

int main(int argc, char *argv[])
{
 VARCHAR empno[10];
 VARCHAR ename[20];

The example then sets up an error handler; ECPGPlus calls the handle_error() function whenever a SQL error occurs:

EXEC SQL WHENEVER SQLERROR DO handle_error();

Then, the example connects to the database using the credentials specified on the command line:

EXEC SQL CONNECT :argv[1];

Next, the program uses a PREPARE statement to parse and plan a query that includes a single parameter marker - if the PREPARE statement succeeds,
it will create a statement handle that you can use to execute the statement (in this example, the statement handle is named stmtHandle). You can
execute a given statement multiple times using the same statement handle.

EXEC SQL PREPARE stmtHandle
 FROM "SELECT empno, ename FROM emp WHERE deptno = ?";

The program then declares and opens the cursor, empCursor , substituting a user-provided value for the parameter marker in the prepared SELECT
statement. Notice that the OPEN statement includes a USING clause: the USING clause must provide a value for each placeholder found in the query:

EXEC SQL DECLARE empCursor CURSOR FOR stmtHandle;

EXEC SQL OPEN empCursor USING :argv[2];

EXEC SQL WHENEVER NOT FOUND DO break;

while(true)
{

The program iterates through the cursor, and prints the employee number and name of each employee in the selected department:

 EXEC SQL FETCH empCursor INTO :empno, :ename;

 printf("%-10s %s\n", empno.arr, ename.arr);
}

The program then closes the cursor, commits any changes, disconnects from the server, and terminates the application.

 EXEC SQL CLOSE empCursor;

 EXEC SQL COMMIT RELEASE;

 exit(EXIT_SUCCESS);
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1455

The application calls the handle_error() function whenever it encounters a SQL error. The handle_error() function prints the content of the
error message, resets the error handler, rolls back any changes, disconnects from the database, and terminates the application.

static void handle_error(void)
{
 printf("%s\n", sqlca.sqlerrm.sqlerrmc);

 EXEC SQL WHENEVER SQLERROR CONTINUE;
 EXEC SQL ROLLBACK RELEASE;

 exit(EXIT_FAILURE);
}

Example - Executing a Query With an Unknown Number of Variables

The next example demonstrates executing a query with an unknown number of input parameters and/or columns in the result set. This type of query may
occur when you prompt the user for the text of the query, or when a query is assembled from a form on which the user chooses from a number of conditions
(i.e., a filter).

/***/
#include <stdio.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlcpr.h>

SQLDA *params;
SQLDA *results;

static void allocateDescriptors(int count,
 int varNameLength,
 int indNameLenth);
static void bindParams(void);
static void displayResultSet(void);

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 char *stmtText = argv[3];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;

 EXEC SQL CONNECT TO test
 USER :username
 IDENTIFIED BY :password;

 params = sqlald(20, 64, 64);
 results = sqlald(20, 64, 64);

 EXEC SQL PREPARE stmt FROM :stmtText;

 EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

 bindParams();

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1456

 EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

 displayResultSet(20);
}

static void bindParams(void)
{
 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

 if (params->F < 0)
 fprintf(stderr, "Too many parameters required\n");
 else
 {
 int i;

 params->N = params->F;

 for (i = 0; i < params->F; i++)
 {
 char *paramName = params->S[i];
 int nameLen = params->C[i];
 char paramValue[255];

 printf("Enter value for parameter %.*s: ",
 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

 params->T[i] = 1; /* Data type = Character (1) */
 params->L[i] = strlen(paramValue) - 1;
 params->V[i] = strdup(paramValue);
 }
 }
}

static void displayResultSet(void)
{
 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

 if (results->F < 0)
 fprintf(stderr, "Too many columns returned by query\n");
 else if (results->F == 0)
 return;
 else
 {
 int col;

 results->N = results->F;

 for (col = 0; col < results->F; col++)
 {
 int null_permitted, length;

 sqlnul(&results->T[col],
 &results->T[col],
 &null_permitted);

 switch (results->T[col])
 {
 case 2: /* NUMERIC */
 {

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1457

 int precision, scale;

 sqlprc(&results->L[col], &precision, &scale);

 if (precision == 0)
 precision = 38;

 length = precision + 3;
 break;
 }

 case 12: /* DATE */
 {
 length = 30;
 break;
 }

 default: /* Others */
 {
 length = results->L[col] + 1;
 break;
 }
 }

 results->V[col] = realloc(results->V[col], length);
 results->L[col] = length;
 results->T[col] = 1;
 }

 EXEC SQL WHENEVER NOT FOUND DO break;

 while (1)
 {
 const char *delimiter = "";

 EXEC SQL FETCH dynCursor USING DESCRIPTOR results;

 for (col = 0; col < results->F; col++)
 {
 if (*results->I[col] == -1)
 printf("%s%s", delimiter, "<null>");
 else
 printf("%s%s", delimiter, results->V[col]);
 delimiter = ", ";
 }

 printf("\n");
 }
 }
}
/***/

The code sample begins by including the prototypes and type definitions for the C stdio and stdlib libraries. In addition, the program includes the
sqlda.h and sqlcpr.h header files. sqlda.h defines the SQLDA structure used throughout this example. sqlcpr.h defines a small set of

functions used to interrogate the metadata found in an SQLDA structure.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1458

#include <stdio.h>
#include <stdlib.h>
#include <sqlda.h>
#include <sqlcpr.h>

Next, the program declares pointers to two SQLDA structures. The first SQLDA structure (params) will be used to describe the metadata for any
parameter markers found in the dynamic query text. The second SQLDA structure (results) will contain both the metadata and the result set obtained
by executing the dynamic query.

SQLDA *params;
SQLDA *results;

The program then declares two helper functions (defined near the end of the code sample):

static void bindParams(void);
static void displayResultSet(void);

Next, the program declares three host variables; the first two (username and password) are used to connect to the database server; the third host
variable (stmtTxt) is a NULL-terminated C string containing the text of the query to execute. Notice that the values for these three host variables are
derived from the command-line arguments. When the program begins execution, it sets up an error handler and then connects to the database server:

int main(int argc, char *argv[])
{
 EXEC SQL BEGIN DECLARE SECTION;
 char *username = argv[1];
 char *password = argv[2];
 char *stmtText = argv[3];
 EXEC SQL END DECLARE SECTION;

 EXEC SQL WHENEVER SQLERROR sqlprint;
 EXEC SQL CONNECT TO test
 USER :username
 IDENTIFIED BY :password;

Next, the program calls the sqlald() function to allocate the memory required for each descriptor. Each descriptor contains (among other things):

a pointer to an array of column names
a pointer to an array of indicator names
a pointer to an array of data types
a pointer to an array of lengths
a pointer to an array of data values.

When you allocate an SQLDA descriptor, you specify the maximum number of columns you expect to find in the result set (for SELECT -list descriptors) or
the maximum number of parameters you expect to find the dynamic query text (for bind-variable descriptors) - in this case, we specify that we expect no
more than 20 columns and 20 parameters. You must also specify a maximum length for each column (or parameter) name and each indicator variable name
- in this case, we expect names to be no more than 64 bytes long.

See SQLDA Structure section for a complete description of the SQLDA structure.

params = sqlald(20, 64, 64);
results = sqlald(20, 64, 64);

After allocating the SELECT -list and bind descriptors, the program prepares the dynamic statement and declares a cursor over the result set.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1459

EXEC SQL PREPARE stmt FROM :stmtText;

EXEC SQL DECLARE dynCursor CURSOR FOR stmt;

Next, the program calls the bindParams() function. The bindParams() function examines the bind descriptor (params) and prompt the user for
a value to substitute in place of each parameter marker found in the dynamic query.

bindParams();

Finally, the program opens the cursor (using the parameter values supplied by the user, if any) and calls the displayResultSet() function to print the
result set produced by the query.

 EXEC SQL OPEN dynCursor USING DESCRIPTOR params;

 displayResultSet();
}

The bindParams() function determines whether the dynamic query contains any parameter markers, and, if so, prompts the user for a value for each
parameter and then binds that value to the corresponding marker. The DESCRIBE BIND VARIABLE statement populates the params SQLDA
structure with information describing each parameter marker.

static void bindParams(void)
{
 EXEC SQL DESCRIBE BIND VARIABLES FOR stmt INTO params;

If the statement contains no parameter markers, params->F will contain 0. If the statement contains more parameters than will fit into the descriptor,
params->F will contain a negative number (in this case, the absolute value of params->F indicates the number of parameter markers found in the

statement). If params->F contains a positive number, that number indicates how many parameter markers were found in the statement.

if (params->F < 0)
 fprintf(stderr, "Too many parameters required\n");
else
{
 int i;

 params->N = params->F;

Next, the program executes a loop that prompts the user for a value, iterating once for each parameter marker found in the statement.

for (i = 0; i < params->F; i++)
{
 char *paramName = params->S[i];
 int nameLen = params->C[i];
 char paramValue[255];

 printf("Enter value for parameter %.*s: ",
 nameLen, paramName);

 fgets(paramValue, sizeof(paramValue), stdin);

After prompting the user for a value for a given parameter, the program binds that value to the parameter by setting params->T[i] to indicate the data
type of the value (see Type Codes for a list of type codes), params->L[i] to the length of the value (we subtract one to trim off the trailing new-line
character added by fgets()), and params->V[i] to point to a copy of the NULL-terminated string provided by the user.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1460

 params->T[i] = 1; /* Data type = Character (1) */
 params->L[i] = strlen(paramValue) + 1;
 params->V[i] = strdup(paramValue);
 }
 }
}

The displayResultSet() function loops through each row in the result set and prints the value found in each column. displayResultSet()
starts by executing a DESCRIBE SELECT LIST statement - this statement populates an SQLDA descriptor (results) with a description of each
column in the result set.

static void displayResultSet(void)
{
 EXEC SQL DESCRIBE SELECT LIST FOR stmt INTO results;

If the dynamic statement returns no columns (that is, the dynamic statement is not a SELECT statement), results->F will contain 0. If the statement
returns more columns than will fit into the descriptor, results->F will contain a negative number (in this case, the absolute value of results->F
indicates the number of columns returned by the statement). If results->F contains a positive number, that number indicates how many columns
where returned by the query.

if (results->F < 0)
 fprintf(stderr, "Too many columns returned by query\n");
else if (results->F == 0)
 return;
else
{
 int col;

 results->N = results->F;

Next, the program enters a loop, iterating once for each column in the result set:

for (col = 0; col < results->F; col++)
{
 int null_permitted, length;

To decode the type code found in results->T , the program invokes the sqlnul() function (see the description of the T member of the SQLDA
structure in the The SQLDA Structure). This call to sqlnul() modifies results->T[col] to contain only the type code (the nullability flag is copied
to null_permitted). This step is necessary because the DESCRIBE SELECT LIST statement encodes the type of each column and the nullability
of each column into the T array.

sqlnul(&results->T[col],
 &results->T[col],
 &null_permitted);

After decoding the actual data type of the column, the program modifies the results descriptor to tell ECPGPlus to return each value in the form of a NULL-
terminated string. Before modifying the descriptor, the program must compute the amount of space required to hold each value. To make this computation,
the program examines the maximum length of each column (results->V[col]) and the data type of each column (results->T[col]) .

For numeric values (where results->T[col] = 2), the program calls the sqlprc() function to extract the precision and scale from the column
length. To compute the number of bytes required to hold a numeric value in string form, displayResultSet() starts with the precision (that is, the
maximum number of digits) and adds three bytes for a sign character, a decimal point, and a NULL terminator.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1461

switch (results->T[col])
{
 case 2: /* NUMERIC */
 {
 int precision, scale;

 sqlprc(&results->L[col], &precision, &scale);

 if (precision == 0)
 precision = 38;
 length = precision + 3;
 break;
 }

For date values, the program uses a somewhat arbitrary, hard-coded length of 30. In a real-world application, you may want to more carefully compute the
amount of space required.

case 12: /* DATE */
{
 length = 30;
 break;
}

For a value of any type other than date or numeric, displayResultSet() starts with the maximum column width reported by DESCRIBE SELECT
LIST and adds one extra byte for the NULL terminator. Again, in a real-world application you may want to include more careful calculations for other data
types.

 default: /* Others */
 {
 length = results->L[col] + 1;
 break;
 }
}

After computing the amount of space required to hold a given column, the program allocates enough memory to hold the value, sets results->L[col]
to indicate the number of bytes found at results->V[col] , and set the type code for the column (results->T[col]) to 1 to instruct the
upcoming FETCH statement to return the value in the form of a NULL-terminated string.

 results->V[col] = malloc(length);
 results->L[col] = length;
 results->T[col] = 1;
}

At this point, the results descriptor is configured such that a FETCH statement can copy each value into an appropriately sized buffer in the form of a
NULL-terminated string.

Next, the program defines a new error handler to break out of the upcoming loop when the cursor is exhausted.

EXEC SQL WHENEVER NOT FOUND DO break;

while (1)
{
 const char *delimiter = "";

The program executes a FETCH statement to fetch the next row in the cursor into the results descriptor. If the FETCH statement fails (because the
cursor is exhausted), control transfers to the end of the loop because of the EXEC SQL WHENEVER directive found before the top of the loop.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1462

EXEC SQL FETCH dynCursor USING DESCRIPTOR results;

The FETCH statement will populate the following members of the results descriptor:

*results->I[col] will indicate whether the column contains a NULL value (-1) or a non-NULL value (0) . If the value non-NULL but too
large to fit into the space provided, the value is truncated and *results->I[col] will contain a positive value.
results->V[col] will contain the value fetched for the given column (unless *results->I[col] indicates that the column value is

NULL).
results->L[col] will contain the length of the value fetched for the given column

Finally, displayResultSet() iterates through each column in the result set, examines the corresponding NULL indicator, and prints the value. The
result set is not aligned - instead, each value is separated from the previous value by a comma.

 for (col = 0; col < results->F; col++)
 {
 if (*results->I[col] == -1)
 printf("%s%s", delimiter, "<null>");
 else
 printf("%s%s", delimiter, results->V[col]);
 delimiter = ", ";
 }

 printf("\n");
 }
 }
}
/***/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1463

19.5 Error Handling

ECPGPlus provides two methods to detect and handle errors in embedded SQL code:

A client application can examine the sqlca data structure for error messages, and supply customized error handling for your client application.
A client application can include EXEC SQL WHENEVER directives to instruct the ECPGPlus compiler to add error-handling code.

Error Handling with sqlca

sqlca (SQL communications area) is a global variable used by ecpglib to communicate information from the server to the client application. After
executing a SQL statement (for example, an INSERT or SELECT statement) you can inspect the contents of sqlca to determine if the statement has
completed successfully or if the statement has failed.

sqlca has the following structure:

struct
{
 char sqlcaid[8];
 long sqlabc;
 long sqlcode;
 struct
 {
 int sqlerrml;
 char sqlerrmc[SQLERRMC_LEN];
 } sqlerrm;
 char sqlerrp[8];
 long sqlerrd[6];
 char sqlwarn[8];
 char sqlstate[5];

} sqlca;

Use the following directive to implement sqlca functionality:

EXEC SQL INCLUDE sqlca;

If you include the ecpg directive, you do not need to #include the sqlca.h file in the client application's header declaration.

The Advanced Server sqlca structure contains the following members:

sqlcaid

sqlcaid contains the string: "SQLCA" .

sqlabc

sqlabc contains the size of the sqlca structure.

sqlcode

The sqlcode member has been deprecated with SQL 92; Advanced Server supports sqlcode for backward compatibility, but you should use the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1464

The sqlcode member has been deprecated with SQL 92; Advanced Server supports sqlcode for backward compatibility, but you should use the
sqlstate member when writing new code.

sqlcode is an integer value; a positive sqlcode value indicates that the client application has encountered a harmless processing condition, while a
negative value indicates a warning or error.

If a statement processes without error, sqlcode will contain a value of 0 . If the client application encounters an error (or warning) during a statement's
execution, sqlcode will contain the last code returned.

The SQL standard defines only a positive value of 100, which indicates that he most recent SQL statement processed returned/affected no rows. Since the
SQL standard does not define other sqlcode values, please be aware that the values assigned to each condition may vary from database to database.

sqlerrm is a structure embedded within sqlca , composed of two members:

sqlerrml

sqlerrml contains the length of the error message currently stored in sqlerrmc .

sqlerrmc

sqlerrmc contains the null-terminated message text associated with the code stored in sqlstate . If a message exceeds 149 characters in length,
ecpglib will truncate the error message.

sqlerrp

sqlerrp contains the string "NOT SET" .

sqlerrd is an array that contains six elements:

sqlerrd[1] contains the OID of the processed row (if applicable).

sqlerrd[2] contains the number of processed or returned rows.

sqlerrd[0], sqlerrd[3], sqlerrd[4] and sqlerrd[5] are unused.

sqlwarn is an array that contains 8 characters:

sqlwarn[0] contains a value of 'W' if any other element within sqlwarn is set to 'W' .

sqlwarn[1] contains a value of 'W' if a data value was truncated when it was stored in a host variable.

sqlwarn[2] contains a value of 'W' if the client application encounters a non-fatal warning.

sqlwarn[3], sqlwarn[4], sqlwarn[5], sqlwarn[6] , and sqlwarn[7] are unused.

sqlstate

sqlstate is a 5 character array that contains a SQL-compliant status code after the execution of a statement from the client application. If a statement
processes without error, sqlstate will contain a value of 00000 . Please note that sqlstate is not a null-terminated string.

sqlstate codes are assigned in a hierarchical scheme:

The first two characters of sqlstate indicate the general class of the condition.
The last three characters of sqlstate indicate a specific status within the class.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1465

If the client application encounters multiple errors (or warnings) during an SQL statement's execution sqlstate will contain the last code returned.

The following table lists the sqlstate and sqlcode values, as well as the symbolic name and error description for the related condition:

sqlstate sqlcode
(Deprecated)

Symbolic Name Description

YE001 -12 ECPG_OUT_OF
_MEMORY

Virtual memory is exhausted.

YE002 -200 ECPG_UNSUPP
ORTED

The preprocessor has generated an unrecognized item. Could indicate incompatibility between the
preprocessor and the library.

07001 ,
or
07002

-201
ECPG_TOO_MA
NY_ARGUMENTS The program specifies more variables than the command expects.

07001 ,
or
07002

-202
ECPG_TOO_FE
W_ARGUMENTS The program specified fewer variables than the command expects.

21000 -203 ECPG_TOO_MA
NY_MATCHES

The SQL command has returned multiple rows, but the statement was prepared to receive a single
row.

42804 -204
ECPG_INT_FO
RMAT

The host variable (defined in the C code) is of type INT, and the selected data is of a type that cannot
be converted into an INT. ecpglib uses the strtol() function to convert string values into
numeric form.

42804 -205
ECPG_UINT_F
ORMAT

The host variable (defined in the C code) is an unsigned INT, and the selected data is of a type that
cannot be converted into an unsigned INT. ecpglib uses the strtoul() function to convert
string values into numeric form.

42804 -206
ECPG_FLOAT_
FORMAT

The host variable (defined in the C code) is of type FLOAT, and the selected data is of a type that
cannot be converted into an FLOAT. ecpglib uses the strtod() function to convert string
values into numeric form.

42804 -211 ECPG_CONVER
T_BOOL

The host variable (defined in the C code) is of type BOOL, and the selected data cannot be stored in a
BOOL.

YE002 -2-1 ECPG_EMPTY The statement sent to the server was empty.

22002 -213 ECPG_MISSIN
G_INDICATOR

A NULL indicator variable has not been supplied for the NULL value returned by the server (the client
application has received an unexpected NULL value).

42804 -214 ECPG_NO_ARR
AY

The server has returned an array, and the corresponding host variable is not capable of storing an
array.

42804 -215 ECPG_DATA_N
OT_ARRAY

The server has returned a value that is not an array into a host variable that expects an array value.

08003 -220 ECPG_NO_CON
N

The client application has attempted to use a non-existent connection.

YE002 -221 ECPG_NOT_CO
NN

The client application has attempted to use an allocated, but closed connection.

26000 -230 ECPG_INVALI
D_STMT

The statement has not been prepared.

33000 -240 ECPG_UNKNOW
N_DESCRIPTOR

The specified descriptor is not found.

07009 -241
ECPG_INVALI
D_DESCRIPTOR
_INDEX

The descriptor index is out-of-range.

YE002 -242
ECPG_UNKNOW
N_DESCRIPTOR
_ITEM

The client application has requested an invalid descriptor item (internal error).

07006 -243 ECPG_VAR_NO
T_NUMERIC

A dynamic statement has returned a numeric value for a non-numeric host variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1466

07006 -244 ECPG_VAR_NO
T_CHAR

A dynamic SQL statement has returned a CHAR value, and the host variable is not a CHAR.

-400 ECPG_PGSQL The server has returned an error message; the resulting message contains the error text.

08007 -401 ECPG_TRANS The server cannot start, commit or rollback the specified transaction.

08001 -402 ECPG_CONNEC
T

The client application's attempt to connect to the database has failed.

02000 100 ECPG_NOT_FO
UND

The last command retrieved or processed no rows, or you have reached the end of a cursor.

sqlstate sqlcode
(Deprecated)

Symbolic Name Description

EXEC SQL WHENEVER

Use the EXEC SQL WHENEVER directive to implement simple error handling for client applications compiled with ECPGPlus. The syntax of the directive
is:

EXEC SQL WHENEVER <condition> <action>;

This directive instructs the ECPG compiler to insert error-handling code into your program.

The code instructs the client application that it should perform a specified action if the client application detects a given condition. The condition may be
one of the following:

SQLERROR

A SQLERROR condition exists when sqlca.sqlcode is less than zero.

SQLWARNING

A SQLWARNING condition exists when sqlca.sqlwarn[0] contains a 'W' .

NOT FOUND

A NOT FOUND condition exists when sqlca.sqlcode is ECPG_NOT_FOUND (when a query returns no data).

You can specify that the client application perform one of the following actions if it encounters one of the previous conditions:

CONTINUE

Specify CONTINUE to instruct the client application to continue processing, ignoring the current condition . CONTINUE is the default action.

DO CONTINUE

An action of DO CONTINUE will generate a CONTINUE statement in the emitted C code that if it encounters the condition, skips the rest of the code in
the loop and continues with the next iteration. You can only use it within a loop.

GOTO label

or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1467

GO TO label

Use a C goto statement to jump to the specified label .

SQLPRINT

Print an error message to stderr (standard error), using the sqlprint() function. The sqlprint() function prints sql error , followed by the
contents of sqlca.sqlerrm.sqlerrmc .

STOP

Call exit(1) to signal an error, and terminate the program.

DO BREAK

Execute the C break statement. Use this action in loops, or switch statements.

CALL name(args)

or

DO name(args)

Invoke the C function specified by the name parameter , using the parameters specified in the args parameter.

Example:Example:

The following code fragment prints a message if the client application encounters a warning, and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

NoteNote

The ECPGPlus compiler processes your program from top to bottom, even though the client application may not execute from top to bottom. The
compiler directive is applied to each line in order, and remains in effect until the compiler encounters another directive. If the control of the flow
within your program is not top-to-bottom, you should consider adding error-handling directives to any parts of the program that may be
inadvertently missed during compilation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1468

19.6 Reference

The sections that follow describe ecpgPlus language elements:

C-Preprocessor Directives
Supported C Data Types
Type Codes
The SQLDA Structure
ECPGPlus Statements

C-preprocessor Directives

The ECPGPlus C-preprocessor enforces two behaviors that are dependent on the mode in which you invoke ECPGPlus:

PROC mode
non- PROC mode

Compiling in PROC ModeCompiling in PROC Mode

In PROC mode, ECPGPlus allows you to:

Declare host variables outside of an EXEC SQL BEGIN/END DECLARE SECTION .
Use any C variable as a host variable as long as it is of a data type compatible with ECPG.

When you invoke ECPGPlus in PROC mode (by including the -C PROC keywords), the ECPG compiler honors the following C-preprocessor directives:

#include
#if expression
#ifdef symbolName
#ifndef symbolName
#else
#elif expression
#endif
#define symbolName expansion
#define symbolName([macro arguments]) expansion
#undef symbolName
#defined(symbolName)

Pre-processor directives are used to effect or direct the code that is received by the compiler. For example, using the following code sample:

#if HAVE_LONG_LONG == 1
#define BALANCE_TYPE long long
#else
#define BALANCE_TYPE double
#endif
...
BALANCE_TYPE customerBalance;

If you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC –DHAVE_LONG_LONG=1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1469

ECPGPlus will copy the entire fragment (without change) to the output file, but will only send the following tokens to the ECPG parser:

long long customerBalance;

On the other hand, if you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC –DHAVE_LONG_LONG=0

The ECPG parser will receive the following tokens:

double customerBalance;

If your code uses preprocessor directives to filter the code that is sent to the compiler, the complete code is retained in the original code, while the ECPG
parser sees only the processed token stream.

You can also use compatible syntax when executing the following preprocessor directives with an EXEC directive:

EXEC ORACLE DEFINE
EXEC ORACLE UNDEF
EXEC ORACLE INCLUDE
EXEC ORACLE IFDEF
EXEC ORACLE IFNDEF
EXEC ORACLE ELIF
EXEC ORACLE ELSE
EXEC ORACLE ENDIF
EXEC ORACLE OPTION

For example, if your code includes the following:

EXEC ORACLE IFDEF HAVE_LONG_LONG;
#define BALANCE_TYPE long long
EXEC ORACLE ENDIF;
BALANCE_TYPE customerBalance;

If you invoke ECPGPlus with the following command-line arguments:

ecpg –C PROC DEFINE=HAVE_LONG_LONG=1

ECPGPlus will send the following tokens to the output file, and the ECPG parser:

long long customerBalance;

NoteNote

The EXEC ORACLE pre-processor directives only work if you specify -C PROC on the ECPG command line.

Using the SELECT_ERROR Precompiler OptionUsing the SELECT_ERROR Precompiler Option

When using ECPGPlus in compatible mode, you can use the SELECT_ERROR precompiler option to instruct your program how to handle result sets that
contain more rows than the host variable can accommodate. The syntax is:

SELECT_ERROR={YES|NO}

The default value is YES ; a SELECT statement will return an error message if the result set exceeds the capacity of the host variable. Specify NO to

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1470

The default value is YES ; a SELECT statement will return an error message if the result set exceeds the capacity of the host variable. Specify NO to
instruct the program to suppress error messages when a SELECT statement returns more rows than a host variable can accommodate.

Use SELECT_ERROR with the EXEC ORACLE OPTION directive.

Compiling in non-PROC ModeCompiling in non-PROC Mode

If you do not include the -C PROC command-line option:

C preprocessor directives are copied to the output file without change.
You must declare the type and name of each C variable that you intend to use as a host variable within an EXEC SQL BEGIN/END DECLARE
section.

When invoked in non- PROC mode, ECPG implements the behavior described in the PostgreSQL Core documentation.

Supported C Data Types

An ECPGPlus application must deal with two sets of data types: SQL data types (such as SMALLINT , DOUBLE PRECISION and CHARACTER
VARYING) and C data types (like short , double and varchar[n]). When an application fetches data from the server, ECPGPlus will map each SQL
data type to the type of the C variable into which the data is returned.

In general, ECPGPlus can convert most SQL server types into similar C types, but not all combinations are valid. For example, ECPGPlus will try to convert a
SQL character value into a C integer value, but the conversion may fail (at execution time) if the SQL character value contains non-numeric characters. The
reverse is also true; when an application sends a value to the server, ECPGPlus will try to convert the C data type into the required SQL type. Again, the
conversion may fail (at execution time) if the C value cannot be converted into the required SQL type.

ECPGPlus can convert any SQL type into C character values (char[n] or varchar[n]) . Although it is safe to convert any SQL type to/from
char[n] or varchar[n] , it is often convenient to use more natural C types such as int , double , or float .

The supported C data types are:

short
int
unsigned int
long long int
float
double
char[n+1]
varchar[n+1]
bool

and any equivalent created by a typedef

In addition to the numeric and character types supported by C, the pgtypeslib run-time library offers custom data types (and functions to operate on
those types) for dealing with date/time and exact numeric values:

timestamp
interval
date
decimal
numeric

To use a data type supplied by pgtypeslib , you must #include the proper header file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1471

Type Codes

The following table contains the type codes for external data types. An external data type is used to indicate the type of a C host variable. When an
application binds a value to a parameter or binds a buffer to a SELECT -list item, the type code in the corresponding SQLDA descriptor (descriptor-
>T[column]) should be set to one of the following values:

Type CodeType Code Host Variable Type (C Data Type)Host Variable Type (C Data Type)

1, 2, 8, 11, 12, 15, 23, 24, 91, 94, 95, 96,
97

char[]

3 int

4, 7, 21 float

5, 6 null-terminated string
(char[length+1])

9 varchar

22 double

68 unsigned int

The following table contains the type codes for internal data types. An internal type code is used to indicate the type of a value as it resides in the database.
The DESCRIBE SELECT LIST statement populates the data type array (descriptor->T[column]) using the following values.

Internal Type CodeInternal Type Code Server TypeServer Type

1 VARCHAR2

2 NUMBER

8 LONG

11 ROWID

12 DATE

23 RAW

24 LONG RAW

96 CHAR

100 BINARY FLOAT

101 BINARY DOUBLE

104 UROWID

187 TIMESTAMP

188 TIMESTAMP W/TIMEZONE

189 INTERVAL YEAR TO MONTH

190 INTERVAL DAY TO
SECOND

232 TIMESTAMP LOCAL_TZ

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1472

The SQLDA Structure

Oracle Dynamic SQL method 4 uses the SQLDA data structure to hold the data and metadata for a dynamic SQL statement. A SQLDA structure can describe
a set of input parameters corresponding to the parameter markers found in the text of a dynamic statement or the result set of a dynamic statement. The
layout of the SQLDA structure is:

struct SQLDA
{
 int N; /* Number of entries */
 char **V; /* Variables */
 int *L; /* Variable lengths */
 short *T; /* Variable types */
 short **I; /* Indicators */
 int F; /* Count of variables discovered by DESCRIBE */
 char **S; /* Variable names */
 short *M; /* Variable name maximum lengths */
 short *C; /* Variable name actual lengths */
 char **X; /* Indicator names */
 short *Y; /* Indicator name maximum lengths */
 short *Z; /* Indicator name actual lengths */
};

ParametersParameters

N - maximum number of entries

The N structure member contains the maximum number of entries that the SQLDA may describe. This member is populated by the sqlald() function
when you allocate the SQLDA structure. Before using a descriptor in an OPEN or FETCH statement, you must set N to the actual number of values
described.

V - data values

The V structure member is a pointer to an array of data values.

For a SELECT -list descriptor, V points to an array of values returned by a FETCH statement (each member in the array corresponds to a column
in the result set).
For a bind descriptor, V points to an array of parameter values (you must populate the values in this array before opening a cursor that uses the
descriptor).

Your application must allocate the space required to hold each value. Refer to displayResultSet () function for an example of how to allocate space for
SELECT -list values.

L - length of each data value

The L structure member is a pointer to an array of lengths. Each member of this array must indicate the amount of memory available in the corresponding
member of the V array. For example, if V[5] points to a buffer large enough to hold a 20-byte NULL-terminated string, L[5] should contain the value
21 (20 bytes for the characters in the string plus 1 byte for the NULL-terminator). Your application must set each member of the L array.

T - data types

The T structure member points to an array of data types, one for each column (or parameter) described by the descriptor.

For a bind descriptor, you must set each member of the T array to tell ECPGPlus the data type of each parameter.
For a SELECT -list descriptor, the DESCRIBE SELECT LIST statement sets each member of the T array to reflect the type of data found in the
corresponding column.

You may change any member of the T array before executing a FETCH statement to force ECPGPlus to convert the corresponding value to a specific data

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1473

You may change any member of the T array before executing a FETCH statement to force ECPGPlus to convert the corresponding value to a specific data
type. For example, if the DESCRIBE SELECT LIST statement indicates that a given column is of type DATE , you may change the corresponding T
member to request that the next FETCH statement return that value in the form of a NULL-terminated string. Each member of the T array is a numeric
type code (see Type Codes for a list of type codes). The type codes returned by a DESCRIBE SELECT LIST statement differ from those expected by a
FETCH statement. After executing a DESCRIBE SELECT LIST statement, each member of T encodes a data type and a flag indicating whether the

corresponding column is nullable. You can use the sqlnul() function to extract the type code and nullable flag from a member of the T array. The
signature of the sqlnul() function is as follows:

void sqlnul(unsigned short *valType,
 unsigned short *typeCode,
 int *isNull)

For example, to find the type code and nullable flag for the third column of a descriptor named results, you would invoke sqlnul() as follows:

sqlnul(&results->T[2], &typeCode, &isNull);

I - indicator variables

The I structure member points to an array of indicator variables. This array is allocated for you when your application calls the sqlald() function to
allocate the descriptor.

For a SELECT -list descriptor, each member of the I array indicates whether the corresponding column contains a NULL (non-zero) or non-NULL
(zero) value.
For a bind parameter, your application must set each member of the I array to indicate whether the corresponding parameter value is NULL.

F - number of entries

The F structure member indicates how many values are described by the descriptor (the N structure member indicates the maximum number of values
which may be described by the descriptor; F indicates the actual number of values). The value of the F member is set by ECPGPlus when you execute a
DESCRIBE statement. F may be positive, negative, or zero.

For a SELECT -list descriptor, F will contain a positive value if the number of columns in the result set is equal to or less than the maximum
number of values permitted by the descriptor (as determined by the N structure member); 0 if the statement is not a SELECT statement, or a
negative value if the query returns more columns than allowed by the N structure member.
For a bind descriptor, F will contain a positive number if the number of parameters found in the statement is less than or equal to the maximum
number of values permitted by the descriptor (as determined by the N structure member); 0 if the statement contains no parameters markers, or a
negative value if the statement contains more parameter markers than allowed by the N structure member.

If F contains a positive number (after executing a DESCRIBE statement), that number reflects the count of columns in the result set (for a SELECT -list
descriptor) or the number of parameter markers found in the statement (for a bind descriptor). If F contains a negative value, you may compute the
absolute value of F to discover how many values (or parameter markers) are required. For example, if F contains -24 after describing a SELECT list,
you know that the query returns 24 columns.

S - column/parameter names

The S structure member points to an array of NULL-terminated strings.

For a SELECT -list descriptor, the DESCRIBE SELECT LIST statement sets each member of this array to the name of the corresponding column
in the result set.
For a bind descriptor, the DESCRIBE BIND VARIABLES statement sets each member of this array to the name of the corresponding bind
variable.

In this release, the name of each bind variable is determined by the left-to-right order of the parameter marker within the query - for example, the name of
the first parameter is always ?0 , the name of the second parameter is always ?1 , and so on.

M - maximum column/parameter name length

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1474

The M structure member points to an array of lengths. Each member in this array specifies the maximum length of the corresponding member of the S
array (that is, M[0] specifies the maximum length of the column/parameter name found at S[0]). This array is populated by the sqlald() function.

C - actual column/parameter name length

The C structure member points to an array of lengths. Each member in this array specifies the actual length of the corresponding member of the S array
(that is, C[0] specifies the actual length of the column/parameter name found at S[0]).

This array is populated by the DESCRIBE statement.

X - indicator variable names

The X structure member points to an array of NULL-terminated strings -each string represents the name of a NULL indicator for the corresponding value.

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C applications.

Y - maximum indicator name length

The Y structure member points to an array of lengths. Each member in this array specifies the maximum length of the corresponding member of the X
array (that is, Y[0] specifies the maximum length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C applications.

Z - actual indicator name length

The Z structure member points to an array of lengths. Each member in this array specifies the actual length of the corresponding member of the X array
(that is, Z[0] specifies the actual length of the indicator name found at X[0]).

This array is not used by ECPGPlus, but is provided for compatibility with Pro*C applications.

ECPGPlus Statements

An embedded SQL statement allows your client application to interact with the server, while an embedded directive is an instruction to the ECPGPlus
compiler.

You can embed any Advanced Server SQL statement in a C program. Each statement should begin with the keywords EXEC SQL , and must be terminated
with a semi-colon (;). Within the C program, a SQL statement takes the form:

EXEC SQL <sql_command_body>;

Where sql_command_body represents a standard SQL statement. You can use a host variable anywhere that the SQL statement expects a value
expression. For more information about substituting host variables for value expressions, refer to Declaring Host Variables.

ECPGPlus extends the PostgreSQL server-side syntax for some statements; for those statements, syntax differences are outlined in the following reference
sections. For a complete reference to the supported syntax of other SQL commands, refer to the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1475

https://www.postgresql.org/docs/current/static/sql-commands.html

ALLOCATE DESCRIPTOR

Use the ALLOCATE DESCRIPTOR statement to allocate an SQL descriptor area:

EXEC SQL [FOR <array_size>] ALLOCATE DESCRIPTOR <descriptor_name>
 [WITH MAX <variable_count>];

Where:

array_size is a variable that specifies the number of array elements to allocate for the descriptor. array_size may be an INTEGER value or a
host variable.

descriptor_name is the host variable that contains the name of the descriptor, or the name of the descriptor. This value may take the form of an
identifier, a quoted string literal, or of a host variable.

variable_count specifies the maximum number of host variables in the descriptor. The default value of variable_count is 100 .

The following code fragment allocates a descriptor named emp_query that may be processed as an array (emp_array) :

EXEC SQL FOR :emp_array ALLOCATE DESCRIPTOR emp_query;

CALL

Use the CALL statement to invoke a procedure or function on the server. The CALL statement works only on Advanced Server. The CALL statement
comes in two forms; the first form is used to call a function:

EXEC SQL CALL <program_name> '('[<actual_arguments>]')'
 INTO [[:<ret_variable>][: <ret_indicator>]];

The second form is used to call a procedure:

EXEC SQL CALL <program_name> '('[<actual_arguments>]')';

Where:

program_name is the name of the stored procedure or function that the CALL statement invokes. The program name may be schema-qualified or
package-qualified (or both); if you do not specify the schema or package in which the program resides, ECPGPlus will use the value of search_path to
locate the program.

actual_arguments specifies a comma-separated list of arguments required by the program. Note that each actual_argument corresponds to a
formal argument expected by the program. Each formal argument may be an IN parameter, an OUT parameter, or an INOUT parameter.

:ret_variable specifies a host variable that will receive the value returned if the program is a function.

:ret_indicator specifies a host variable that will receive the indicator value returned, if the program is a function.

For example, the following statement invokes the get_job_desc function with the value contained in the :ename host variable, and captures the
value returned by that function in the :job host variable:

EXEC SQL CALL get_job_desc(:ename)
 INTO :job;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1476

CLOSE

Use the CLOSE statement to close a cursor, and free any resources currently in use by the cursor. A client application cannot fetch rows from a closed
cursor. The syntax of the CLOSE statement is:

EXEC SQL CLOSE [<cursor_name>];

Where:

cursor_name is the name of the cursor closed by the statement. The cursor name may take the form of an identifier or of a host variable.

The OPEN statement initializes a cursor. Once initialized, a cursor result set will remain unchanged unless the cursor is re-opened. You do not need to
CLOSE a cursor before re-opening it.

To manually close a cursor named emp_cursor , use the command:

EXEC SQL CLOSE emp_cursor;

A cursor is automatically closed when an application terminates.

COMMIT

Use the COMMIT statement to complete the current transaction, making all changes permanent and visible to other users. The syntax is:

EXEC SQL [AT <database_name>] COMMIT [WORK]
 [COMMENT <'text'>] [COMMENT <'text'> RELEASE];

Where:

database_name is the name of the database (or host variable that contains the name of the database) in which the work resides. This value may take
the form of an unquoted string literal, or of a host variable.

For compatibility, ECPGPlus accepts the COMMENT clause without error but does not store any text included with the COMMENT clause.

Include the RELEASE clause to close the current connection after performing the commit.

For example, the following command commits all work performed on the dept database and closes the current connection:

EXEC SQL AT dept COMMIT RELEASE;

By default, statements are committed only when a client application performs a COMMIT statement. Include the -t option when invoking ECPGPlus to
specify that a client application should invoke AUTOCOMMIT functionality. You can also control AUTOCOMMIT functionality in a client application with
the following statements:

EXEC SQL SET AUTOCOMMIT TO ON

and

EXEC SQL SET AUTOCOMMIT TO OFF

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1477

CONNECT

Use the CONNECT statement to establish a connection to a database. The CONNECT statement is available in two forms - one form is compatible with
Oracle databases, the other is not.

The first form is compatible with Oracle databases:

EXEC SQL CONNECT
 {{:<user_name> IDENTIFIED BY :<password>} | :<connection_id>}
 [AT <database_name>]
 [USING :database_string]
 [ALTER AUTHORIZATION :new_password];

Where:

user_name is a host variable that contains the role that the client application will use to connect to the server.

password is a host variable that contains the password associated with that role.

connection_id is a host variable that contains a slash-delimited user name and password used to connect to the database.

Include the AT clause to specify the database to which the connection is established. database_name is the name of the database to which the client
is connecting; specify the value in the form of a variable, or as a string literal.

Include the USING clause to specify a host variable that contains a null-terminated string identifying the database to which the connection will be
established.

The ALTER AUTHORIZATION clause is supported for syntax compatibility only; ECPGPlus parses the ALTER AUTHORIZATION clause, and reports a
warning.

Using the first form of the CONNECT statement, a client application might establish a connection with a host variable named user that contains the
identity of the connecting role, and a host variable named password that contains the associated password using the following command:

EXEC SQL CONNECT :user IDENTIFIED BY :password;

A client application could also use the first form of the CONNECT statement to establish a connection using a single host variable named
:connection_id . In the following example, connection_id contains the slash-delimited role name and associated password for the user:

EXEC SQL CONNECT :connection_id;

The syntax of the second form of the CONNECT statement is:

EXEC SQL CONNECT TO <database_name>
[AS <connection_name>] [<credentials>];

Where credentials is one of the following:

USER user_name password
USER user_name IDENTIFIED BY password
USER user_name USING password

In the second form:

database_name is the name or identity of the database to which the client is connecting. Specify database_name as a variable, or as a string literal,

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1478

database_name is the name or identity of the database to which the client is connecting. Specify database_name as a variable, or as a string literal,
in one of the following forms:

<database_name>[@<hostname>][:<port>]

tcp:postgresql://<hostname>[:<port>][/<database_name>][options]

unix:postgresql://<hostname>[:<port>][/<database_name>][options]

Where:

hostname is the name or IP address of the server on which the database resides.

port is the port on which the server listens.

You can also specify a value of DEFAULT to establish a connection with the default database, using the default role name. If you specify DEFAULT as the
target database, do not include a connection_name or credentials .

connection_name is the name of the connection to the database. connection_name should take the form of an identifier (that is, not a string
literal or a variable). You can open multiple connections, by providing a unique connection_name for each connection.

If you do not specify a name for a connection, ecpglib assigns a name of DEFAULT to the connection. You can refer to the connection by name
(DEFAULT) in any EXEC SQL statement.

CURRENT is the most recently opened or the connection mentioned in the most-recent SET CONNECTION TO statement. If you do not refer to a
connection by name in an EXEC SQL statement, ECPG assumes the name of the connection to be CURRENT .

user_name is the role used to establish the connection with the Advanced Server database. The privileges of the specified role will be applied to all
commands performed through the connection.

password is the password associated with the specified user_name .

The following code fragment uses the second form of the CONNECT statement to establish a connection to a database named edb , using the role
alice and the password associated with that role, 1safepwd :

EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY '1safepwd';

The name of the connection is acctg_conn ; you can use the connection name when changing the connection name using the SET CONNECTION
statement.

DEALLOCATE DESCRIPTOR

Use the DEALLOCATE DESCRIPTOR statement to free memory in use by an allocated descriptor. The syntax of the statement is:

EXEC SQL DEALLOCATE DESCRIPTOR <descriptor_name>

Where:

descriptor_name is the name of the descriptor. This value may take the form of a quoted string literal, or of a host variable.

The following example deallocates a descriptor named emp_query :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1479

EXEC SQL DEALLOCATE DESCRIPTOR emp_query;

DECLARE CURSOR

Use the DECLARE CURSOR statement to define a cursor. The syntax of the statement is:

EXEC SQL [AT <database_name>] DECLARE <cursor_name> CURSOR FOR
(<select_statement> | <statement_name>);

Where:

database_name is the name of the database on which the cursor operates. This value may take the form of an identifier or of a host variable. If you do
not specify a database name, the default value of database_name is the default database.

cursor_name is the name of the cursor.

select_statement is the text of the SELECT statement that defines the cursor result set; the SELECT statement cannot contain an INTO clause.

statement_name is the name of a SQL statement or block that defines the cursor result set.

The following example declares a cursor named employees :

EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp;

The cursor generates a result set that contains the employee number, employee name, salary and commission for each employee record that is stored in the
emp table.

DECLARE DATABASE

Use the DECLARE DATABASE statement to declare a database identifier for use in subsequent SQL statements (for example, in a CONNECT statement).
The syntax is:

EXEC SQL DECLARE <database_name> DATABASE;

Where:

database_name specifies the name of the database.

The following example demonstrates declaring an identifier for the acctg database:

EXEC SQL DECLARE acctg DATABASE;

After invoking the command declaring acctg as a database identifier, the acctg database can be referenced by name when establishing a connection
or in AT clauses.

This statement has no effect and is provided for Pro*C compatibility only.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1480

DECLARE STATEMENT

Use the DECLARE STATEMENT directive to declare an identifier for an SQL statement. Advanced Server supports two versions of the DECLARE
STATEMENT directive:

EXEC SQL [<database_name>] DECLARE <statement_name> STATEMENT;

and

EXEC SQL DECLARE STATEMENT <statement_name>;

Where:

statement_name specifies the identifier associated with the statement.

database_name specifies the name of the database. This value may take the form of an identifier or of a host variable that contains the identifier.

A typical usage sequence that includes the DECLARE STATEMENT directive might be:

EXEC SQL DECLARE give_raise STATEMENT; // give_raise is now a statement
handle (not prepared)
EXEC SQL PREPARE give_raise FROM :stmtText; // give_raise is now associated
with a statement
EXEC SQL EXECUTE give_raise;

This statement has no effect and is provided for Pro*C compatibility only.

DELETE

Use the DELETE statement to delete one or more rows from a table. The syntax for the ECPGPlus DELETE statement is the same as the syntax for the
SQL statement, but you can use parameter markers and host variables any place that an expression is allowed. The syntax is:

[FOR <exec_count>] DELETE FROM [ONLY] <table> [[AS] <alias>]
 [USING <using_list>]
 [WHERE <condition> | WHERE CURRENT OF <cursor_name>]
 [{RETURNING|RETURN} * | <output_expression> [[AS] <output_name>]
[, ...] INTO <host_variable_list>]

Where:

Include the FOR exec_count clause to specify the number of times the statement will execute; this clause is valid only if the VALUES clause
references an array or a pointer to an array.

table is the name (optionally schema-qualified) of an existing table. Include the ONLY clause to limit processing to the specified table; if you do not
include the ONLY clause, any tables inheriting from the named table are also processed.

alias is a substitute name for the target table.

using_list is a list of table expressions, allowing columns from other tables to appear in the WHERE condition.

Include the WHERE clause to specify which rows should be deleted. If you do not include a WHERE clause in the statement, DELETE will delete all rows
from the table, leaving the table definition intact.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1481

condition is an expression, host variable or parameter marker that returns a value of type BOOLEAN . Those rows for which condition returns true
will be deleted.

cursor_name is the name of the cursor to use in the WHERE CURRENT OF clause; the row to be deleted will be the one most recently fetched from
this cursor. The cursor must be a non-grouping query on the DELETE statements target table. You cannot specify WHERE CURRENT OF in a DELETE
statement that includes a Boolean condition.

The RETURN/RETURNING clause specifies an output_expression or host_variable_list that is returned by the DELETE command after
each row is deleted:

output_expression is an expression to be computed and returned by the DELETE command after each row is deleted. output_name is the
name of the returned column; include * to return all columns.

host_variable_list is a comma-separated list of host variables and optional indicator variables. Each host variable receives a corresponding
value from the RETURNING clause.

For example, the following statement deletes all rows from the emp table where the sal column contains a value greater than the value specified in the
host variable, :max_sal:

DELETE FROM emp WHERE sal > :max_sal;

For more information about using the DELETE statement, see the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/current/static/sql-delete.html

DESCRIBE

Use the DESCRIBE statement to find the number of input values required by a prepared statement or the number of output values returned by a prepared
statement. The DESCRIBE statement is used to analyze a SQL statement whose shape is unknown at the time you write your application.

The DESCRIBE statement populates an SQLDA descriptor; to populate a SQL descriptor, use the ALLOCATE DESCRIPTOR and
DESCRIBE...DESCRIPTOR statements.

EXEC SQL DESCRIBE BIND VARIABLES FOR <statement_name> INTO <descriptor>;

or

EXEC SQL DESCRIBE SELECT LIST FOR <statement_name> INTO <descriptor>;

Where:

statement_name is the identifier associated with a prepared SQL statement or PL/SQL block.

descriptor is the name of C variable of type SQLDA* . You must allocate the space for the descriptor by calling sqlald() (and initialize the
descriptor) before executing the DESCRIBE statement.

When you execute the first form of the DESCRIBE statement, ECPG populates the given descriptor with a description of each input variable required by
the statement. For example, given two descriptors:

SQLDA *query_values_in;
SQLDA *query_values_out;

You might prepare a query that returns information from the emp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1482

https://www.postgresql.org/docs/current/static/sql-delete.html

You might prepare a query that returns information from the emp table:

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

EXEC SQL DESCRIBE BIND VARIABLES
 FOR get_emp INTO query_values_in;

After describing the bind variables for this statement, you can examine the descriptor to find the number of variables required and the type of each variable.

When you execute the second form, ECPG populates the given descriptor with a description of each value returned by the statement. For example, the
following statement returns three values:

EXEC SQL DESCRIBE SELECT LIST
 FOR get_emp INTO query_values_out;

After describing the select list for this statement, you can examine the descriptor to find the number of returned values and the name and type of each
value.

Before executing the statement, you must bind a variable for each input value and a variable for each output value. The variables that you bind for the input
values specify the actual values used by the statement. The variables that you bind for the output values tell ECPGPlus where to put the values when you
execute the statement.

This is alternate Pro*C compatible syntax for the DESCRIBE DESCRIPTOR statement.

DESCRIBE DESCRIPTOR

Use the DESCRIBE DESCRIPTOR statement to retrieve information about a SQL statement, and store that information in a SQL descriptor. Before using
DESCRIBE DESCRIPTOR , you must allocate the descriptor with the ALLOCATE DESCRIPTOR statement. The syntax is:

EXEC SQL DESCRIBE [INPUT | OUTPUT] <statement_identifier>
 USING [SQL] DESCRIPTOR <descriptor_name>;

Where:

statement_name is the name of a prepared SQL statement.

descriptor_name is the name of the descriptor. descriptor_name can be a quoted string value or a host variable that contains the name of the
descriptor.

If you include the INPUT clause, ECPGPlus populates the given descriptor with a description of each input variable required by the statement.

For example, given two descriptors:

EXEC SQL ALLOCATE DESCRIPTOR query_values_in;
EXEC SQL ALLOCATE DESCRIPTOR query_values_out;

You might prepare a query that returns information from the emp table:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1483

EXEC SQL PREPARE get_emp FROM
 "SELECT ename, empno, sal FROM emp WHERE empno = ?";

The command requires one input variable (for the parameter marker (?)).

EXEC SQL DESCRIBE INPUT get_emp USING 'query_values_in';

After describing the bind variables for this statement, you can examine the descriptor to find the number of variables required and the type of each variable.

If you do not specify the INPUT clause, DESCRIBE DESCRIPTOR populates the specified descriptor with the values returned by the statement.

If you include the OUTPUT clause, ECPGPlus populates the given descriptor with a description of each value returned by the statement.

For example, the following statement returns three values:

EXEC SQL DESCRIBE OUTPUT FOR get_emp USING 'query_values_out';

After describing the select list for this statement, you can examine the descriptor to find the number of returned values and the name and type of each
value.

DISCONNECT

Use the DISCONNECT statement to close the connection to the server. The syntax is:

EXEC SQL DISCONNECT [<connection_name>][CURRENT][DEFAULT][ALL];

Where:

connection_name is the connection name specified in the CONNECT statement used to establish the connection. If you do not specify a connection
name, the current connection is closed.

Include the CURRENT keyword to specify that ECPGPlus should close the most-recently used connection.

Include the DEFAULT keyword to specify that ECPGPlus should close the connection named DEFAULT . If you do not specify a name when opening a
connection, ECPGPlus assigns the name, DEFAULT , to the connection.

Include the ALL keyword to instruct ECPGPlus to close all active connections.

The following example creates a connection (named hr_connection) that connects to the hr database, and then disconnects from the connection:

/* client.pgc*/
int main()
{
 EXEC SQL CONNECT TO hr AS connection_name;
 EXEC SQL DISCONNECT connection_name;
 return(0);
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1484

EXECUTE

Use the EXECUTE statement to execute a statement previously prepared using an EXEC SQL PREPARE statement. The syntax is:

EXEC SQL [FOR <array_size>] EXECUTE <statement_name>
 [USING {DESCRIPTOR <SQLDA_descriptor>
 |: <host_variable> [[INDICATOR] :<indicator_variable>]}];

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to be processed. If you omit the FOR
clause, the statement is executed once for each member of the array.

statement_name specifies the name assigned to the statement when the statement was created (using the EXEC SQL PREPARE statement).

Include the USING clause to supply values for parameters within the prepared statement:

Include the DESCRIPTOR SQLDA_descriptor clause to provide an SQLDA descriptor value for a parameter.

Use a host_variable (and an optional indicator_variable) to provide a user-specified value for a parameter.

The following example creates a prepared statement that inserts a record into the emp table:

EXEC SQL PREPARE add_emp (numeric, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the prepared statement, provide fresh parameter values for the statement:

EXEC SQL EXECUTE add_emp USING 8000, 'DAWSON', 'CLERK', 7788;
EXEC SQL EXECUTE add_emp USING 8001, 'EDWARDS', 'ANALYST', 7698;

EXECUTE DESCRIPTOR

Use the EXECUTE statement to execute a statement previously prepared by an EXEC SQL PREPARE statement, using an SQL descriptor. The syntax is:

EXEC SQL [FOR <array_size>] EXECUTE <statement_identifier>
 [USING [SQL] DESCRIPTOR <descriptor_name>]
 [INTO [SQL] DESCRIPTOR <descriptor_name>];

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to be processed. If you omit the FOR
clause, the statement is executed once for each member of the array.

statement_identifier specifies the identifier assigned to the statement with the EXEC SQL PREPARE statement.

Include the USING clause to specify values for any input parameters required by the prepared statement.

Include the INTO clause to specify a descriptor into which the EXECUTE statement will write the results returned by the prepared statement.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal), or a host variable that contains the name of a descriptor.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1485

The following example executes the prepared statement, give_raise , using the values contained in the descriptor stmtText:

EXEC SQL PREPARE give_raise FROM :stmtText;
EXEC SQL EXECUTE give_raise USING DESCRIPTOR :stmtText;

EXECUTE...END EXEC

Use the EXECUTE…END-EXEC statement to embed an anonymous block into a client application. The syntax is:

EXEC SQL [AT <database_name>] EXECUTE <anonymous_block> END-EXEC;

Where:

database_name is the database identifier or a host variable that contains the database identifier. If you omit the AT clause, the statement will be
executed on the current default database.

anonymous_block is an inline sequence of PL/pgSQL or SPL statements and declarations. You may include host variables and optional indicator
variables within the block; each such variable is treated as an IN/OUT value.

The following example executes an anonymous block:

EXEC SQL EXECUTE
 BEGIN
 IF (current_user = :admin_user_name) THEN
 DBMS_OUTPUT.PUT_LINE('You are an administrator');
 END IF;
END-EXEC;

NoteNote

The EXECUTE…END EXEC statement is supported only by Advanced Server.

EXECUTE IMMEDIATE

Use the EXECUTE IMMEDIATE statement to execute a string that contains a SQL command. The syntax is:

EXEC SQL [AT <database_name>] EXECUTE IMMEDIATE <command_text>;

Where:

database_name is the database identifier or a host variable that contains the database identifier. If you omit the AT clause, the statement will be
executed on the current default database.

command_text is the command executed by the EXECUTE IMMEDIATE statement.

This dynamic SQL statement is useful when you don't know the text of an SQL statement (ie., when writing a client application). For example, a client
application may prompt a (trusted) user for a statement to execute. After the user provides the text of the statement as a string value, the statement is then
executed with an EXECUTE IMMEDIATE command.

The statement text may not contain references to host variables. If the statement may contain parameter markers or returns one or more values, you must
use the PREPARE and DESCRIBE statements.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1486

The following example executes the command contained in the :command_text host variable:

EXEC SQL EXECUTE IMMEDIATE :command_text;

FETCH

Use the FETCH statement to return rows from a cursor into an SQLDA descriptor or a target list of host variables. Before using a FETCH statement to
retrieve information from a cursor, you must prepare the cursor using DECLARE and OPEN statements. The statement syntax is:

EXEC SQL [FOR <array_size>] FETCH <cursor>
 { USING DESCRIPTOR <SQLDA_descriptor> }|{ INTO <target_list> };

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the
statement is executed once for each member of the array.

cursor is the name of the cursor from which rows are being fetched, or a host variable that contains the name of the cursor.

If you include a USING clause, the FETCH statement will populate the specified SQLDA descriptor with the values returned by the server.

If you include an INTO clause, the FETCH statement will populate the host variables (and optional indicator variables) specified in the target_list .

The following code fragment declares a cursor named employees that retrieves the employee number , name and salary from the emp table:

EXEC SQL DECLARE employees CURSOR FOR
 SELECT empno, ename, esal FROM emp;
EXEC SQL OPEN emp_cursor;
EXEC SQL FETCH emp_cursor INTO :emp_no, :emp_name, :emp_sal;

FETCH DESCRIPTOR

Use the FETCH DESCRIPTOR statement to retrieve rows from a cursor into an SQL descriptor. The syntax is:

EXEC SQL [FOR <array_size>] FETCH <cursor>
 INTO [SQL] DESCRIPTOR <descriptor_name>;

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the
statement is executed once for each member of the array.

cursor is the name of the cursor from which rows are fetched, or a host variable that contains the name of the cursor. The client must DECLARE and
OPEN the cursor before calling the FETCH DESCRIPTOR statement.

Include the INTO clause to specify an SQL descriptor into which the EXECUTE statement will write the results returned by the prepared statement.
descriptor_name specifies the name of a descriptor (as a single-quoted string literal), or a host variable that contains the name of a descriptor. Prior

to use, the descriptor must be allocated using an ALLOCATE DESCRIPTOR statement.

The following example allocates a descriptor named row_desc that will hold the description and the values of a specific row in the result set. It then

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1487

The following example allocates a descriptor named row_desc that will hold the description and the values of a specific row in the result set. It then
declares and opens a cursor for a prepared statement (my_cursor), before looping through the rows in result set, using a FETCH to retrieve the next
row from the cursor into the descriptor:

EXEC SQL ALLOCATE DESCRIPTOR 'row_desc';
EXEC SQL DECLARE my_cursor CURSOR FOR query;
EXEC SQL OPEN my_cursor;

for(row = 0; ; row++)
{
 EXEC SQL BEGIN DECLARE SECTION;
 int col;
 EXEC SQL END DECLARE SECTION;
 EXEC SQL FETCH my_cursor INTO SQL DESCRIPTOR 'row_desc';

GET DESCRIPTOR

Use the GET DESCRIPTOR statement to retrieve information from a descriptor. The GET DESCRIPTOR statement comes in two forms. The first form
returns the number of values (or columns) in the descriptor.

EXEC SQL GET DESCRIPTOR <descriptor_name>
 :<host_variable> = COUNT;

The second form returns information about a specific value (specified by the VALUE column_number clause).

EXEC SQL [FOR <array_size>] GET DESCRIPTOR <descriptor_name>
 VALUE <column_number> {:<host_variable> = <descriptor_item> {,…}};

Where:

array_size is an integer value or a host variable that contains an integer value that specifies the number of rows to be processed. If you specify an
array_size , the host_variable must be an array of that size; for example, if array_size is 10 , :host_variable must be a 10-member

array of host_variables . If you omit the FOR clause, the statement is executed once for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal), or a host variable that contains the name of a descriptor.

Include the VALUE clause to specify the information retrieved from the descriptor.

column_number identifies the position of the variable within the descriptor.

host_variable specifies the name of the host variable that will receive the value of the item.

descriptor_item specifies the type of the retrieved descriptor item.

ECPGPlus implements the following descriptor_item types:

TYPE
LENGTH
OCTET_LENGTH
RETURNED_LENGTH
RETURNED_OCTET_LENGTH
PRECISION
SCALE
NULLABLE

INDICATOR

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1488

INDICATOR
DATA
NAME

The following code fragment demonstrates using a GET DESCRIPTOR statement to obtain the number of columns entered in a user-provided string:

EXEC SQL ALLOCATE DESCRIPTOR parse_desc;
EXEC SQL PREPARE query FROM :stmt;
EXEC SQL DESCRIBE query INTO SQL DESCRIPTOR parse_desc;
EXEC SQL GET DESCRIPTOR parse_desc :col_count = COUNT;

The example allocates an SQL descriptor (named parse_desc), before using a PREPARE statement to syntax check the string provided by the user
(:stmt) . A DESCRIBE statement moves the user-provided string into the descriptor, parse_desc . The call to EXEC SQL GET DESCRIPTOR

interrogates the descriptor to discover the number of columns (:col_count) in the result set.

INSERT

Use the INSERT statement to add one or more rows to a table. The syntax for the ECPGPlus INSERT statement is the same as the syntax for the SQL
statement, but you can use parameter markers and host variables any place that a value is allowed. The syntax is:

[FOR <exec_count>] INSERT INTO <table> [(<column> [, ...])]
 {DEFAULT VALUES |
 VALUES ({<expression> | DEFAULT} [, ...])[, ...] | <query>}
 [RETURNING * | <output_expression> [[AS] <output_name>] [, ...]]

Where:

Include the FOR exec_count clause to specify the number of times the statement will execute; this clause is valid only if the VALUES clause
references an array or a pointer to an array.

table specifies the (optionally schema-qualified) name of an existing table.

column is the name of a column in the table. The column name may be qualified with a subfield name or array subscript. Specify the DEFAULT
VALUES clause to use default values for all columns.

expression is the expression, value, host variable or parameter marker that will be assigned to the corresponding column. Specify DEFAULT to fill the
corresponding column with its default value.

query specifies a SELECT statement that supplies the row(s) to be inserted.

output_expression is an expression that will be computed and returned by the INSERT command after each row is inserted. The expression can
refer to any column within the table. Specify * to return all columns of the inserted row(s).

output_name specifies a name to use for a returned column.

The following example adds a row to the employees table:

INSERT INTO emp (empno, ename, job, hiredate)
 VALUES ('8400', :ename, 'CLERK', '2011-10-31');

NoteNote

The INSERT statement uses a host variable (:ename) to specify the value of the ename column.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1489

For more information about using the INSERT statement, see the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/current/static/sql-insert.html

OPEN

Use the OPEN statement to open a cursor. The syntax is:

EXEC SQL [FOR <array_size>] OPEN <cursor> [USING <parameters>];

Where parameters is one of the following:

DESCRIPTOR <SQLDA_descriptor>

or

<host_variable> [[INDICATOR] <indicator_variable>, …]

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the
statement is executed once for each member of the array.

cursor is the name of the cursor being opened.

parameters is either DESCRIPTOR SQLDA_descriptor or a comma-separated list of host variables (and optional indicator
variables) that initialize the cursor. If specifying an SQLDA_descriptor , the descriptor must be initialized with a DESCRIBE statement.

The OPEN statement initializes a cursor using the values provided in parameters . Once initialized, the cursor result set will remain unchanged unless
the cursor is closed and re-opened. A cursor is automatically closed when an application terminates.

The following example declares a cursor named employees , that queries the emp table, returning the employee number , name , salary and
commission of an employee whose name matches a user-supplied value (stored in the host variable, :emp_name).

 EXEC SQL DECLARE employees CURSOR FOR
 SELECT
 empno, ename, sal, comm
 FROM
 emp
 WHERE ename = :emp_name;
 EXEC SQL OPEN employees;
...

After declaring the cursor, the example uses an OPEN statement to make the contents of the cursor available to a client application.

OPEN DESCRIPTOR

Use the OPEN DESCRIPTOR statement to open a cursor with a SQL descriptor. The syntax is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1490

https://www.postgresql.org/docs/current/static/sql-insert.html

EXEC SQL [FOR <array_size>] OPEN <cursor>
 [USING [SQL] DESCRIPTOR <descriptor_name>]
 [INTO [SQL] DESCRIPTOR <descriptor_name>];

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the
statement is executed once for each member of the array.

cursor is the name of the cursor being opened.

descriptor_name specifies the name of an SQL descriptor (in the form of a single-quoted string literal) or a host variable that contains the name of an
SQL descriptor that contains the query that initializes the cursor.

For example, the following statement opens a cursor (named emp_cursor), using the host variable, :employees :

EXEC SQL OPEN emp_cursor USING DESCRIPTOR :employees;

PREPARE

Prepared statements are useful when a client application must perform a task multiple times; the statement is parsed, written and planned only once,
rather than each time the statement is executed, saving repetitive processing time.

Use the PREPARE statement to prepare an SQL statement or PL/pgSQL block for execution. The statement is available in two forms; the first form is:

EXEC SQL [AT <database_name>] PREPARE <statement_name>
 FROM <sql_statement>;

The second form is:

EXEC SQL [AT <database_name>] PREPARE <statement_name>
 AS <sql_statement>;

Where:

database_name is the database identifier or a host variable that contains the database identifier against which the statement will execute. If you omit
the AT clause, the statement will execute against the current default database.

statement_name is the identifier associated with a prepared SQL statement or PL/SQL block.

sql_statement may take the form of a SELECT statement, a single-quoted string literal or host variable that contains the text of an SQL statement.

To include variables within a prepared statement, substitute placeholders ($1, $2, $3 , etc.) for statement values that might change when you
PREPARE the statement. When you EXECUTE the statement, provide a value for each parameter. The values must be provided in the order in which they

will replace placeholders.

The following example creates a prepared statement (named add_emp) that inserts a record into the emp table:

EXEC SQL PREPARE add_emp (int, text, text, numeric) AS
 INSERT INTO emp VALUES($1, $2, $3, $4);

Each time you invoke the statement, provide fresh parameter values for the statement:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1491

EXEC SQL EXECUTE add_emp(8003, 'Davis', 'CLERK', 2000.00);
EXEC SQL EXECUTE add_emp(8004, 'Myer', 'CLERK', 2000.00);

NoteNote

A client application must issue a PREPARE statement within each session in which a statement will be executed; prepared statements persist
only for the duration of the current session.

ROLLBACK

Use the ROLLBACK statement to abort the current transaction, and discard any updates made by the transaction. The syntax is:

EXEC SQL [AT <database_name>] ROLLBACK [WORK]
 [{ TO [SAVEPOINT] <savepoint> } | RELEASE]

Where:

database_name is the database identifier or a host variable that contains the database identifier against which the statement will execute. If you omit
the AT clause, the statement will execute against the current default database.

Include the TO clause to abort any commands that were executed after the specified savepoint ; use the SAVEPOINT statement to define the
savepoint . If you omit the TO clause, the ROLLBACK statement will abort the transaction, discarding all updates.

Include the RELEASE clause to cause the application to execute an EXEC SQL COMMIT RELEASE and close the connection.

Use the following statement to rollback a complete transaction:

EXEC SQL ROLLBACK;

Invoking this statement will abort the transaction, undoing all changes, erasing any savepoints, and releasing all transaction locks. If you include a
savepoint (my_savepoint in the following example):

EXEC SQL ROLLBACK TO SAVEPOINT my_savepoint;

Only the portion of the transaction that occurred after the my_savepoint is rolled back; my_savepoint is retained, but any savepoints created after
my_savepoint will be erased.

Rolling back to a specified savepoint releases all locks acquired after the savepoint.

SAVEPOINT

Use the SAVEPOINT statement to define a savepoint ; a savepoint is a marker within a transaction. You can use a ROLLBACK statement to abort the
current transaction, returning the state of the server to its condition prior to the specified savepoint. The syntax of a SAVEPOINT statement is:

EXEC SQL [AT <database_name>] SAVEPOINT <savepoint_name>

Where:

database_name is the database identifier or a host variable that contains the database identifier against which the savepoint resides. If you omit the
AT clause, the statement will execute against the current default database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1492

savepoint_name is the name of the savepoint. If you re-use a savepoint_name , the original savepoint is discarded.

Savepoints can only be established within a transaction block. A transaction block may contain multiple savepoints.

To create a savepoint named my_savepoint , include the statement:

EXEC SQL SAVEPOINT my_savepoint;

SELECT

ECPGPlus extends support of the SQL SELECT statement by providing the INTO host_variables clause. The clause allows you to select specified
information from an Advanced Server database into a host variable. The syntax for the SELECT statement is:

EXEC SQL [AT <database_name>]
SELECT
 [<hint>]
 [ALL | DISTINCT [ON(<expression>, ...)]]
 select_list INTO <host_variables>

 [FROM from_item [, from_item]...]
 [WHERE condition]
 [hierarchical_query_clause]
 [GROUP BY expression [, ...]]
 [HAVING condition]
 [{ UNION [ALL] | INTERSECT | MINUS } (subquery)]
 [ORDER BY expression [order_by_options]]
 [LIMIT { count | ALL }]
 [OFFSET start [ROW | ROWS]]
 [FETCH { FIRST | NEXT } [count] { ROW | ROWS } ONLY]
 [FOR { UPDATE | SHARE } [OF table_name [, ...]][NOWAIT][...]]

Where:

database_name is the name of the database (or host variable that contains the name of the database) in which the table resides. This value may take
the form of an unquoted string literal, or of a host variable.

host_variables is a list of host variables that will be populated by the SELECT statement. If the SELECT statement returns more than a single row,
host_variables must be an array.

ECPGPlus provides support for the additional clauses of the SQL SELECT statement as documented in the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/current/static/sql-select.html

To use the INTO host_variables clause, include the names of defined host variables when specifying the SELECT statement. For example, the
following SELECT statement populates the :emp_name and :emp_sal host variables with a list of employee names and salaries :

EXEC SQL SELECT ename, sal
 INTO :emp_name, :emp_sal
 FROM emp
 WHERE empno = 7988;

The enhanced SELECT statement also allows you to include parameter markers (question marks) in any clause where a value would be permitted. For
example, the following query contains a parameter marker in the WHERE clause:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1493

https://www.postgresql.org/docs/current/static/sql-select.html

SELECT * FROM emp WHERE dept_no = ?;

This SELECT statement allows you to provide a value at run-time for the dept_no parameter marker.

SET CONNECTION

There are (at least) three reasons you may need more than one connection in a given client application:

You may want different privileges for different statements;
You may need to interact with multiple databases within the same client.
Multiple threads of execution (within a client application) cannot share a connection concurrently.

The syntax for the SET CONNECTION statement is:

EXEC SQL SET CONNECTION <connection_name>;

Where:

connection_name is the name of the connection to the database.

To use the SET CONNECTION statement, you should open the connection to the database using the second form of the CONNECT statement; include
the AS clause to specify a connection_name .

By default, the current thread uses the current connection; use the SET CONNECTION statement to specify a default connection for the current thread to
use. The default connection is only used when you execute an EXEC SQL statement that does not explicitly specify a connection name. For example, the
following statement will use the default connection because it does not include an AT connection_name clause. :

EXEC SQL DELETE FROM emp;

This statement will not use the default connection because it specifies a connection name using the AT connection_name clause:

EXEC SQL AT acctg_conn DELETE FROM emp;

For example, a client application that creates and maintains multiple connections (such as):

EXEC SQL CONNECT TO edb AS acctg_conn
 USER 'alice' IDENTIFIED BY 'acctpwd';

and

EXEC SQL CONNECT TO edb AS hr_conn
 USER 'bob' IDENTIFIED BY 'hrpwd';

Can change between the connections with the SET CONNECTION statement:

SET CONNECTION acctg_conn;

or

SET CONNECTION hr_conn;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1494

The server will use the privileges associated with the connection when determining the privileges available to the connecting client. When using the
acctg_conn connection, the client will have the privileges associated with the role, alice ; when connected using hr_conn , the client will have the

privileges associated with bob .

SET DESCRIPTOR

Use the SET DESCRIPTOR statement to assign a value to a descriptor area using information provided by the client application in the form of a host
variable or an integer value. The statement comes in two forms; the first form is:

EXEC SQL [FOR <array_size>] SET DESCRIPTOR <descriptor_name>
 VALUE <column_number> <descriptor_item> = <host_variable>;

The second form is:

EXEC SQL [FOR <array_size>] SET DESCRIPTOR <descriptor_name>
 COUNT = integer;

Where:

array_size is an integer value or a host variable that contains an integer value specifying the number of rows to fetch. If you omit the FOR clause, the
statement is executed once for each member of the array.

descriptor_name specifies the name of a descriptor (as a single-quoted string literal), or a host variable that contains the name of a descriptor.

Include the VALUE clause to describe the information stored in the descriptor.

column_number identifies the position of the variable within the descriptor.

descriptor_item specifies the type of the descriptor item.

host_variable specifies the name of the host variable that contains the value of the item.

ECPGPlus implements the following descriptor_item types:

TYPE
LENGTH
[REF] INDICATOR
[REF] DATA
[REF] RETURNED LENGTH

For example, a client application might prompt a user for a dynamically created query:

query_text = promptUser("Enter a query");

To execute a dynamically created query, you must first prepare the query (parsing and validating the syntax of the query), and then describe the
input parameters found in the query using the EXEC SQL DESCRIBE INPUT statement.

EXEC SQL ALLOCATE DESCRIPTOR query_params;
EXEC SQL PREPARE emp_query FROM :query_text;

EXEC SQL DESCRIBE INPUT emp_query
 USING SQL DESCRIPTOR 'query_params';

After describing the query, the query_params descriptor contains information about each parameter required by the query.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1495

After describing the query, the query_params descriptor contains information about each parameter required by the query.

For this example, we'll assume that the user has entered:

SELECT ename FROM emp WHERE sal > ? AND job = ?;,

In this case, the descriptor describes two parameters, one for sal > ? and one for job = ? .

To discover the number of parameter markers (question marks) in the query (and therefore, the number of values you must provide before executing the
query), use:

EXEC SQL GET DESCRIPTOR … :host_variable = COUNT;

Then, you can use EXEC SQL GET DESCRIPTOR to retrieve the name of each parameter. You can also use EXEC SQL GET DESCRIPTOR to
retrieve the type of each parameter (along with the number of parameters) from the descriptor, or you can supply each value in the form of a character
string and ECPG will convert that string into the required data type.

The data type of the first parameter is numeric ; the type of the second parameter is varchar . The name of the first parameter is sal ; the name of the
second parameter is job .

Next, loop through each parameter, prompting the user for a value, and store those values in host variables. You can use GET DESCRIPTOR … COUNT
to find the number of parameters in the query.

EXEC SQL GET DESCRIPTOR 'query_params'
 :param_count = COUNT;

for(param_number = 1;
 param_number <= param_count;
 param_number++)
{

Use GET DESCRIPTOR to copy the name of the parameter into the param_name host variable:

EXEC SQL GET DESCRIPTOR 'query_params'
 VALUE :param_number :param_name = NAME;

reply = promptUser(param_name);
if (reply == NULL)
 reply_ind = 1; /* NULL */
else
 reply_ind = 0; /* NOT NULL */

To associate a value with each parameter, you use the EXEC SQL SET DESCRIPTOR statement. For example:

EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number DATA = :reply;
EXEC SQL SET DESCRIPTOR 'query_params'
 VALUE :param_number INDICATOR = :reply_ind;
}

Now, you can use the EXEC SQL EXECUTE DESCRIPTOR statement to execute the prepared statement on the server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1496

UPDATE

Use an UPDATE statement to modify the data stored in a table. The syntax is:

EXEC SQL [AT <database_name>][FOR <exec_count>]
 UPDATE [ONLY] table [[AS] alias]
 SET {column = { expression | DEFAULT } |
 (column [, ...]) = ({ expression|DEFAULT } [, ...])} [, ...]
 [FROM from_list]
 [WHERE condition | WHERE CURRENT OF cursor_name]
 [RETURNING * | output_expression [[AS] output_name] [, ...]]

Where:

database_name is the name of the database (or host variable that contains the name of the database) in which the table resides. This value may take
the form of an unquoted string literal, or of a host variable.

Include the FOR exec_count clause to specify the number of times the statement will execute; this clause is valid only if the SET or WHERE clause
contains an array.

ECPGPlus provides support for the additional clauses of the SQL UPDATE statement as documented in the PostgreSQL Core documentation available at:

https://www.postgresql.org/docs/current/static/sql-update.html

A host variable can be used in any clause that specifies a value. To use a host variable, simply substitute a defined variable for any value associated with
any of the documented UPDATE clauses.

The following UPDATE statement changes the job description of an employee (identified by the :ename host variable) to the value contained in the
:new_job host variable, and increases the employees salary, by multiplying the current salary by the value in the :increase host variable:

EXEC SQL UPDATE emp
 SET job = :new_job, sal = sal * :increase
 WHERE ename = :ename;

The enhanced UPDATE statement also allows you to include parameter markers (question marks) in any clause where an input value would be permitted.
For example, we can write the same update statement with a parameter marker in the WHERE clause:

EXEC SQL UPDATE emp
 SET job = ?, sal = sal * ?
 WHERE ename = :ename;

This UPDATE statement could allow you to prompt the user for a new value for the job column and provide the amount by which the sal column is
incremented for the employee specified by :ename .

WHENEVER

Use the WHENEVER statement to specify the action taken by a client application when it encounters an SQL error or warning. The syntax is:

EXEC SQL WHENEVER <condition> <action>;

The following table describes the different conditions that might trigger an action :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1497

https://www.postgresql.org/docs/current/static/sql-update.html

ConditionCondition DescriptionDescription

NOT
FOUND

The server returns a NOT FOUND condition when it encounters a SELECT that returns no rows, or when a FETCH reaches the end
of a result set.

SQLERROR The server returns an SQLERROR condition when it encounters a serious error returned by an SQL statement.

SQLWARNIN
G

The server returns an SQLWARNING condition when it encounters a non-fatal warning returned by an SQL statement.

The following table describes the actions that result from a client encountering a condition :

ActionAction DescriptionDescription

CALL function
[([args])]

Instructs the client application to call the named function .

CONTINUE Instructs the client application to proceed to the next statement.

DO BREAK Instructs the client application to a C break statement. A break statement may appear in a loop or a switch statement. If
executed, the break statement terminate the loop or the switch statement.

DO CONTINUE Instructs the client application to emit a C continue statement. A continue statement may only exist within a loop, and
if executed, will cause the flow of control to return to the top of the loop.

DO function
([args])

Instructs the client application to call the named function .

GOTO label or
GO TO label

Instructs the client application to proceed to the statement that contains the label .

SQLPRINT Instructs the client application to print a message to standard error.

STOP Instructs the client application to stop execution.

The following code fragment prints a message if the client application encounters a warning, and aborts the application if it encounters an error:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;
EXEC SQL WHENEVER SQLERROR STOP;

Include the following code to specify that a client should continue processing after warning a user of a problem:

EXEC SQL WHENEVER SQLWARNING SQLPRINT;

Include the following code to call a function if a query returns no rows, or when a cursor reaches the end of a result set:

EXEC SQL WHENEVER NOT FOUND CALL error_handler(__LINE__);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1498

19.7 Supported Platforms

For information about the platforms and versions supported by EDB Postgres Advanced Server, see Platform Compatibility.

Limitations

The following limitations apply to EDB Postgres Advanced Server:

The data directory of a production database should not be stored on an NFS file system.
The LLVM JIT package is supported on RHEL 8.x only. LLVM JIT is not supported on PPC-LE 64 running RHEL or CentOS 7.x.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1499

https://www.enterprisedb.com/platform-compatibility#epas

20 EDB Postgres Language Pack Guide

This guide provides information about how to install and configure Language Pack, as well as how to use the procedural languages (PL/Perl, PL/Python,
and PL/Tcl).

Language pack installers contain supported languages that may be used with EDB Postgres Advanced Server and EnterpriseDB PostgreSQL database
installers. The language pack installer allows you to install Perl, Tcl/TK, and Python without installing supporting software from third-party vendors.

The Language Pack 1.0 installer includes:

Tcl with TK version 8.6
Perl version 5.26
Python version 3.7

The Perl package contains the cpan package manager, and Python contains pip and easy_install package managers. There is no package
manager for Tcl/TK.

In previous Postgres releases, plpython was statically linked with ActiveState's python library. The Language Pack Installer dynamically links with our
shared object for python. In ActiveState Linux installers for Python, there is no dynamic library. As a result of these changes, plpython will no longer
work with ActiveState installers.

Convention Used in this GuideConvention Used in this Guide

The term Postgres refers to either PostgreSQL or EDB Postgres Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1500

20.1 Supported Database Server Versions

Language Pack installers are version specific. For EDB Postgres Advanced Server 13, use Language Pack Version 1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1501

20.2 Installing and Configuring Language Pack

This section walks you through installing and configuring Language Pack.

Installing Language Pack

The graphical installer is available from the EDB website, as well as via Stack Builder and StackBuilder Plus. StackBuilder Plus is distributed with EDB
Postgres Advanced Server and Stack Builder is distributed with PostgreSQL.

Invoking the Graphical Installer

Assume Administrator privileges, and double-click the installer icon; if prompted, provide the password associated with the Administrator account. When
prompted, select an installation language, and click OK .

Fig. 1: The Language Selection Window

The Language Pack setup wizard welcome window opens.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1502

https://www.enterprisedb.com/software-downloads-postgres

Fig. 2: The Language Pack Welcome Window

Click Next to continue.

The Ready to Install window displays the Language Pack installation directory:

On Windows 64: C:/edb/languagepack/v1

On OSX: /Library/edb/languagepack/v1

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1503

Fig. 3: The Ready to Install dialog

You cannot modify the installation directory. Click Next to continue.

A progress bar marks installation progress.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1504

Fig. 4: The Installing dialog

Click Next to continue.

The installer will inform you that the Language Pack installation has completed; click Finish to exit the installer.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1505

Fig. 5: The Language Pack Setup Complete dialog

Installing Language Pack with Stack Builder

You can use Stack Builder or StackBuilder Plus to download and invoke the Language Pack graphical installer. StackBuilder Plus is distributed with EDB
Postgres Advanced Server and Stack Builder is distributed with PostgreSQL.

The following section walks you through installing Language Pack with Stack Builder.

The Stack Builder utility provides a graphical interface that simplifies the process of downloading and installing modules that complement your PostgreSQL
installation.

Stack Builder requires Internet access; if your installation of PostgreSQL resides behind a firewall (with restricted Internet access), Stack Builder can
download program installers through a proxy server. The module provider deter-mines if the module can be accessed through an HTTP proxy or an FTP
proxy; currently, all updates are transferred via an HTTP proxy and the FTP proxy information is not used.

You can invoke Stack Builder at any time after the installation has completed by selecting the Application Stack Builder menu option from the
PostgreSQL 13 menu.

Select your server from the drop-down menu on the Stack Builder Welcome window and click Next to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1506

Fig. 6: The Stack Builder Welcome Window

Expand the Add-ons, tools and utilities node of the Categories tree control, and check the box next to EDB Language Pack v1.0-
5 . Click Next to continue.

Fig. 7: The Language Pack Selection Window

Stack Builder will confirm your package selection before downloading the installer. Click Next to continue.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1507

Stack Builder will confirm your package selection before downloading the installer. Click Next to continue.

Fig. 8: The Selected Packages Window

When the download completes, Stack Builder will offer to invoke the installer for you, or will delay the installation until a more convenient time. To invoke
the installer, click Next and follow the steps provided in the Invoking the Graphical Installer section.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1508

Fig. 9: The Selected Packages Window

Configuring Language Pack

This section walks you through configuring Language Pack on an Advanced Server and PostgreSQL hosts.

Configuring Language Pack on an Advanced Server Host

After installing Language Pack on an Advanced Server host, you must configure the installation.

Configuring Language Pack on WindowsConfiguring Language Pack on Windows

On Windows, the Language Pack installer places the languages in:

C:\edb\languagepack\v1

After installing Language Pack, you must set the following variables:

set PYTHONHOME=C:\edb\languagepack\v1\Python-3.7

Use the following commands to add Python, Perl and Tcl to your search path:

set PATH=C:\edb\languagepack\v1\Python-3.7;
C:\edb\languagepack\v1\Perl-5.26\bin;
C:\edb\languagepack\v1\Tcl-8.6\bin;%PATH%

After performing the steps required to configure Language Pack on Windows, use the Windows Services applet to restart the Advanced Server.

Configuring Language Pack on a PostgreSQL Host

After installing Language Pack on a PostgreSQL host, you must configure the installation.

Configuring Language Pack on WindowsConfiguring Language Pack on Windows

After installing Language Pack, you must set the following variables:

set PYTHONHOME=C:\edb\languagepack\v1\Python-3.7

Then, use the following commands to add Language Pack to your search path:

set PATH=C:\edb\languagepack\v1\Python-3.7;
C:\edb\languagepack\v1\Perl-5.26\bin;
C:\edb\languagepack\v1\Tcl-8.6\bin;%PATH%

After setting the system-specific steps required to configure Language Pack on Windows, restart the database server.

Configuring Language Pack on OSXConfiguring Language Pack on OSX

To simplify setting the value of PATH or LD_LIBRARY_PATH , you can create environment variables that identify the installation location:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1509

PERLHOME=/Library/edb/languagepack/v1/Perl-5.26
PYTHONHOME=/Library/edb/languagepack/v1/Python-3.7
TCLHOME=/Library/edb/languagepack/v1/Tcl-8.6

Then, execute the following command to instruct the Python interpreter where to find Python:

export PYTHONHOME

You can use the same environment variables when setting the value of PATH :

export PATH=$PYTHONHOME/bin:
$PERLHOME/bin:
$TCLHOME/bin:$PATH

Lastly, set the following variables to instruct OSX where to find the shared libraries:

export DYLD_LIBRARY_PATH=$PYTHONHOME/lib:
$PERLHOME/lib/CORE:$TCLHOME/lib:
$DYLD_LIBRARY_PATH

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1510

20.3 Using the Procedural Languages

The Postgres procedural languages (PL/Perl, PL/Python, and PL/Tcl) are installed by the Language Pack installer. You can also use a native package to add
procedural language functionality to your EDB Postgres Advanced Server installation.

PL/Perl

The PL/Perl procedural language allows you to use Perl functions in Postgres applications.

You must install PL/Perl in each database (or in a template database) before creating a PL/Perl function. Use the CREATE LANGUAGE command at the
EDB-PSQL command line to install PL/Perl. Open the EDB-PSQL client, establish a connection to the database in which you wish to install PL/Perl, and
enter the command:

CREATE EXTENSION plperl;

You can now use a Postgres client application to access the features of the PL/Perl language. The following PL/Perl example creates a function named
perl_max that returns the larger of two integer values:

CREATE OR REPLACE FUNCTION perl_max (integer, integer) RETURNS integer
AS
$$
if ($_[0] > $_[1])
{ return $_[0]; }
return $_[1];
$$ LANGUAGE plperl;

Pass two values when calling the function:

SELECT perl_max(1, 2);

The server returns:

For more information about using the Perl procedural language, consult the official PostgreSQL documentation.

PL/Python

The PL/Python procedural language allows you to create and execute functions written in Python within Postgres applications. The version of PL/Python
used by EDB Postgres Advanced Server and PostgreSQL is untrusted (plpython3u); it offers no restrictions on users to prevent potential security risks.

Install PL/Python in each database (or in a template database) before creating a PL/Python function. You can use the CREATE LANGUAGE command at
the EDB-PSQL command line to install PL/Python. Use EDB-PSQL to connect to the database in which you wish to install PL/Python, and enter the
command:

CREATE EXTENSION plpython3u;

perl_max

 2
(1 rowrow)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1511

https://www.postgresql.org/docs/12/static/plperl.html

After installing PL/Python in your database, you can use the features of the PL/Python language.

NoteNote

The indentation shown in the following example must be included as you enter the sample function in EDB-PSQL.

The following PL/Python example creates a function named pymax that returns the larger of two integer values:

CREATE OR REPLACE FUNCTION pymax (a integer, b integer) RETURNS
integer AS
$$
if a > b:
return a
return b
$$ LANGUAGE plpython3u;

When calling the pymax function, pass two values as shown below:

The server returns:

For more information about using the Python procedural language, consult the official PostgreSQL documentation.

PL/Tcl

The PL/Tcl procedural language allows you to use Tcl/Tk functions in applications.

You must install PL/Tcl in each database (or in a template database) before creating a PL/Tcl function. Use the CREATE LANGUAGE command at the
EDB-PSQL command line to install PL/Tcl. Use the psql client to connect to the database in which you wish to install PL/Tcl, and enter the command:

CREATE EXTENSION pltcl;

After creating the pltcl language, you can use the features of the PL/Tcl language from within your Postgres server.

The following PL/Tcl example creates a function named tcl_max that returns the larger of two integer values:

CREATE OR REPLACE FUNCTION tcl_max(integer, integer) RETURNS integer
AS $$
if {[argisnull 1]} {
if {[argisnull 2]} { return_null }
return $2
}
if {[argisnull 2]} { return $1 }
if {$1 > $2} {return $1}
return $2
$$ LANGUAGE pltcl;

SELECTSELECT pymax(12,
3);

pymax

 12
(1 rowrow)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1512

https://www.postgresql.org/docs/12/static/plpython.html

Pass two values when calling the function:

The server returns:

For more information about using the Tcl procedural language, consult the official PostgreSQL documentation.

SELECTSELECT tcl_max(1,
2);

tcl_max

 2
(1 rowrow)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1513

https://www.postgresql.org/docs/13/static/pltcl.html

20.4 Uninstalling Language Pack

The following section outlines the process of uninstalling Language Pack.

The Language Pack graphical installer creates an uninstaller that you can use to remove Language Pack. The uninstaller is created in the installation
directory.

Perform the following steps to uninstall Language Pack:

1. Navigate into the directory that contains the uninstaller and assume superuser privileges. Open the uninstaller and click Yes to begin uninstalling
Language Pack.

Fig. 1: The Language Pack Uninstaller

2. The uninstallation process begins. Click OK when the uninstallation completes.

Fig. 2: Uninstalling Language Pack

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1514

21 EDB Postgres Advanced Server Security Features Guide

This guide describes features that provide added security to EDB Postgres Advanced Server installations. It is not a comprehensive guide to the security
functionality provided by PostgreSQL that is built into Advanced Server.

SQL/Protect provides protection from SQL injection attacks.
Virtual Private Database provides fine-grained access control for sensitive data.
sslutils is a Postgres extension that allows you to generate SSL certificates.
Data redaction functionality allows you to dynamically mask portions of data.

For information about Postgres authentication and security features, consult the PostgreSQL core documentation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1515

https://www.postgresql.org/docs/

21.1 Protecting Against SQL Injection Attacks

Advanced Server provides protection against SQL injection attacks. A SQL injection attack is an attempt to compromise a database by running SQL
statements whose results provide clues to the attacker as to the content, structure, or security of that database.

Preventing a SQL injection attack is normally the responsibility of the application developer. The database administrator typically has little or no control
over the potential threat. The difficulty for database administrators is that the application must have access to the data to function properly.

SQL/Protect is a module that allows a database administrator to protect a database from SQL injection attacks. SQL/Protect provides a layer of security in
addition to the normal database security policies by examining incoming queries for common SQL injection profiles.

SQL/Protect gives the control back to the database administrator by alerting the administrator to potentially dangerous queries and by blocking these
queries.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1516

21.1.1 SQL/Protect Overview

This section contains an introduction to the different types of SQL injection attacks and describes how SQL/Protect guards against them.

Types of SQL Injection Attacks

There are a number of different techniques used to perpetrate SQL injection attacks. Each technique is characterized by a certain signature .
SQL/Protect examines queries for the following signatures:

Unauthorized RelationsUnauthorized Relations

While Advanced Server allows administrators to restrict access to relations (tables, views, etc.), many administrators do not perform this tedious task.
SQL/Protect provides a learn mode that tracks the relations a user accesses.

This allows administrators to examine the workload of an application, and for SQL/Protect to learn which relations an application should be allowed to
access for a given user or group of users in a role.

When SQL/Protect is switched to either passive or active mode, the incoming queries are checked against the list of learned relations.

Utility CommandsUtility Commands

A common technique used in SQL injection attacks is to run utility commands, which are typically SQL Data Definition Language (DDL) statements. An
example is creating a user-defined function that has the ability to access other system resources.

SQL/Protect can block the running of all utility commands, which are not normally needed during standard application processing.

SQL TautologySQL Tautology

The most frequent technique used in SQL injection attacks is issuing a tautological WHERE clause condition (that is, using a condition that is always true).

The following is an example:

WHERE password = 'x' OR 'x'='x'

Attackers will usually start identifying security weaknesses using this technique. SQL/Protect can block queries that use a tautological conditional clause.

Unbounded DML StatementsUnbounded DML Statements

A dangerous action taken during SQL injection attacks is the running of unbounded DML statements. These are UPDATE and DELETE statements with
no WHERE clause. For example, an attacker may update all users’ passwords to a known value or initiate a denial of service attack by deleting all of the
data in a key table.

Monitoring SQL Injection Attacks

This section describes how SQL/Protect monitors and reports on SQL injection attacks.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1517

Protected Roles

Monitoring for SQL injection attacks involves analyzing SQL statements originating in database sessions where the current user of the session is a
protected role. A protected role is an Advanced Server user or group that the database administrator has chosen to monitor using SQL/Protect. (In
Advanced Server, users and groups are collectively referred to as roles .)

Each protected role can be customized for the types of SQL injection attacks for which it is to be monitored, thus providing different levels of protection by
role and significantly reducing the user maintenance load for DBAs.

A role with the superuser privilege cannot be made a protected role. If a protected non-superuser role is subsequently altered to become a superuser,
certain behaviors are exhibited whenever an attempt is made by that superuser to issue any command:

A warning message is issued by SQL/Protect on every command issued by the protected superuser.
The statistic in column superusers of edb_sql_protect_stats is incremented with every command issued by the protected superuser. See
Attack Attempt Statistics for information on the edb_sql_protect_stats view.

When SQL/Protect is in active mode, all commands issued by the protected superuser are prevented from running.

A protected role that has the superuser privilege should either be altered so that it is no longer a superuser, or it should be reverted back to an unprotected
role.

Attack Attempt Statistics

Each usage of a command by a protected role that is considered an attack by SQL/Protect is recorded. Statistics are collected by type of SQL injection
attack as discussed in Types of SQL Injection Attacks .

These statistics are accessible from view edb_sql_protect_stats that can be easily monitored to identify the start of a potential attack.

The columns in edb_sql_protect_stats monitor the following:

username.username. Name of the protected role.
superusers.superusers. Number of SQL statements issued when the protected role is a superuser. In effect, any SQL statement issued by a protected superuser
increases this statistic. See Protected Roles for information on protected superusers.
relations.relations. Number of SQL statements issued referencing relations that were not learned by a protected role. (That is, relations that are not in a role’s
protected relations list.)
commands.commands. Number of DDL statements issued by a protected role.
tautology.tautology. Number of SQL statements issued by a protected role that contained a tautological condition.
dml.dml. Number of UPDATE and DELETE statements issued by a protected role that did not contain a WHERE clause.

This gives database administrators the opportunity to react proactively in preventing theft of valuable data or other malicious actions.

If a role is protected in more than one database, the role’s statistics for attacks in each database are maintained separately and are viewable only when
connected to the respective database.

NoteNote

SQL/Protect statistics are maintained in memory while the database server is running. When the database server is shut down, the statistics are
saved to a binary file named edb_sqlprotect.stat in the data/global subdirectory of the Advanced Server home directory.

Attack Attempt Queries

Each usage of a command by a protected role that is considered an attack by SQL/Protect is recorded in the edb_sql_protect_queries view.

The edb_sql_protect_queries view contains the following columns:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1518

username.username. Database user name of the attacker used to log into the database server.
ip_address.ip_address. IP address of the machine from which the attack was initiated.
port.port. Port number from which the attack originated.
machine_name.machine_name. Name of the machine, if known, from which the attack originated.
date_time.date_time. Date and time at which the query was received by the database server. The time is stored to the precision of a minute.
query.query. The query string sent by the attacker.

The maximum number of offending queries that are saved in edb_sql_protect_queries is controlled by the
edb_sql_protect.max_queries_to_save configuration parameter.

If a role is protected in more than one database, the role’s queries for attacks in each database are maintained separately and are viewable only when
connected to the respective database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1519

21.1.2 Configuring SQL/Protect

Ensure the following prerequisites are met before configuring SQL/Protect:

The library file (sqlprotect.so on Linux, sqlprotect.dll on Windows) necessary to run SQL/Protect should be installed in the lib
subdirectory of your Advanced Server home directory. For Windows, this should be done by the Advanced Server installer. For Linux, install the
edb-asxx-server-sqlprotect RPM package where xx is the Advanced Server version number.

You will also need the SQL script file sqlprotect.sql located in the share/contrib subdirectory of your Advanced Server home directory.

You must configure the database server to use SQL/Protect , and you must configure each database that you want SQL/Protect to monitor:

The database server configuration file, postgresql.conf , must be modified by adding and enabling configuration parameters used by
SQL/Protect .

Database objects used by SQL/Protect must be installed in each database that you want SQL/Protect to monitor.

Step 1:Step 1: Edit the following configuration parameters in the postgresql.conf file located in the data subdirectory of your Advanced Server home
directory.

shared_preload_libraries.shared_preload_libraries. Add $libdir/sqlprotect to the list of libraries.

edb_sql_protect.enabled.edb_sql_protect.enabled. Controls whether or not SQL/Protect is actively monitoring protected roles by analyzing SQL statements issued by
those roles and reacting according to the setting of edb_sql_protect.level . When you are ready to begin monitoring with SQL/Protect
set this parameter to on . If this parameter is omitted, the default is off .

edb_sql_protect.level.edb_sql_protect.level. Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role. If this parameter is omitted, the
default behavior is passive . Initially, set this parameter to learn .

See Setting the Protection Level for more information.

edb_sql_protect.max_protected_roles.edb_sql_protect.max_protected_roles. Sets the maximum number of roles that can be protected. If this parameter is omitted, the default setting is
64 .

edb_sql_protect.max_protected_relations.edb_sql_protect.max_protected_relations. Sets the maximum number of relations that can be protected per role. If this parameter is omitted, the
default setting is 1024 .

Please note that the total number of protected relations for the server will be the number of protected relations times the number of protected roles.
Every protected relation consumes space in shared memory. The space for the maximum possible protected relations is reserved during database
server startup.

edb_sql_protect.max_queries_to_save.edb_sql_protect.max_queries_to_save. Sets the maximum number of offending queries to save in the edb_sql_protect_queries view. If this
parameter is omitted, the default setting is 5000 . If the number of offending queries reaches the limit, additional queries are not saved in the view,
but are accessible in the database server log file.

Please note that the minimum valid value for this parameter is 100 . If a value less than 100 is specified, the database server starts using the
default setting of 5000 . A warning message is recorded in the database server log file.

The following example shows the settings of these parameters in the postgresql.conf file:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1520

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/sqlprotect'
 # (change requires restart)
 .
 .
 .
edb_sql_protect.enabled = off
edb_sql_protect.level = learn
edb_sql_protect.max_protected_roles = 64
edb_sql_protect.max_protected_relations = 1024
edb_sql_protect.max_queries_to_save = 5000

Step 2:Step 2: Restart the database server after you have modified the postgresql.conf file.

On Linux:On Linux: Invoke the Advanced Server service script with the restart option.

On a Redhat or CentOS 7.x installation, use the command:

systemctl restart edb-as-13

On Windows:On Windows: Use the Windows Services applet to restart the service named edb-as-13 .

Step 3:Step 3: For each database that you want to protect from SQL injection attacks, connect to the database as a superuser (either enterprisedb or
postgres , depending upon your installation options) and run the script sqlprotect.sql located in the share/contrib subdirectory of your

Advanced Server home directory. The script creates the SQL/Protect database objects in a schema named sqlprotect .

The following example shows this process to set up protection for a database named edb :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1521

$ /usr/edb/as13/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0, server 13.0.0)
Type "help" for help.

edb=# \i /usr/edb/as13/share/contrib/sqlprotect.sql
CREATE SCHEMA
GRANT
SET
CREATE TABLE
GRANT
CREATE TABLE
GRANT
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
CREATE FUNCTION
DO
CREATE FUNCTION
CREATE FUNCTION
DO
CREATE VIEW
GRANT
DO
CREATE VIEW
GRANT
CREATE VIEW
GRANT
CREATE FUNCTION
CREATE FUNCTION
SET

Selecting Roles to Protect

After the SQL/Protect database objects have been created in a database, you can select the roles for which SQL queries are to be monitored for protection,
and the level of protection that will be assigned to each role.

Setting the Protected Roles List

For each database that you want to protect, you must determine the roles you want to monitor and then add those roles to the protected roles list of that
database.

Step 1:Step 1: Connect as a superuser to a database that you wish to protect with either psql or Postgres Enterprise Manager Client:

$ /usr/edb/as13/bin/psql -d edb -U enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0, server 13.0.0)
Type "help" for help.

edb=#

Step 2:Step 2: Since the SQL/Protect tables, functions, and views are built under the sqlprotect schema, use the SET search_path command to include

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1522

Step 2:Step 2: Since the SQL/Protect tables, functions, and views are built under the sqlprotect schema, use the SET search_path command to include
the sqlprotect schema in your search path. This eliminates the need to schema-qualify any operation or query involving SQL/Protect database objects:

edb=# SET search_path TO sqlprotect;
SET

Step 3:Step 3: Each role that you wish to protect must be added to the protected roles list. This list is maintained in the table edb_sql_protect .

To add a role, use the function protect_role('rolename') . The following example protects a role named appuser :

edb=# SELECT protect_role('appuser');
 protect_role

(1 row)

You can list the roles that have been added to the protected roles list by issuing the following query:

edb=# SELECT * FROM edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology |
 allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+--

 13917 | 16671 | t | f | f | f
(1 row)

A view is also provided that gives the same information using the object names instead of the Object Identification numbers (OIDs):

edb=# \x
Expanded display is on.
edb=# SELECT * FROM list_protected_users;
-[RECORD 1]------+--------
dbname | edb
username | appuser
protect_relations | t
allow_utility_cmds | f
allow_tautology | f
allow_empty_dml | f

Setting the Protection Level

The edb_sql_protect.level configuration parameter sets the protection level, which defines the behavior of SQL/Protect when a protected role
issues a SQL statement. The defined behavior applies to all roles in the protected roles lists of all databases configured with SQL/Protect in the database
server.

The edb_sql_protect.level configuration parameter (in the postgresql.conf file) can be set to one of the following values to use either
learn mode, passive mode, or active mode:

learn.learn. Tracks the activities of protected roles and records the relations used by the roles. This is used when initially configuring SQL/Protect so the
expected behaviors of the protected applications are learned.
passive.passive. Issues warnings if protected roles are breaking the defined rules, but does not stop any SQL statements from executing. This is the next step
after SQL/Protect has learned the expected behavior of the protected roles. This essentially behaves in intrusion detection mode and can be run in
production when properly monitored.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1523

active.active. Stops all invalid statements for a protected role. This behaves as a SQL firewall preventing dangerous queries from running. This is
particularly effective against early penetration testing when the attacker is trying to determine the vulnerability point and the type of database
behind the application. Not only does SQL/Protect close those vulnerability points, but it tracks the blocked queries allowing administrators to be
alerted before the attacker finds an alternate method of penetrating the system.

If the edb_sql_protect.level parameter is not set or is omitted from the configuration file, the default behavior of SQL/Protect is passive .

If you are using SQL/Protect for the first time, set edb_sql_protect.level to learn .

Monitoring Protected Roles

Once you have configured SQL/Protect in a database, added roles to the protected roles list, and set the desired protection level, you can then activate
SQL/Protect in either learn mode, passive mode, or active mode. You can then start running your applications.

With a new SQL/Protect installation, the first step is to determine the relations that protected roles should be permitted to access during normal operation.
Learn mode allows a role to run applications during which time SQL/Protect is recording the relations that are accessed. These are added to the role’s
protected relations list stored in table edb_sql_protect_rel .

Monitoring for protection against attack begins when SQL/Protect is run in passive or active mode. In passive and active modes, the role is permitted to
access the relations in its protected relations list as these were determined to be the relations the role should be able to access during typical usage.

However, if a role attempts to access a relation that is not in its protected relations list, a WARNING or ERROR severity level message is returned by
SQL/Protect. The role’s attempted action on the relation may or may not be carried out depending upon whether the mode is passive or active.

Learn Mode

Step 1:Step 1: To activate SQL/Protect in learn mode, set the parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = learn

Step 2:Step 2: Reload the postgresql.conf file.

Choose Expert Configuration , then Reload Configuration from the Advanced Server application menu.

For an alternative method of reloading the configuration file, use the pg_reload_conf function. Be sure you are connected to a database as a
superuser and execute function pg_reload_conf as shown by the following example:

edb=# SELECT pg_reload_conf();
 pg_reload_conf

 t
(1 row)

Step 3:Step 3: Allow the protected roles to run their applications.

As an example the following queries are issued in the psql application by protected role appuser :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1524

edb=> SELECT * FROM dept;
NOTICE: SQLPROTECT: Learned relation: 16384
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
NOTICE: SQLPROTECT: Learned relation: 16391
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect generates a NOTICE severity level message indicating the relation has been added to the role’s protected relations list.

In SQL/Protect learn mode, SQL statements that are cause for suspicion are not prevented from executing, but a message is issued to alert the user to
potentially dangerous statements as shown by the following example:

edb=> CREATE TABLE appuser_tab (f1 INTEGER);
NOTICE: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> DELETE FROM appuser_tab;
NOTICE: SQLPROTECT: Learned relation: 16672
NOTICE: SQLPROTECT: Illegal Query: empty DML
DELETE 0

Step 4:Step 4: As a protected role runs applications, the SQL/Protect tables can be queried to observe the addition of relations to the role’s protected relations list.

Connect as a superuser to the database you are monitoring and set the search path to include the sqlprotect schema:

edb=# SET search_path TO sqlprotect;
SET

Query the edb_sql_protect_rel table to see the relations added to the protected relations list:

edb=# SELECT * FROM edb_sql_protect_rel;
 dbid | roleid | relid
--------+--------+-------
 13917 | 16671 | 16384
 13917 | 16671 | 16391
 13917 | 16671 | 16672
(3 rows)

The list_protected_rels view provides more comprehensive information along with the object names instead of the OIDs:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1525

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | emp | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(3 rows)

Passive Mode

Once you have determined that a role’s applications have accessed all relations they will need, you can now change the protection level so that SQL/Protect
can actively monitor the incoming SQL queries and protect against SQL injection attacks.

Passive mode is the less restrictive of the two protection modes, passive and active.

Step 1:Step 1: To activate SQL/Protect in passive mode, set the following parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = passive

Step 2:Step 2: Reload the configuration file as shown in Step 2 of the Learn Mode section.

Now SQL/Protect is in passive mode. For relations that have been learned such as the dept and emp tables of the prior examples, SQL statements are
permitted with no special notification to the client by SQL/Protect as shown by the following queries run by user appuser :

edb=> SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BOSTON
(4 rows)

edb=> SELECT empno, ename, job FROM emp WHERE deptno = 10;
 empno | ename | job
-------+--------+-----------
 7782 | CLARK | MANAGER
 7839 | KING | PRESIDENT
 7934 | MILLER | CLERK
(3 rows)

SQL/Protect does not prevent any SQL statement from executing, but issues a message of WARNING severity level for SQL statements executed against
relations that were not learned, or for SQL statements that contain a prohibited signature as shown in the following example:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1526

edb=> CREATE TABLE appuser_tab_2 (f1 INTEGER);
WARNING: SQLPROTECT: This command type is illegal for this user
CREATE TABLE
edb=> INSERT INTO appuser_tab_2 VALUES (1);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> INSERT INTO appuser_tab_2 VALUES (2);
WARNING: SQLPROTECT: Illegal Query: relations
INSERT 0 1
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
WARNING: SQLPROTECT: Illegal Query: relations
WARNING: SQLPROTECT: Illegal Query: tautology
f1

 1
 2
(2 rows)

Step 3:Step 3: Monitor the statistics for suspicious activity.

By querying the view edb_sql_protect_stats , you can see the number of times SQL statements were executed that referenced relations that were
not in a role’s protected relations list, or contained SQL injection attack signatures. See Attack Attempt Statistics for more information on view
edb_sql_protect_stats .

The following is a query on edb_sql_protect_stats :

edb=# SET search_path TO sqlprotect;
SET
edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 3 | 1 | 1 | 0
(1 row)

Step 4:Step 4: View information on specific attacks.

By querying the edb_sql_protect_queries view, you can see the SQL statements that were executed that referenced relations that were not in a
role’s protected relations list, or contained SQL injection attack signatures. See Attack Attempt Queries for more information on view
edb_sql_protect_queries .

The following code sample shows a query on edb_sql_protect_queries :

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1527

edb=# SELECT * FROM edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 3]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 4]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

NoteNote

The ip_address and port columns do not return any information if the attack originated on the same host as the database server using the
Unix-domain socket (that is, pg_hba.conf connection type local).

Active Mode

In active mode, disallowed SQL statements are prevented from executing. Also, the message issued by SQL/Protect has a higher severity level of ERROR
instead of WARNING .

Step 1:Step 1: To activate SQL/Protect in active mode, set the following parameters in the postgresql.conf file as shown below:

edb_sql_protect.enabled = on
edb_sql_protect.level = active

Step 2:Step 2: Reload the configuration file as shown in Step 2 of the Learn Mode section.

The following example illustrates SQL statements similar to those given in the examples of Step 2 in Passive Mode , but executed by user
appuser when edb_sql_protect.level is set to active :

edb=> CREATE TABLE appuser_tab_3 (f1 INTEGER);
ERROR: SQLPROTECT: This command type is illegal for this user
edb=> INSERT INTO appuser_tab_2 VALUES (1);
ERROR: SQLPROTECT: Illegal Query: relations
edb=> SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
ERROR: SQLPROTECT: Illegal Query: relations

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1528

The following shows the resulting statistics:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

The following is a query on edb_sql_protect_queries :

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);
-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1529

21.1.3 Common Maintenance Operations

The following describes how to perform other common operations.

You must be connected as a superuser to perform these operations and have included the sqlprotect schema in your search path.

Adding a Role to the Protected Roles List

To add a role to the protected roles list run protect_role('rolename') as shown in the following example:

edb=# SELECT protect_role('newuser');
 protect_role

(1 row)

Removing a Role From the Protected Roles List

To remove a role from the protected roles list, use either of the following functions:

unprotect_role('rolename')

unprotect_role(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before removing the
role from the protected roles list. If a query on a SQL/Protect relation returns a value such as unknown (OID=16458) for the user name, use the
unprotect_role(roleoid) form of the function to remove the entry for the deleted role from the protected roles list.

Removing a role using these functions also removes the role’s protected relations list.

The statistics for a role that has been removed are not deleted until you use the drop_stats function.

The offending queries for a role that has been removed are not deleted until you use the drop_queries function.

The following is an example of the unprotect_role function:

edb=# SELECT unprotect_role('newuser');
 unprotect_role

(1 row)

Alternatively, the role could be removed by giving its OID of 16693 :

edb=# SELECT unprotect_role(16693);
 unprotect_role

(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1530

Setting the Types of Protection for a Role

You can change whether or not a role is protected from a certain type of SQL injection attack.

Change the Boolean value for the column in edb_sql_protect corresponding to the type of SQL injection attack for which protection of a role is to be
disabled or enabled.

Be sure to qualify the following columns in your WHERE clause of the statement that updates edb_sql_protect :

dbid.dbid. OID of the database for which you are making the change
roleid.roleid. OID of the role for which you are changing the Boolean settings

For example, to allow a given role to issue utility commands, update the allow_utility_cmds column as follows:

UPDATE edb_sql_protect SET allow_utility_cmds = TRUE WHERE dbid =
13917 AND roleid = 16671;

You can verify the change was made by querying edb_sql_protect or list_protected_users . In the following query note that column
allow_utility_cmds now contains t :

edb=# SELECT dbid, roleid, allow_utility_cmds FROM edb_sql_protect;
 dbid | roleid | allow_utility_cmds
--------+--------+--------------------
 13917 | 16671 | t
(1 row)

The updated rules take effect on new sessions started by the role since the change was made.

Removing a Relation From the Protected Relations List

If SQL/Protect has learned that a given relation is accessible for a given role, you can subsequently remove that relation from the role’s protected relations
list.

Delete its entry from the edb_sql_protect_rel table using any of the following functions:

unprotect_rel('rolename', 'relname')
unprotect_rel('rolename', 'schema', 'relname')
unprotect_rel(roleoid, reloid)

If the relation given by relname is not in your current search path, specify the relation’s schema using the second function format.

The third function format allows you to specify the OIDs of the role and relation, respectively, instead of their text names.

The following example illustrates the removal of the public.emp relation from the protected relations list of the role appuser :

edb=# SELECT unprotect_rel('appuser', 'public', 'emp');
 unprotect_rel

(1 row)

The following query shows there is no longer an entry for the emp relation:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1531

edb=# SELECT * FROM list_protected_rels;
 Database | Protected User | Schema | Name | Type | Owner
----------+----------------+--------+-------------+-------+--------------
 edb | appuser | public | dept | Table | enterprisedb
 edb | appuser | public | appuser_tab | Table | appuser
(2 rows)

SQL/Protect will now issue a warning or completely block access (depending upon the setting of edb_sql_protect.level) whenever the role
attempts to utilize that relation.

Deleting Statistics

You can delete statistics from view edb_sql_protect_stats using either of the two following functions:

drop_stats('rolename')

drop_stats(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before deleting the
role’s statistics using drop_stats('rolename') . If a query on edb_sql_protect_stats returns a value such as unknown (OID=16458)
for the user name, use the drop_stats(roleoid) form of the function to remove the deleted role’s statistics from edb_sql_protect_stats .

The following is an example of the drop_stats function:

edb=# SELECT drop_stats('appuser');
 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
(0 rows)

The following is an example of using the drop_stats(roleoid) form of the function when a role is dropped before deleting its statistics:

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
---------------------+------------+-----------+----------+-----------+-----
 unknown (OID=16693) | 0 | 5 | 3 | 1 | 0
 appuser | 0 | 5 | 2 | 1 | 0
(2 rows)

edb=# SELECT drop_stats(16693);
 drop_stats

(1 row)

edb=# SELECT * FROM edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1532

Deleting Offending Queries

You can delete offending queries from view edb_sql_protect_queries using either of the two following functions:

drop_queries('rolename')

drop_queries(roleoid)

The variation of the function using the OID is useful if you remove the role using the DROP ROLE or DROP USER SQL statement before deleting the
role’s offending queries using drop_queries('rolename') . If a query on edb_sql_protect_queries returns a value such as unknown
(OID=16454) for the user name, use the drop_queries(roleoid) form of the function to remove the deleted role’s offending queries from
edb_sql_protect_queries .

The following is an example of the drop_queries function:

edb=# SELECT drop_queries('appuser');
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
-----------+------------+------+--------------+-----------+-------
(0 rows)

The following is an example of using the drop_queries(roleoid) form of the function when a role is dropped before deleting its queries:

edb=# SELECT username, query FROM edb_sql_protect_queries;
 username | query
---------------------+--
 unknown (OID=16454) | CREATE TABLE appuser_tab_2 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (2);
 unknown (OID=16454) | CREATE TABLE appuser_tab_3 (f1 INTEGER);
 unknown (OID=16454) | INSERT INTO appuser_tab_2 VALUES (1);
 unknown (OID=16454) | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';
(5 rows)

edb=# SELECT drop_queries(16454);
 drop_queries

 5
(1 row)

edb=# SELECT * FROM edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
----------+------------+------+--------------+-----------+-------
(0 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1533

Disabling and Enabling Monitoring

If you wish to turn off SQL/Protect monitoring, modify the postgresql.conf file, setting the edb_sql_protect.enabled parameter to off .
After saving the file, reload the server configuration to apply the settings.

If you wish to turn on SQL/Protect monitoring, modify the postgresql.conf file, setting the edb_sql_protect.enabled parameter to on .
After saving the file, reload the server configuration to apply the settings.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1534

21.1.4 Backing Up and Restoring a SQL/Protect Database

Backing up a database that is configured with SQL/Protect, and then restoring the backup file to a new database requires additional considerations to what
is normally associated with backup and restore procedures. This is primarily due to the use of Object Identification numbers (OIDs) in the SQL/Protect
tables as explained in this section.

NoteNote

This section is applicable if your backup and restore procedures result in the re-creation of database objects in the new database with new OIDs
such as is the case when using the pg_dump backup program.

If you are backing up your Advanced Server database server by simply using the operating system’s copy utility to create a binary image of the Advanced
Server data files (file system backup method), then this section does not apply.

Object Identification Numbers in SQL/Protect Tables

SQL/Protect uses two tables (edb_sql_protect and edb_sql_protect_rel) to store information on database objects such as databases, roles,
and relations. References to these database objects in these tables are done using the objects’ OIDs, and not the objects’ text names. The OID is a numeric
data type used by Advanced Server to uniquely identify each database object.

When a database object is created, Advanced Server assigns an OID to the object, which is then used whenever a reference is needed to the object in the
database catalogs. If you create the same database object in two databases, such as a table with the same CREATE TABLE statement, each table is
assigned a different OID in each database.

In a backup and restore operation that results in the re-creation of the backed up database objects, the restored objects end up with different OIDs in the
new database than what they were assigned in the original database. As a result, the OIDs referencing databases, roles, and relations stored in the
edb_sql_protect and edb_sql_protect_rel tables are no longer valid when these tables are simply dumped to a backup file and then restored

to a new database.

The following sections describe two functions, export_sqlprotect and import_sqlprotect , that are used specifically for backing up and
restoring SQL/Protect tables in order to ensure the OIDs in the SQL/Protect tables reference the correct database objects after the tables are restored.

Backing Up the Database

The following steps back up a database that has been configured with SQL/Protect.

Step 1:Step 1: Create a backup file using pg_dump .

The following example shows a plain-text backup file named /tmp/edb.dmp created from database edb using the pg_dump utility program:

$ cd /usr/edb/as13/bin
$./pg_dump -U enterprisedb -Fp -f /tmp/edb.dmp edb
Password:
$

Step 2:Step 2: Connect to the database as a superuser and export the SQL/Protect data using the export_sqlprotect('sqlprotect_file') function
(where sqlprotect_file is the fully qualified path to a file where the SQL/Protect data is to be saved).

The enterprisedb operating system account (postgres if you installed Advanced Server in PostgreSQL compatibility mode) must have read and
write access to the directory specified in sqlprotect_file .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1535

edb=# SELECT sqlprotect.export_sqlprotect('/tmp/sqlprotect.dmp');
 export_sqlprotect

(1 row)

The files /tmp/edb.dmp and /tmp/sqlprotect.dmp comprise your total database backup.

Restoring From the Backup Files

Step 1:Step 1: Restore the backup file to the new database.

The following example uses the psql utility program to restore the plain-text backup file /tmp/edb.dmp to a newly created database named newdb :

$ /usr/edb/as13/bin/psql -d newdb -U enterprisedb -f /tmp/edb.dmp
Password for user enterprisedb:
SET
SET
SET
SET
SET
COMMENT
CREATE SCHEMA
 .
 .
 .

Step 2:Step 2: Connect to the new database as a superuser and delete all rows from the edb_sql_protect_rel table.

This step removes any existing rows in the edb_sql_protect_rel table that were backed up from the original database. These rows do not contain the
correct OIDs relative to the database where the backup file has been restored:

$ /usr/edb/as13/bin/psql -d newdb -U enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0, server 13.0.0)
Type "help" for help.

newdb=# DELETE FROM sqlprotect.edb_sql_protect_rel;
DELETE 2

Step 3:Step 3: Delete all rows from the edb_sql_protect table.

This step removes any existing rows in the edb_sql_protect table that were backed up from the original database. These rows do not contain the
correct OIDs relative to the database where the backup file has been restored:

newdb=# DELETE FROM sqlprotect.edb_sql_protect;
DELETE 1

Step 4:Step 4: Delete any statistics that may exist for the database.

This step removes any existing statistics that may exist for the database to which you are restoring the backup. The following query displays any existing
statistics:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1536

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
-----------+------------+-----------+----------+-----------+-----
(0 rows)

For each row that appears in the preceding query, use the drop_stats function specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the following command to remove it:

newdb=# SELECT sqlprotect.drop_stats('appuser');
 drop_stats

(1 row)

Step 5:Step 5: Delete any offending queries that may exist for the database.

This step removes any existing queries that may exist for the database to which you are restoring the backup. The following query displays any existing
queries:

edb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
 username | ip_address | port | machine_name | date_time | query
-----------+------------+------+--------------+-----------+-------
(0 rows)

For each row that appears in the preceding query, use the drop_queries function specifying the role name of the entry.

For example, if a row appeared with appuser in the username column, issue the following command to remove it:

edb=# SELECT sqlprotect.drop_queries('appuser');
 drop_queries

(1 row)

Step 6:Step 6: Make sure the role names that were protected by SQL/Protect in the original database exist in the database server where the new database resides.

If the original and new databases reside in the same database server, then nothing needs to be done assuming you have not deleted any of these roles from
the database server.

Step 7:Step 7: Run the function import_sqlprotect('sqlprotect_file') where sqlprotect_file is the fully qualified path to the file you
created in Step 2 of Backing Up the Database .

newdb=# SELECT sqlprotect.import_sqlprotect('/tmp/sqlprotect.dmp');
 import_sqlprotect

(1 row)

Tables edb_sql_protect and edb_sql_protect_rel are now populated with entries containing the OIDs of the database objects as assigned in
the new database. The statistics view edb_sql_protect_stats also now displays the statistics imported from the original database.

The SQL/Protect tables and statistics are now properly restored for this database. This is verified by the following queries on the Advanced Server system
catalogs:

newdb=# SELECT datname, oid FROM pg_database;
 datname | oid
-----------+-------

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1537

 template1 | 1
 template0 | 13909
 edb | 13917
 newdb | 16679
(4 rows)

newdb=# SELECT rolname, oid FROM pg_roles;
 rolname | oid
--------------+-------
 enterprisedb | 10
 appuser | 16671
 newuser | 16678
(3 rows)

newdb=# SELECT relname, oid FROM pg_class WHERE relname IN
('dept','emp','appuser_tab');
 relname | oid
-------------+-------
 appuser_tab | 16803
 dept | 16809
 emp | 16812
(3 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect;
 dbid | roleid | protect_relations | allow_utility_cmds | allow_tautology |
 allow_empty_dml
-------+--------+-------------------+--------------------+-----------------+--

 16679 | 16671 | t | t | f | f
(1 row)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_rel;
 dbid | roleid | relid
-------+--------+-------
 16679 | 16671 | 16809
 16679 | 16671 | 16803
(2 rows)

newdb=# SELECT * FROM sqlprotect.edb_sql_protect_stats;
 username | superusers | relations | commands | tautology | dml
----------+------------+-----------+----------+-----------+-----
 appuser | 0 | 5 | 2 | 1 | 0
(1 row)

newedb=# \x
Expanded display is on.
nwedb=# SELECT * FROM sqlprotect.edb_sql_protect_queries;
-[RECORD 1]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:21:00 -04:00
 query | CREATE TABLE appuser_tab_2 (f1 INTEGER);
-[RECORD 2]+---
 username | appuser
 ip_address |
 port |
 machine_name |
 date_time | 20-JUN-14 13:22:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (2);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1538

-[RECORD 3]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | CREATE TABLE appuser_tab_3 (f1 INTEGER);
-[RECORD 4]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | INSERT INTO appuser_tab_2 VALUES (1);
-[RECORD 5]+---
 username | appuser
 ip_address | 192.168.2.6
 port | 50098
 machine_name |
 date_time | 20-JUN-14 13:39:00 -04:00
 query | SELECT * FROM appuser_tab_2 WHERE 'x' = 'x';

Note the following about the columns in tables edb_sql_protect and edb_sql_protect_rel :

dbid.dbid. Matches the value in the oid column from pg_database for newdb
roleid.roleid. Matches the value in the oid column from pg_roles for appuser

Also note that in table edb_sql_protect_rel , the values in the relid column match the values in the oid column of pg_class for relations
dept and appuser_tab .

Step 8:Step 8: Verify that the SQL/Protect configuration parameters are set as desired in the postgresql.conf file for the database server running the new
database. Restart the database server or reload the configuration file as appropriate.

You can now monitor the database using SQL/Protect.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1539

21.2 Virtual Private Database

Virtual Private Database is a type of fine-grained access control using security policies. Fine-grained access control means that
access to data can be controlled down to specific rows as defined by the security policy.

The rules that encode a security policy are defined in a policy function, which is an SPL function with certain input parameters and return value. The
security policy is the named association of the policy function to a particular database object, typically a table.

In Advanced Server, the policy function can be written in any language supported by Advanced Server such as SQL and PL/pgSQL in addition to SPL.

NoteNote

The database objects currently supported by Advanced Server Virtual Private Database are tables. Policies cannot be applied to views or
synonyms.

The advantages of using Virtual Private Database are the following:

Provides a fine-grained level of security. Database object level privileges given by the GRANT command determine access privileges to the entire
instance of a database object, while Virtual Private Database provides access control for the individual rows of a database object instance.
A different security policy can be applied depending upon the type of SQL command (INSERT, UPDATE, DELETE, or SELECT).
The security policy can vary dynamically for each applicable SQL command affecting the database object depending upon factors such as the session
user of the application accessing the database object.
Invocation of the security policy is transparent to all applications that access the database object and thus, individual applications do not have to be
modified to apply the security policy.
Once a security policy is enabled, it is not possible for any application (including new applications) to circumvent the security policy except by the
system privilege noted by the following.
Even superusers cannot circumvent the security policy except by the system privilege noted by the following.

NoteNote

The only way security policies can be circumvented is if the EXEMPT ACCESS POLICY system privilege has been granted to a user. The
EXEMPT ACCESS POLICY privilege should be granted with extreme care as a user with this privilege is exempted from all policies in the

database.

The DBMS_RLS package provides procedures to create policies, remove policies, enable policies, and disable policies.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1540

21.3 sslutils

sslutils is a Postgres extension that provides SSL certificate generation functions to Advanced Server for use by the EDB Postgres Enterprise Manager
server. sslutils is installed by using the edb-asxx-server-sslutils RPM package where xx is the Advanced Server version number.

The sslutils package provides the functions shown in the following sections.

In these sections, each parameter in the function’s parameter list is described by parameter n under the Parameters subsection where n refers to
the nth ordinal position (for example, first, second, third, etc.) within the function’s parameter list.

openssl_rsa_generate_key

The openssl_rsa_generate_key function generates an RSA private key. The function signature is:

openssl_rsa_generate_key(<integer>) RETURNS <text>

When invoking the function, pass the number of bits as an integer value; the function returns the generated key.

openssl_rsa_key_to_csr

The openssl_rsa_key_to_csr function generates a certificate signing request (CSR). The signature is:

openssl_rsa_key_to_csr(<text>, <text>, <text>, <text>, <text>, <text>,
<text>) RETURNS <text>

The function generates and returns the certificate signing request.

ParametersParameters

parameter 1

The name of the RSA key file.

parameter 2

The common name (e.g., agentN) of the agent that will use the signing request.

parameter 3

The name of the country in which the server resides.

parameter 4

The name of the state in which the server resides.

parameter 5

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1541

The location (city) within the state in which the server resides.

parameter 6

The name of the organization unit requesting the certificate.

parameter 7

The email address of the user requesting the certificate.

openssl_csr_to_crt

The openssl_csr_to_crt function generates a self-signed certificate or a certificate authority certificate. The signature is:

openssl_csr_to_crt(<text>, <text>, <text>) RETURNS <text>

The function returns the self-signed certificate or certificate authority certificate.

ParametersParameters

parameter 1

The name of the certificate signing the request.

parameter 2

The path to the certificate authority certificate, or NULL if generating a certificate authority certificate.

parameter 3

The path to the certificate authority’s private key or (if argument 2 is NULL) the path to a private key.

openssl_rsa_generate_crl

The openssl_rsa_generate_crl function generates a default certificate revocation list. The signature is:

openssl_rsa_generate_crl(<text>, <text>) RETURNS <text>

The function returns the certificate revocation list.

ParametersParameters

parameter 1

The path to the certificate authority certificate.

parameter 2

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1542

The path to the certificate authority private key.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1543

21.4 Data Redaction

Data redaction limits sensitive data exposure by dynamically changing data as it is displayed for certain users.

For example, a social security number (SSN) is stored as 021-23-9567 . Privileged users can see the full SSN, while other users only see the last four
digits xxx-xx-9567 .

Data redaction is implemented by defining a function for each field to which redaction is to be applied. The function returns the value that should be
displayed to the users subject to the data redaction.

So for example, for the SSN field, the redaction function would return xxx-xx-9567 for an input SSN of 021-23-9567 .

For a salary field, a redaction function would always return $0.00 regardless of the input salary value.

These functions are then incorporated into a redaction policy by using the CREATE REDACTION POLICY command. This command specifies the table
on which the policy applies, the table columns to be affected by the specified redaction functions, expressions to determine which session users are to be
affected, and other options.

The edb_data_redaction parameter in the postgresql.conf file then determines whether or not data redaction is to be applied.

By default, the parameter is enabled so the redaction policy is in effect and the following occurs:

Superusers and the table owner bypass data redaction and see the original data.
All other users get the redaction policy applied and see the reformatted data.

If the parameter is disabled by having it set to FALSE during the session, then the following occurs:

Superusers and the table owner bypass data redaction and see the original data.
All other users get will get an error.

A redaction policy can be changed by using the ALTER REDACTION POLICY command, or it can be eliminated using the DROP REDACTION
POLICY command.

The redaction policy commands are described in more detail in the subsequent sections.

CREATE REDACTION POLICY

CREATE REDACTION POLICY defines a new data redaction policy for a table.

SynopsisSynopsis

CREATE REDACTION POLICY <name> ON <table_name>
 [FOR (<expression>)]
 [ADD [COLUMN] <column_name> USING <funcname_clause>
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]
] [, ...]

where redaction_option is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1544

{ SCOPE <scope_value> |
 EXCEPTION <exception_value> }

DescriptionDescription

The CREATE REDACTION POLICY command defines a new column-level security policy for a table by redacting column data using redaction function.
A newly created data redaction policy will be enabled by default. The policy can be disabled using ALTER REDACTION POLICY ... DISABLE .

FOR (expression)

This form adds a redaction policy expression.

ADD [COLUMN]

This optional form adds a column of the table to the data redaction policy. The USING specifies a redaction function expression. Multiple ADD [
COLUMN] form can be used, if you want to add multiple columns of the table to the data redaction policy being created. The optional WITH OPTIONS (
...) clause specifies a scope and/or an exception to the data redaction policy to be applied. If the scope and/or exception are not specified, the default
values for scope and exception will be query and none respectively.

ParametersParameters

name

The name of the data redaction policy to be created. This must be distinct from the name of any other existing data redaction policy for the table.

table_name

The name (optionally schema-qualified) of the table the data redaction policy applies to.

expression

The data redaction policy expression. No redaction will be applied if this expression evaluates to false.

column_name

Name of the existing column of the table on which the data redaction policy being created.

funcname_clause

The data redaction function which decides how to compute the redacted column value. Return type of the redaction function should be same as the column
type on which data redaction policy being added.

scope_value

The scope identified the query part where redaction to be applied for the column. Scope value could be query, top_tlist or
top_tlist_or_error . If the scope is query then, the redaction applied on the column irrespective of where it appears in the query. If the scope is
top_tlist then, the redaction applied on the column only when it appears in the query’s top target list. If the scope is top_tlist_or_error the

behavior will be same as the top_tlist , but throws an errors when the column appears anywhere else in the query.

exception_value

The exception identified the query part where redaction to be exempted. Exception value could be none, equal or leakproof . If exception is none
then there is no exemption. If exception is equal , then the column is not redacted when used in an equality test. If exception is leakproof , the
column will is not redacted when a leakproof function is applied to it.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1545

Notes:Notes:

You must be the owner of a table to create or change data redaction policies for it.

The superuser and the table owner are exempt from the data redaction policy.

ExamplesExamples

Below is an example of how this feature can be used in production environments. Create the components for a data redaction policy on the employees
table:

CREATE TABLE employees (
 id integer GENERATED BY DEFAULT AS IDENTITY PRIMARY KEY,
 name varchar(40) NOT NULL,
 ssn varchar(11) NOT NULL,
 phone varchar(10),
 birthday date,
 salary money,
 email varchar(100)
);

-- Insert some data
INSERT INTO employees (name, ssn, phone, birthday, salary, email)
VALUES
('Sally Sample', '020-78-9345', '5081234567', '1961-02-02', 51234.34,
'sally.sample@enterprisedb.com'),
('Jane Doe', '123-33-9345', '6171234567', '1963-02-14', 62500.00,
'jane.doe@gmail.com'),
('Bill Foo', '123-89-9345', '9781234567','1963-02-14', 45350,
'william.foe@hotmail.com');

-- Create a user hr who can see all the data in employees
CREATE USER hr;
-- Create a normal user
CREATE USER alice;
GRANT ALL ON employees TO hr, alice;

-- Create redaction function in which actual redaction logic resides
CREATE OR REPLACE FUNCTION redact_ssn (ssn varchar(11)) RETURN varchar(11) IS
BEGIN
 /* replaces 020-12-9876 with xxx-xx-9876 */
 return overlay (ssn placing 'xxx-xx' from 1) ;
END;

CREATE OR REPLACE FUNCTION redact_salary () RETURN money IS BEGIN return
0::money;
END;

Now create a data redaction policy on employees to redact column ssn which should be accessible in equality condition and salary with default
scope and exception. The redaction policy will be exempt for the hr user.

CREATE REDACTION POLICY redact_policy_personal_info ON employees FOR (session_user != 'hr')
ADD COLUMN ssn USING redact_ssn(ssn) WITH OPTIONS (SCOPE query, EXCEPTION equal),
ADD COLUMN salary USING redact_salary();

The visible data for the hr user will be:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1546

-- hr can view all columns data
edb=# \c edb hr
edb=> SELECT * FROM employees;
 id | name | ssn | phone | birthday |
 salary | email
----+--------------+-------------+------------+--------------------+---
--+---------------------
 1 | Sally Sample | 020-78-9345 | 5081234567 | 02-FEB-61 00:00:00 |
 $51,234.34 | sally.sample@enterprisedb.com
 2 | Jane Doe | 123-33-9345 | 6171234567 | 14-FEB-63 00:00:00 |
 $62,500.00 | jane.doe@gmail.com
 3 | Bill Foo | 123-89-9345 | 9781234567 | 14-FEB-63 00:00:00 |
 $45,350.00 | william.foe@hotmail.com
(3 rows)

The visible data for the normal user alice will be:

-- Normal user cannot see salary and ssn number.
edb=> \c edb alice
edb=> SELECT * FROM employees;
id | name | ssn | phone | birthday | salary |
email
----+--------------+-------------+------------+--------------------+--------+-

 1 | Sally Sample | xxx-xx-9345 | 5081234567 | 02-FEB-61 00:00:00 | $0.00 |
 sally.sample@enterprisedb.com
 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 |
 jane.doe@gmail.com
 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |
 william.foe@hotmail.com
(3 rows)

But ssn data is accessible when it used for equality check due to exception_value setting.

-- Get ssn number starting from 123
edb=> SELECT * FROM employees WHERE substring(ssn from 0 for 4) = '123';
 id | name | ssn | phone | birthday | salary |
 email
----+----------+-------------+------------+--------------------+--------+-----

 2 | Jane Doe | xxx-xx-9345 | 6171234567 | 14-FEB-63 00:00:00 | $0.00 |
 jane.doe@gmail.com
 3 | Bill Foo | xxx-xx-9345 | 9781234567 | 14-FEB-63 00:00:00 | $0.00 |
 william.foe@hotmail.com
(2 rows)

CaveatsCaveats

1. The data redaction policy created on inheritance hierarchies will not be cascaded. For example, if the data redaction policy is created for a parent, it
will not be applied to the child table, which inherits it and vice versa. Someone who has access to these child tables can see the non-redacted data.
For information about inheritance hierarchies, see Inheritance in the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/ddl-inherit.html

2. If the superuser or the table owner has created any materialized view on the table and has provided the access rights GRANT SELECT on the table
and the materialized view to any non-superuser, then the non-superuser will be able to access the non-redacted data through the materialized view.

3. The objects accessed in the redaction function body should be schema qualified otherwise pg_dump might fail.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1547

https://www.postgresql.org/docs/current/static/ddl-inherit.html

CompatibilityCompatibility

CREATE REDACTION POLICY is an EDB extension.

See AlsoSee Also

ALTER REDACTION POLICY, DROP REDACTION POLICY

ALTER REDACTION POLICY

ALTER REDACTION POLICY changes the definition of data redaction policy for a table.

SynopsisSynopsis

ALTER REDACTION POLICY <name> ON <table_name> RENAME TO <new_name>

ALTER REDACTION POLICY <name> ON <table_name> FOR (<expression>)

ALTER REDACTION POLICY <name> ON <table_name> { ENABLE | DISABLE}

ALTER REDACTION POLICY <name> ON <table_name>
 ADD [COLUMN] <column_name> USING <funcname_clause>
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]

ALTER REDACTION POLICY <name> ON <table_name>
 MODIFY [COLUMN] <column_name>
 {
 [USING <funcname_clause>]
 |
 [WITH OPTIONS ([<redaction_option>]
 [, <redaction_option>])
]
 }

ALTER REDACTION POLICY <name> ON <table_name>
 DROP [COLUMN] <column_name>

where redaction_option is:

{ SCOPE <scope_value> |
 EXCEPTION <exception_value> }

DescriptionDescription

ALTER REDACTION POLICY changes the definition of an existing data redaction policy.

To use ALTER REDACTION POLICY , you must own the table that the data redaction policy applies to.

FOR (expression)

This form adds or replaces the data redaction policy expression.

ENABLE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1548

ENABLE

Enables the previously disabled data redaction policy for a table.

DISABLE

Disables the data redaction policy for a table.

ADD [COLUMN]

This form adds a column of the table to the existing redaction policy. See CREATE REDACTION POLICY for the details.

MODIFY [COLUMN]

This form modifies the data redaction policy on the column of the table. You can update the redaction function clause and/or the redaction options for the
column. The USING clause specifies the redaction function expression to be updated and the WITH OPTIONS (...) clause specifies the scope
and/or the exception. For more details on the redaction function clause, the redaction scope and the redaction exception, see CREATE REDACTION
POLICY .

DROP [COLUMN]

This form removes the column of the table from the data redaction policy.

ParametersParameters

name

The name of an existing data redaction policy to alter.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy is on.

new_name

The new name for the data redaction policy. This must be distinct from the name of any other existing data redaction policy for the table.

expression

The data redaction policy expression.

column_name

Name of existing column of the table on which the data redaction policy being altered or dropped.

funcname_clause

The data redaction function expression for the column. See CREATE REDACTION POLICY for details.

scope_value

The scope identified the query part where redaction to be applied for the column. See CREATE REDACTION POLICY for the details.

exception_value

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1549

The exception identified the query part where redaction to be exempted. See CREATE REDACTION POLICY for the details.

ExamplesExamples

Update data redaction policy called redact_policy_personal_info on the table named employees :

ALTER REDACTION POLICY redact_policy_personal_info ON employees
FOR (session_user != 'hr' AND session_user != 'manager');

And to update data redaction function for the column ssn in the same policy:

ALTER REDACTION POLICY redact_policy_personal_info ON employees
MODIFY COLUMN ssn USING redact_ssn_new(ssn);

CompatibilityCompatibility

ALTER REDACTION POLICY is an EDB extension.

See AlsoSee Also

CREATE REDACTION POLICY, DROP REDACTION POLICY

DROP REDACTION POLICY

DROP REDACTION POLICY removes a data redaction policy from a table.

SynopsisSynopsis

DROP REDACTION POLICY [IF EXISTS] <name> ON <table_name>
 [CASCADE | RESTRICT]

DescriptionDescription

DROP REDACTION POLICY removes the specified data redaction policy from the table.

To use DROP REDACTION POLICY , you must own the table that the redaction policy applies to.

ParametersParameters

IF EXISTS

Do not throw an error if the data redaction policy does not exist. A notice is issued in this case.

name

The name of the data redaction policy to drop.

table_name

The name (optionally schema-qualified) of the table that the data redaction policy is on.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1550

CASCADE

RESTRICT

These keywords do not have any effect, since there are no dependencies on the data redaction policies.

ExamplesExamples

To drop the data redaction policy called redact_policy_personal_info on the table named employees :

DROP REDACTION POLICY redact_policy_personal_info ON employees;

CompatibilitiesCompatibilities

DROP REDACTION POLICY is an EDB extension.

See AlsoSee Also

CREATE REDACTION POLICY, ALTER REDACTION POLICY

System Catalogs

This section describes the system catalogs that store the redaction policy information.

edb_redaction_column

The edb_redaction_column system catalog stores information about the data redaction policy attached to the columns of a table.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly selected)

rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies to the described column

rdrelid oid pg_class.oid The table that the described column belongs to

rdattnum int2 pg_attribute.attnum The number of the described column

rdscope int2 The redaction scope: 1 = query, 2 = top_tlist, 4 =
top_tlist_or_error

rdexception int2 The redaction exception: 8 = none, 16 = equal, 32 = leakproof

rdfuncexpr pg_node_tree Data redaction function expression

NoteNote

The described column will be redacted if the redaction policy edb_redaction_column.rdpolicyid on the table is enabled and the
redaction policy expression edb_redaction_policy.rdexpr evaluates to true .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1551

edb_redaction_policy

The catalog edb_redaction_policy stores information about the redaction policies for tables.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly
selected)

rdname name The name of the data redaction policy

rdrelid oid pg_class.oid The table to which the data redaction policy applies

rdenable boolean Is the data redaction policy enabled?

rdexpr pg_node_tree The data redaction policy expression

NoteNote

The data redaction policy applies for the table if it is enabled and the expression ever evaluated true.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1552

22 EDB Postgres Advanced Server Guide

Advanced Server adds extended functionality to the open-source PostgreSQL database. The extended functionality supports database administration,
enhanced SQL capabilities, database and application security, performance monitoring and analysis, and application development utilities. This guide
documents those features that are exclusive to Advanced Server.

Enhanced Compatibility Features.Enhanced Compatibility Features. This section provides an overview of compatibility features supported by Advanced Server.
Database Administration.Database Administration. This section contains information about features and tools that are helpful to the database administrator.

Index Advisor helps to determine the additional indexes needed on tables to improve application performance.
SQL Profiler locates and diagnoses poorly running SQL queries in applications.
pgsnmpd is an SNMP agent that returns hierarchical monitoring information regarding the current state of Advanced Server.

EDB Resource Manager.EDB Resource Manager. This section contains information about the EDB Resource Manager feature, which provides the capability to control system
resource usage by Advanced Server processes.

Resource Groups shows how to create and maintain the groups on which resource limits can be defined.
CPU Usage Throttling provides a method to control CPU usage by Advanced Server processes.
Dirty Buffer Throttling provides a method to control the dirty rate of shared buffers by Advanced Server processes.

The libpq C Library.The libpq C Library. The libpq C library is the C application programming interface (API) language for Advanced Server.
The PL Debugger.The PL Debugger. The PL Debugger is a graphically oriented debugging tool for PL/pgSQL.
Performance Analysis and Tuning.Performance Analysis and Tuning. This section contains the various tools for analyzing and improving application and database server performance.

Dynatune provides a quick and easy means for configuring Advanced Server depending upon the type of application usage.
EDB wait states provides a way to capture wait events and other data for performance diagnosis.

EDB Clone Schema.EDB Clone Schema. This section contains information about the EDB Clone Schema feature, which provides the capability to copy a schema and its
database objects within a single database or from one database to another database.
Enhanced SQL and Other Miscellaneous Features.Enhanced SQL and Other Miscellaneous Features. This section contains information on enhanced SQL functionality and other features that provide
additional flexibility and convenience.
System Catalog Tables.System Catalog Tables. This section contains additional system catalog tables added for Advanced Server specific database objects.
Advanced Server Exceptions.Advanced Server Exceptions. This section contains information about the pre-defined exceptions, the SQLstate values, associated redwood error
code, and description of the exceptions.
Advanced Server Keywords.Advanced Server Keywords. This section contains information about the words that Advanced Server recognizes as keywords.

For information about the features that are shared by EDB Postgres Advanced Server and PostgreSQL, see the PostgreSQL core documentation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1553

https://www.postgresql.org/docs/current/index.html

22.1 Introduction

See the release notes for the features added in EDB Postgres Advanced Server 13.

Hard Limits

The following table describes various hard limits of PostgreSQL. However, practical limits such as performance limitations or available disk space may apply
before absolute hard limits are reached.

Item Upper Limit Comment

database size unlimited

number of
databases

4,294,950,911

relations per
database

1,431,650,303

relation size 32 TB with the default BLCKSZ of 8192 bytes

rows per table limited by the number of tuples that can fit onto
4,294,967,295 pages

columns per table 1600 further limited by tuple size fitting on a single page; see
note below

field size 1 GB

identifier length 63 bytes can be increased by recompiling PostgreSQL

indexes per table unlimited constrained by maximum relations per database

columns per index 32 can be increased by recompiling PostgreSQL

partition keys 32 can be increased by recompiling PostgreSQL

NoteNote

The maximum number of columns for a table is further reduced as the tuple being stored must fit in a single 8192-byte heap page. For
example, excluding the tuple header, a tuple made up of 1600 int columns would consume 6400 bytes and could be stored in a heap
page, but a tuple of 1600 bigint columns would consume 12800 bytes and would therefore not fit inside a heap page. Variable-length
fields of types such as text , varchar , and char can have their values stored out of line in the table's TOAST table when the
values are large enough to require it. Only an 18-byte pointer must remain inside the tuple in the table's heap. For shorter length variable-
length fields, either a 4-byte or 1-byte field header is used and the value is stored inside the heap tuple.

Columns that have been dropped from the table also contribute to the maximum column limit. Moreover, although the dropped column
values for newly created tuples are internally marked as null in the tuple's null bitmap, the null bitmap also occupies space.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1554

22.1.1 Conventions Used in this Guide

The following is a list of conventions used throughout this document.

This guide applies to both Linux and Windows systems. Directory paths are presented in the Linux format with forward slashes. When working on
Windows systems, start the directory path with the drive letter followed by a colon and substitute back slashes for forward slashes.
Some of the information in this document may apply interchangeably to the PostgreSQL and EDB Postgres Advanced Server database systems. The
term Advanced Server is used to refer to EDB Postgres Advanced Server. The term Postgres is used to generically refer to both PostgreSQL and
Advanced Server. When a distinction needs to be made between these two database systems, the specific names, PostgreSQL or Advanced Server
are used.
The installation directory path of the PostgreSQL or Advanced Server products is referred to as POSTGRES_INSTALL_HOME.

For PostgreSQL Linux installations, this defaults to /opt/PostgreSQL/x.x for version 10 and earlier. For later versions, use the
PostgreSQL community packages.
For Advanced Server Linux installations accomplished using the interactive installer for version 10 and earlier, this defaults to
/opt/edb/asx.x .

For Advanced Server Linux installations accomplished using an RPM package, this defaults to /usr/edb/asxx .
For Advanced Server Windows installations, this defaults to C:\Program Files\edb\asxx . The product version number is represented
by x.x or by xx for version 10 and later.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1555

22.1.2 About the Examples Used in this Guide

The examples in this guide are shown in the type and background illustrated below.

Examples and output from examples are shown in fixed-width, white font on a black background.

The examples use the sample tables, dept, emp , and jobhist , created and loaded when Advanced Server is installed.

The tables and programs in the sample database can be re-created at any time by executing the following script:

/usr/edb/asxx/share/pg-sample.sql

where xx is the Advanced Server version number.

In addition there is a script in the same directory containing the database objects created using syntax compatible with Oracle databases. This script file is
edb-sample.sql .

The script:

Creates the sample tables and programs in the currently connected database.
Grants all permissions on the tables to the PUBLIC group.

The tables and programs will be created in the first schema of the search path in which the current user has permission to create tables and procedures. You
can display the search path by issuing the command:

SHOW SEARCH_PATH;

You can use PSQL commands to modify the search path.

Sample Database Description

The sample database represents employees in an organization. It contains three types of records: employees, departments, and historical records of
employees.

Each employee has an identification number, name, hire date, salary, and manager. Some employees earn a commission in addition to their salary. All
employee-related information is stored in the emp table.

The sample company is regionally diverse, so it tracks the locations of its departments. Each company employee is assigned to a department. Each
department is identified by a unique department number and a short name. Each department is associated with one location. All department-related
information is stored in the dept table.

The company also tracks information about jobs held by the employees. Some employees have been with the company for a long time and have held
different positions, received raises, switched departments, etc. When a change in employee status occurs, the company records the end date of the former
position. A new job record is added with the start date and the new job title, department, salary, and the reason for the status change. All employee history
is maintained in the jobhist table.

The following is the pg-sample.sql script:

SET datestyle TO 'iso, dmy';

--
-- Script that creates the 'sample' tables, views

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1556

-- functions, triggers, etc.
--
-- Start new transaction - commit all or nothing
--
BEGIN;
--
-- Create and load tables used in the documentation examples.
--
-- Create the 'dept' table
--
CREATE TABLE dept (
 deptno NUMERIC(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR(13)
);
--
-- Create the 'emp' table
--
CREATE TABLE emp (
 empno NUMERIC(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
 ename VARCHAR(10),
 job VARCHAR(9),
 mgr NUMERIC(4),
 hiredate DATE,
 sal NUMERIC(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
 comm NUMERIC(7,2),
 deptno NUMERIC(2) CONSTRAINT emp_ref_dept_fk
 REFERENCES dept(deptno)
);
--
-- Create the 'jobhist' table
--
CREATE TABLE jobhist (
 empno NUMERIC(4) NOT NULL,
 startdate TIMESTAMP(0) NOT NULL,
 enddate TIMESTAMP(0),
 job VARCHAR(9),
 sal NUMERIC(7,2),
 comm NUMERIC(7,2),
 deptno NUMERIC(2),
 chgdesc VARCHAR(80),
 CONSTRAINT jobhist_pk PRIMARY KEY (empno, startdate),
 CONSTRAINT jobhist_ref_emp_fk FOREIGN KEY (empno)
 REFERENCES emp(empno) ON DELETE CASCADE,
 CONSTRAINT jobhist_ref_dept_fk FOREIGN KEY (deptno)
 REFERENCES dept (deptno) ON DELETE SET NULL,
 CONSTRAINT jobhist_date_chk CHECK (startdate <= enddate)
);
--
-- Create the 'salesemp' view
--
CREATE OR REPLACE VIEW salesemp AS
 SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job = 'SALESMAN';
--
-- Sequence to generate values for function 'new_empno'.
--
CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
--
-- Issue PUBLIC grants
--
--GRANT ALL ON emp TO PUBLIC;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1557

--GRANT ALL ON dept TO PUBLIC;
--GRANT ALL ON jobhist TO PUBLIC;
--GRANT ALL ON salesemp TO PUBLIC;
--GRANT ALL ON next_empno TO PUBLIC;
--
-- Load the 'dept' table
--
INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
--
-- Load the 'emp' table
--
INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT INTO emp VALUES (7566,'JONES','MANAGER',7839,'02-APR-81',2975,NULL,20);
INSERT INTO emp VALUES (7654,'MARTIN','SALESMAN',7698,'28-SEP-81',1250,1400,30);
INSERT INTO emp VALUES (7698,'BLAKE','MANAGER',7839,'01-MAY-81',2850,NULL,30);
INSERT INTO emp VALUES (7782,'CLARK','MANAGER',7839,'09-JUN-81',2450,NULL,10);
INSERT INTO emp VALUES (7788,'SCOTT','ANALYST',7566,'19-APR-87',3000,NULL,20);
INSERT INTO emp VALUES (7839,'KING','PRESIDENT',NULL,'17-NOV-81',5000,NULL,10);
INSERT INTO emp VALUES (7844,'TURNER','SALESMAN',7698,'08-SEP-81',1500,0,30);
INSERT INTO emp VALUES (7876,'ADAMS','CLERK',7788,'23-MAY-87',1100,NULL,20);
INSERT INTO emp VALUES (7900,'JAMES','CLERK',7698,'03-DEC-81',950,NULL,30);
INSERT INTO emp VALUES (7902,'FORD','ANALYST',7566,'03-DEC-81',3000,NULL,20);
INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
--
-- Load the 'jobhist' table
--
INSERT INTO jobhist VALUES (7369,'17-DEC-80',NULL,'CLERK',800,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7499,'20-FEB-81',NULL,'SALESMAN',1600,300,30,'New Hire');
INSERT INTO jobhist VALUES (7521,'22-FEB-81',NULL,'SALESMAN',1250,500,30,'New Hire');
INSERT INTO jobhist VALUES (7566,'02-APR-81',NULL,'MANAGER',2975,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7654,'28-SEP-81',NULL,'SALESMAN',1250,1400,30,'New Hire');
INSERT INTO jobhist VALUES (7698,'01-MAY-81',NULL,'MANAGER',2850,NULL,30,'New Hire');
INSERT INTO jobhist VALUES (7782,'09-JUN-81',NULL,'MANAGER',2450,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7788,'19-APR-87','12-APR-88','CLERK',1000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7788,'13-APR-88','04-MAY-89','CLERK',1040,NULL,20,'Raise');
INSERT INTO jobhist VALUES (7788,'05-MAY-90',NULL,'ANALYST',3000,NULL,20,'Promoted to Analyst');
INSERT INTO jobhist VALUES (7839,'17-NOV-81',NULL,'PRESIDENT',5000,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7844,'08-SEP-81',NULL,'SALESMAN',1500,0,30,'New Hire');
INSERT INTO jobhist VALUES (7876,'23-MAY-87',NULL,'CLERK',1100,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7900,'03-DEC-81','14-JAN-83','CLERK',950,NULL,10,'New Hire');
INSERT INTO jobhist VALUES (7900,'15-JAN-83',NULL,'CLERK',950,NULL,30,'Changed to Dept 30');
INSERT INTO jobhist VALUES (7902,'03-DEC-81',NULL,'ANALYST',3000,NULL,20,'New Hire');
INSERT INTO jobhist VALUES (7934,'23-JAN-82',NULL,'CLERK',1300,NULL,10,'New Hire');
--
-- Populate statistics table and view (pg_statistic/pg_stats)
--
ANALYZE dept;
ANALYZE emp;
ANALYZE jobhist;
--
-- Function that lists all employees' numbers and names
-- from the 'emp' table using a cursor.
--
CREATE OR REPLACE FUNCTION list_emp() RETURNS VOID
AS $$
DECLARE

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1558

 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 emp_cur CURSOR FOR
 SELECT empno, ename FROM emp ORDER BY empno;
BEGIN
 OPEN emp_cur;
 RAISE INFO 'EMPNO ENAME';
 RAISE INFO '----- -------';
 LOOP
 FETCH emp_cur INTO v_empno, v_ename;
 EXIT WHEN NOT FOUND;
 RAISE INFO '% %', v_empno, v_ename;
 END LOOP;
 CLOSE emp_cur;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that selects an employee row given the employee
-- number and displays certain columns.
--
CREATE OR REPLACE FUNCTION select_emp (
 p_empno NUMERIC
) RETURNS VOID
AS $$
DECLARE
 v_ename emp.ename%TYPE;
 v_hiredate emp.hiredate%TYPE;
 v_sal emp.sal%TYPE;
 v_comm emp.comm%TYPE;
 v_dname dept.dname%TYPE;
 v_disp_date VARCHAR(10);
BEGIN
 SELECT INTO
 v_ename, v_hiredate, v_sal, v_comm, v_dname
 ename, hiredate, sal, COALESCE(comm, 0), dname
 FROM emp e, dept d
 WHERE empno = p_empno
 AND e.deptno = d.deptno;
 IF NOT FOUND THEN
 RAISE INFO 'Employee % not found', p_empno;
 RETURN;
 END IF;
 v_disp_date := TO_CHAR(v_hiredate, 'MM/DD/YYYY');
 RAISE INFO 'Number : %', p_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Hire Date : %', v_disp_date;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission: %', v_comm;
 RAISE INFO 'Department: %', v_dname;
 RETURN;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- A RECORD type used to format the return value of
-- function, 'emp_query'.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1559

--
CREATE TYPE emp_query_type AS (
 empno NUMERIC,
 ename VARCHAR(10),
 job VARCHAR(9),
 hiredate DATE,
 sal NUMERIC
);
--
-- Function that queries the 'emp' table based on
-- department number and employee number or name. Returns
-- employee number and name as INOUT parameters and job,
-- hire date, and salary as OUT parameters. These are
-- returned in the form of a record defined by
-- RECORD type, 'emp_query_type'.
--
CREATE OR REPLACE FUNCTION emp_query (
 IN p_deptno NUMERIC,
 INOUT p_empno NUMERIC,
 INOUT p_ename VARCHAR,
 OUT p_job VARCHAR,
 OUT p_hiredate DATE,
 OUT p_sal NUMERIC
)
AS $$
BEGIN
 SELECT INTO
 p_empno, p_ename, p_job, p_hiredate, p_sal
 empno, ename, job, hiredate, sal
 FROM emp
 WHERE deptno = p_deptno
 AND (empno = p_empno
 OR ename = UPPER(p_ename));
END;
$$ LANGUAGE 'plpgsql';
--
-- Function to call 'emp_query_caller' with IN and INOUT
-- parameters. Displays the results received from INOUT and
-- OUT parameters.
--
CREATE OR REPLACE FUNCTION emp_query_caller() RETURNS VOID
AS $$
DECLARE
 v_deptno NUMERIC;
 v_empno NUMERIC;
 v_ename VARCHAR;
 v_rows INTEGER;
 r_emp_query EMP_QUERY_TYPE;
BEGIN
 v_deptno := 30;
 v_empno := 0;
 v_ename := 'Martin';
 r_emp_query := emp_query(v_deptno, v_empno, v_ename);
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', (r_emp_query).empno;
 RAISE INFO 'Name : %', (r_emp_query).ename;
 RAISE INFO 'Job : %', (r_emp_query).job;
 RAISE INFO 'Hire Date : %', (r_emp_query).hiredate;
 RAISE INFO 'Salary : %', (r_emp_query).sal;
 RETURN;
EXCEPTION

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1560

 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function to compute yearly compensation based on semimonthly
-- salary.
--
CREATE OR REPLACE FUNCTION emp_comp (
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
BEGIN
 RETURN (p_sal + COALESCE(p_comm, 0)) * 24;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that gets the next number from sequence, 'next_empno',
-- and ensures it is not already in use as an employee number.
--
CREATE OR REPLACE FUNCTION new_empno() RETURNS INTEGER
AS $$
DECLARE
 v_cnt INTEGER := 1;
 v_new_empno INTEGER;
BEGIN
 WHILE v_cnt > 0 LOOP
 SELECT INTO v_new_empno nextval('next_empno');
 SELECT INTO v_cnt COUNT(*) FROM emp WHERE empno = v_new_empno;
 END LOOP;
 RETURN v_new_empno;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that adds a new clerk to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_clerk (
 p_ename VARCHAR,
 p_deptno NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'CLERK', 7782,
 CURRENT_DATE, 950.00, NULL, p_deptno);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1561

 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Function that adds a new salesman to table 'emp'.
--
CREATE OR REPLACE FUNCTION hire_salesman (
 p_ename VARCHAR,
 p_sal NUMERIC,
 p_comm NUMERIC
) RETURNS NUMERIC
AS $$
DECLARE
 v_empno NUMERIC(4);
 v_ename VARCHAR(10);
 v_job VARCHAR(9);
 v_mgr NUMERIC(4);
 v_hiredate DATE;
 v_sal NUMERIC(7,2);
 v_comm NUMERIC(7,2);
 v_deptno NUMERIC(2);
BEGIN
 v_empno := new_empno();
 INSERT INTO emp VALUES (v_empno, p_ename, 'SALESMAN', 7698,
 CURRENT_DATE, p_sal, p_comm, 30);
 SELECT INTO
 v_empno, v_ename, v_job, v_mgr, v_hiredate, v_sal, v_comm, v_deptno
 empno, ename, job, mgr, hiredate, sal, comm, deptno
 FROM emp WHERE empno = v_empno;
 RAISE INFO 'Department : %', v_deptno;
 RAISE INFO 'Employee No: %', v_empno;
 RAISE INFO 'Name : %', v_ename;
 RAISE INFO 'Job : %', v_job;
 RAISE INFO 'Manager : %', v_mgr;
 RAISE INFO 'Hire Date : %', v_hiredate;
 RAISE INFO 'Salary : %', v_sal;
 RAISE INFO 'Commission : %', v_comm;
 RETURN v_empno;
EXCEPTION
 WHEN OTHERS THEN
 RAISE INFO 'The following is SQLERRM : %', SQLERRM;
 RAISE INFO 'The following is SQLSTATE: %', SQLSTATE;
 RETURN -1;
END;
$$ LANGUAGE 'plpgsql';
--
-- Rule to INSERT into view 'salesemp'
--

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1562

CREATE OR REPLACE RULE salesemp_i AS ON INSERT TO salesemp
DO INSTEAD
 INSERT INTO emp VALUES (NEW.empno, NEW.ename, 'SALESMAN', 7698,
 NEW.hiredate, NEW.sal, NEW.comm, 30);
--
-- Rule to UPDATE view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_u AS ON UPDATE TO salesemp
DO INSTEAD
 UPDATE emp SET empno = NEW.empno,
 ename = NEW.ename,
 hiredate = NEW.hiredate,
 sal = NEW.sal,
 comm = NEW.comm
 WHERE empno = OLD.empno;
--
-- Rule to DELETE from view 'salesemp'
--
CREATE OR REPLACE RULE salesemp_d AS ON DELETE TO salesemp
DO INSTEAD
 DELETE FROM emp WHERE empno = OLD.empno;
--
-- After statement-level trigger that displays a message after
-- an insert, update, or deletion to the 'emp' table. One message
-- per SQL command is displayed.
--
CREATE OR REPLACE FUNCTION user_audit_trig() RETURNS TRIGGER
AS $$
DECLARE
 v_action VARCHAR(24);
 v_text TEXT;
BEGIN
 IF TG_OP = 'INSERT' THEN
 v_action := ' added employee(s) on ';
 ELSIF TG_OP = 'UPDATE' THEN
 v_action := ' updated employee(s) on ';
 ELSIF TG_OP = 'DELETE' THEN
 v_action := ' deleted employee(s) on ';
 END IF;
 v_text := 'User ' || USER || v_action || CURRENT_DATE;
 RAISE INFO ' %', v_text;
 RETURN NULL;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER user_audit_trig
 AFTER INSERT OR UPDATE OR DELETE ON emp
 FOR EACH STATEMENT EXECUTE PROCEDURE user_audit_trig();
--
-- Before row-level trigger that displays employee number and
-- salary of an employee that is about to be added, updated,
-- or deleted in the 'emp' table.
--
CREATE OR REPLACE FUNCTION emp_sal_trig() RETURNS TRIGGER
AS $$
DECLARE
 sal_diff NUMERIC(7,2);
BEGIN
 IF TG_OP = 'INSERT' THEN
 RAISE INFO 'Inserting employee %', NEW.empno;
 RAISE INFO '..New salary: %', NEW.sal;
 RETURN NEW;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1563

 END IF;
 IF TG_OP = 'UPDATE' THEN
 sal_diff := NEW.sal - OLD.sal;
 RAISE INFO 'Updating employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RAISE INFO '..New salary: %', NEW.sal;
 RAISE INFO '..Raise : %', sal_diff;
 RETURN NEW;
 END IF;
 IF TG_OP = 'DELETE' THEN
 RAISE INFO 'Deleting employee %', OLD.empno;
 RAISE INFO '..Old salary: %', OLD.sal;
 RETURN OLD;
 END IF;
END;
$$ LANGUAGE 'plpgsql';
CREATE TRIGGER emp_sal_trig
 BEFORE DELETE OR INSERT OR UPDATE ON emp
 FOR EACH ROW EXECUTE PROCEDURE emp_sal_trig();
COMMIT;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1564

22.2 Enhanced Compatibility Features

Advanced Server includes extended functionality that provides compatibility for syntax supported by Oracle applications. Detailed information about the
compatibility features supported by Advanced Server is provided in the Database Compatibility for Oracle Developers Guide; the version-specific guides are
available at:

https://www.enterprisedb.com/docs

The following sections highlight some of the compatibility features supported by Advanced Server.

Enabling Compatibility Features

There are several ways to install Advanced Server that will allow you to take advantage of compatibility features:

Use the INITDBOPTS variable (in the Advanced Server service configuration file) to specify --redwood-like before initializing your cluster.
When invoking initdb to initialize your cluster compatible with Oracle mode, include the --redwood-like option or --no-redwood-
compat option to initialize your cluser in Oracle non-compatible mode.

For more information about the installation options supported by the Advanced Server installers, see the EDB Postgres Advanced Server Installation Guide,
available from the EDB website at:

https://www.enterprisedb.com/docs

Stored Procedural Language

Advanced Server supports a highly productive procedural language that allows you to write custom procedures, functions, triggers and packages. The
procedural language:

complements the SQL language and built-in packages.
provides a seamless development and testing environment.
allows you to create reusable code.

For information about using the Stored Procedural Language, see the Database Compatibility for Stored Procedural Language Guide, available at:

https://www.enterprisedb.com/docs

Optimizer Hints

When you invoke a DELETE , INSERT , SELECT , or UPDATE command, the server generates a set of execution plans; after analyzing those execution
plans, the server selects a plan that will (generally) return the result set in the least amount of time. The server's choice of plan is dependent upon several
factors:

The estimated execution cost of data handling operations.
Parameter values assigned to parameters in the Query Tuning section of the postgresql.conf file.
Column statistics that have been gathered by the ANALYZE command.

As a rule, the query planner will select the least expensive plan. You can use an optimizer hint to influence the server as it selects a query plan.

An optimizer hint is a directive (or multiple directives) embedded in a comment-like syntax that immediately follows a DELETE , INSERT , SELECT or

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1565

https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs

An optimizer hint is a directive (or multiple directives) embedded in a comment-like syntax that immediately follows a DELETE , INSERT , SELECT or
UPDATE command. Keywords in the comment instruct the server to employ or avoid a specific plan when producing the result set. For information about

using optimizer hints, see the Database Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/docs

Data Dictionary Views

Advanced Server includes a set of views that provide information about database objects in a manner compatible with the Oracle data dictionary views. For
detailed information about the views available with Advanced Server, see Database Compatibility for Oracle Developers Catalog Views Guide.

dblink_ora

dblink_ora provides an OCI-based database link that allows you to SELECT, INSERT, UPDATE or DELETE data stored on an Oracle system from
within Advanced Server. For detailed information about using dblink_ora , and the supported functions and procedures, see the Database Compatibility
for Oracle Developers Guide, available at:

https://www.enterprisedb.com/docs

Profile Management

Advanced Server supports compatible SQL syntax for profile management. Profile management commands allow a database superuser to create and
manage named profiles. Each profile defines rules for password management that augment password and md5 authentication. The rules in a profile can:

count failed login attempts
lock an account due to excessive failed login attempts
mark a password for expiration
define a grace period after a password expiration
define rules for password complexity
define rules that limit password re-use

A profile is a named set of attributes that allow you to easily manage a group of roles that share comparable authentication requirements. If password
requirements change, you can modify the profile to have the new requirements applied to each user that is associated with that profile.

After creating the profile, you can associate the profile with one or more users. When a user connects to the server, the server enforces the profile that is
associated with their login role. Profiles are shared by all databases within a cluster, but each cluster may have multiple profiles. A single user with access
to multiple databases will use the same profile when connecting to each database within the cluster.

For information about using profile management commands, see the Database Compatibility for Oracle Developers Guide, available at:

https://www.enterprisedb.com/docs

Built-In Packages

Advanced Server supports a number of built-in packages that provide compatibility with Oracle procedures and functions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1566

https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs

Package Name Description

DBMS_ALERT The DBMS_ALERT package provides the capability to register for, send, and receive alerts.

DBMS_AQ The DBMS_AQ package provides message queueing and processing for Advanced Server.

DBMS_AQADM The DBMS_AQADM package provides supporting procedures for Advanced Queueing functionality.

DBMS_CRYPTO The DBMS_CRYPTO package provides functions and procedures that allow you to encrypt or decrypt RAW, BLOB or CLOB data.
You can also use DBMS_CRYPTO functions to generate cryptographically strong random values.

DBMS_JOB The DBMS_JOB package provides for the creation, scheduling, and managing of jobs.

DBMS_LOB The DBMS_LOB package provides the capability to operate on large objects.

DBMS_LOCK Advanced Server provides support for the DBMS_LOCK.SLEEP procedure.

DBMS_MVIEW Use procedures in the DBMS_MVIEW package to manage and refresh materialized views and their dependencies.

DBMS_OUTPUT The DBMS_OUTPUT package provides the capability to send messages to a message buffer, or get messages from the message
buffer.

DBMS_PIPE The DBMS_PIPE package provides the capability to send messages through a pipe within or between sessions connected to the
same database cluster.

DBMS_PROFILER The DBMS_PROFILER package collects and stores performance information about the PL/pgSQL and SPL statements that are
executed during a performance profiling session.

DBMS_RANDOM The DBMS_RANDOM package provides a number of methods to generate random values.

DBMS_REDACT The DBMS_REDACT package enables the redacting or masking of data that is returned by a query.

DBMS_RLS The DBMS_RLS package enables the implementation of Virtual Private Database on certain Advanced Server database objects.

DBMS_SCHEDULER The DBMS_SCHEDULER package provides a way to create and manage jobs, programs and job schedules.

DBMS_SESSION Advanced Server provides support for the DBMS_SESSION.SET_ROLE procedure.

DBMS_SQL The DBMS_SQL package provides an application interface to the EDB dynamic SQL functionality.

DBMS_UTILITY The DBMS_UTILITY package provides various utility programs.

UTL_ENCODE The UTL_ENCODE package provides a way to encode and decode data.

UTL_FILE The UTL_FILE package provides the capability to read from, and write to files on the operating system’s file system.

UTL_HTTP The UTL_HTTP package provides a way to use the HTTP or HTTPS protocol to retrieve information found at an URL.

UTL_MAIL The UTL_MAIL package provides the capability to manage e-mail.

UTL_RAW The UTL_RAW package allows you to manipulate or retrieve the length of raw data types.

UTL_SMTP The UTL_SMTP package provides the capability to send e-mails over the Simple Mail Transfer Protocol (SMTP).

UTL_URL The UTL_URL package provides a way to escape illegal and reserved characters within an URL.

For detailed information about the procedures and functions available within each package, see the Database Compatibility for Oracle Developers Built-In
Package Guide, available at:

https://www.enterprisedb.com/docs

Open Client Library

The Open Client Library provides application interoperability with the Oracle Call Interface – an application that was formerly “locked in” can now work with
either an Advanced Server or an Oracle database with minimal to no changes to the application code. The EDB implementation of the Open Client Library is
written in C.

The following diagram compares the Open Client Library and Oracle Call Interface application stacks.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1567

https://www.enterprisedb.com/docs

For detailed information about the functions supported by the Open Client Library, see the EDB Postgres Advanced Server OCL Connector Guide, available
at:

https://www.enterprisedb.com/docs

Utilities

For detailed information about the compatible syntax supported by the utilities listed below, see the Database Compatibility for Oracle Developers Tools
and Utilities Guide, available at:

https://www.enterprisedb.com/docs

EDB*PlusEDB*Plus

EDB*Plus is a utility program that provides a command line user interface to the Advanced Server that will be familiar to Oracle developers and users.
EDB*Plus accepts SQL commands, SPL anonymous blocks, and EDB*Plus commands.

EDB*Plus allows you to:

Query certain database objects
Execute stored procedures
Format output from SQL commands
Execute batch scripts
Execute OS commands
Record output

For detailed information about EDB*Plus, see the EDB*Plus User's Guide available at:

https://www.enterprisedb.com/docs/p/edbplus

EDB*LoaderEDB*Loader

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1568

https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs
https://www.enterprisedb.com/docs/p/edbplus

EDB*Loader is a high-performance bulk data loader that provides an interface compatible with Oracle databases for Advanced Server. The EDB*Loader
command line utility loads data from an input source, typically a file, into one or more tables using a subset of the parameters offered by Oracle
SQL*Loader.

EDB*Loader features include:

Support for the Oracle SQL*Loader data loading methods - conventional path load, direct path load, and parallel direct path load
Oracle SQL*Loader compatible syntax for control file directives
Input data with delimiter-separated or fixed-width fields
Bad file for collecting rejected records
Loading of multiple target tables
Discard file for collecting records that do not meet the selection criteria of any target table
Data loading from standard input and remote loading

EDB*WrapEDB*Wrap

The EDB*Wrap utility protects proprietary source code and programs (functions, stored procedures, triggers, and packages) from unauthorized scrutiny.
The EDB*Wrap program translates a file that contains SPL or PL/pgSQL source code (the plaintext) into a file that contains the same code in a form that is
nearly impossible to read. Once you have the obfuscated form of the code, you can send that code to Advanced Server and it will store those programs in
obfuscated form. While EDB*Wrap does obscure code, table definitions are still exposed.

Everything you wrap is stored in obfuscated form. If you wrap an entire package, the package body source, as well as the prototypes contained in the
package header and the functions and procedures contained in the package body are stored in obfuscated form.

Dynamic Runtime Instrumentation Tools Architecture (DRITA)Dynamic Runtime Instrumentation Tools Architecture (DRITA)

The Dynamic Runtime Instrumentation Tools Architecture (DRITA) allows a DBA to query catalog views to determine the wait events that affect the
performance of individual sessions or the system as a whole. DRITA records the number of times each event occurs as well as the time spent waiting; you
can use this information to diagnose performance problems. DRITA offers this functionality, while consuming minimal system resources.

DRITA compares snapshots to evaluate the performance of a system. A snapshot is a saved set of system performance data at a given point in time. Each
snapshot is identified by a unique ID number; you can use snapshot ID numbers with DRITA reporting functions to return system performance statistics.

ECPGPlus

EDB has enhanced ECPG (the PostgreSQL pre-compiler) to create ECPGPlus. ECPGPlus allows you to include embedded SQL commands in C applications;
when you use ECPGPlus to compile an application that contains embedded SQL commands, the SQL code is syntax-checked and translated into C.

ECPGPlus supports Pro*C syntax in C programs when connected to an Advanced Server database. ECPGPlus supports:

Oracle Dynamic SQL – Method 4 (ODS-M4)
Pro*C compatible anonymous blocks
A CALL statement compatible with Oracle databases

For information about using ECPGPlus, see the EDB Postgres Advanced Server ECPG Connector Guide, available from the EDB website at:

https://www.enterprisedb.com/docs

Table Partitioning

In a partitioned table, one logically large table is broken into smaller physical pieces. Partitioning can provide several benefits:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1569

https://www.enterprisedb.com/docs

Query performance can be improved dramatically in certain situations, particularly when most of the heavily accessed rows of the table are in a
single partition or a small number of partitions. Partitioning allows you to omit the partition column from the front of an index, reducing index size
and making it more likely that the heavily used parts of the index fits in memory.
When a query or update accesses a large percentage of a single partition, performance may improve because the server will perform a sequential
scan of the partition instead of using an index and random access reads scattered across the whole table.
A bulk load (or unload) can be implemented by adding or removing partitions, if you plan that requirement into the partitioning design. ALTER
TABLE is far faster than a bulk operation. It also entirely avoids the VACUUM overhead caused by a bulk DELETE .
Seldom-used data can be migrated to less-expensive (or slower) storage media.

Table partitioning is worthwhile only when a table would otherwise be very large. The exact point at which a table will benefit from partitioning depends on
the application; a good rule of thumb is that the size of the table should exceed the physical memory of the database server.

For information about database compatibility features supported by Advanced Server see the Database Compatibility Table Partitioning Guide, available at:

https://www.enterprisedb.com/docs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1570

https://www.enterprisedb.com/docs

22.3 Database Administration

This chapter describes the features that aid in the management and administration of Advanced Server databases.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1571

22.3.1 Configuration Parameters

This section describes the database server configuration parameters of Advanced Server. These parameters control various aspects of the database server’s
behavior and environment such as data file and log file locations, connection, authentication, and security settings, resource allocation and consumption,
archiving and replication settings, error logging and statistics gathering, optimization and performance tuning, locale and formatting settings, and so on.

Configuration parameters that apply only to Advanced Server are noted in the Summary of Configuration Parameters.

Additional information about configuration parameters can be found in the PostgreSQL Core Documentation available at:

https://www.postgresql.org/docs/current/static/runtime-config.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1572

https://www.postgresql.org/docs/current/static/runtime-config.html

22.3.1.1 Setting Configuration Parameters

This section provides an overview of how configuration parameters are specified and set.

Each configuration parameter is set using a name/value pair. Parameter names are case-insensitive. The parameter name is typically separated from its
value by an optional equals sign (=) .

The following is an example of some configuration parameter settings in the postgresql.conf file:

This is a comment
log_connections = yes
log_destination = 'syslog'
search_path = '"$user", public'
shared_buffers = 128MB

Parameter values are specified as one of five types:

Boolean.Boolean. Acceptable values can be written as on, off, true, false, yes, no, 1, 0 , or any unambiguous prefix of these.
Integer.Integer. Number without a fractional part.
Floating Point.Floating Point. Number with an optional fractional part separated by a decimal point.
String.String. Text value. Enclose in single quotes if the value is not a simple identifier or number (that is, the value contains special characters such as
spaces or other punctuation marks).
Enum.Enum. Specific set of string values. The allowed values can be found in the system view pg_settings.enumvals . Enum values are case-
insensitive.

Some settings specify a memory or time value. Each of these has an implicit unit, which is kilobytes, blocks (typically 8 kilobytes), milliseconds, seconds, or
minutes. Default units can be found by referencing the system view pg_settings.unit . A different unit can be specified explicitly.

Valid memory units are kB (kilobytes), MB (megabytes), and GB (gigabytes). Valid time units are ms (milliseconds), s (seconds), min (minutes), h
(hours), and d (days). The multiplier for memory units is 1024.

The configuration parameter settings can be established in a number of different ways:

There is a number of parameter settings that are established when the Advanced Server database product is built. These are read-only parameters,
and their values cannot be changed. There are also a couple of parameters that are permanently set for each database when the database is created.
These parameters are read-only as well and cannot be subsequently changed for the database.

The initial settings for almost all configurable parameters across the entire database cluster are listed in the configuration file,
postgresql.conf . These settings are put into effect upon database server start or restart. Some of these initial parameter settings can be

overridden as discussed in the following bullet points. All configuration parameters have built-in default settings that are in effect if not explicitly
overridden.

Configuration parameters in the postgresql.conf file are overridden when the same parameters are included in the
postgresql.auto.conf file. The ALTER SYSTEM command is used to manage the configuration parameters in the
postgresql.auto.conf file.

Parameter settings can be modified in the configuration file while the database server is running. If the configuration file is then reloaded (meaning
a SIGHUP signal is issued), for certain parameter types, the changed parameters settings immediately take effect. For some of these parameter
types, the new settings are available in a currently running session immediately after the reload. For other of these parameter types, a new session
must be started to use the new settings. And yet for other parameter types, modified settings do not take effect until the database server is stopped
and restarted. See the following section of the PostgreSQL Core Documentation for information on how to reload the configuration file:

https://www.postgresql.org/docs/current/config-setting.html

The SQL commands ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE can be used to modify certain parameter settings.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1573

https://www.postgresql.org/docs/current/config-setting.html

The SQL commands ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE can be used to modify certain parameter settings.
The modified parameter settings take effect for new sessions after the command is executed. ALTER DATABASE affects new sessions connecting
to the specified database. ALTER ROLE affects new sessions started by the specified role. ALTER ROLE IN DATABASE affects new sessions
started by the specified role connecting to the specified database. Parameter settings established by these SQL commands remain in effect
indefinitely, across database server restarts, overriding settings established by the methods discussed in the second and third bullet points.
Parameter settings established using the ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE commands can only be
changed by:

a) re-issuing these commands with a different parameter value, or

b) issuing these commands using either of the SET parameter TO DEFAULT clause or the RESET parameter clause. These clauses
change the parameter back to using the setting established by the methods set forth in the prior bullet points. See the “SQL Commands” section of
Chapter VI “Reference” in the PostgreSQL Core Documentation for the exact syntax of these SQL commands:

https://www.postgresql.org/docs/current/sql-commands.html

Changes can be made for certain parameter settings for the duration of individual sessions using the PGOPTIONS environment variable or by using
the SET command within the EDB-PSQL or PSQL command line terminal programs. Parameter settings made in this manner override settings
established using any of the methods described by the second, third, and fourth bullet points, but only for the duration of the session.

Modifying the postgresql.conf File

The configuration parameters in the postgresql.conf file specify server behavior with regards to auditing, authentication, encryption, and other
behaviors. On Linux and Windows host, the postgresql.conf file resides in the data directory under your Advanced Server installation.

Parameters that are preceded by a pound sign (#) are set to their default value. To change a parameter value, remove the pound sign and enter a new value.
After setting or changing a parameter, you must either reload or restart the server for the new parameter value to take effect.

Within the postgresql.conf file, some parameters contain comments that indicate change requires restart . To view a list of the parameters
that require a server restart, execute the following query at the psql command line:

SELECT name FROM pg_settings WHERE context = 'postmaster';

Modifying the pg_hba.conf File

Appropriate authentication methods provide protection and security. Entries in the pg_hba.conf file specify the authentication method or methods that
the server will use when authenticating connecting clients. Before connecting to the server, you may be required to modify the authentication properties
specified in the pg_hba.conf file.

When you invoke the initdb utility to create a cluster, initdb creates a pg_hba.conf file for that cluster that specifies the type of authentication
required from connecting clients. To modify the pg_hba.conf file, open the file with your choice of editor. After modifying the authentication settings in
the pg_hba.conf file, restart the server and apply the changes.

For more information about authentication and modifying the pg_hba.conf file, see the PostgreSQL Core Documentation at:

https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

When a connection request is received, the server will verify the credentials provided against the authentication settings in the pg_hba.conf file before
allowing a connection to a database. To log the pg_hba.conf file entry to authenticate a connection to the server, set the log_connections
parameter to ON in the postgresql.conf file.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1574

https://www.postgresql.org/docs/current/sql-commands.html
https://www.postgresql.org/docs/current/static/auth-pg-hba-conf.html

A record specifies a connection type, database name, user name, a client IP address, and the authentication method to authorize a connection upon
matching these parameters in the pg_hba.conf file. Once the connection to a server is authorized, you can see the matched line number and the
authentication record from the pg_hba.conf file.

The following example shows a log detail for a valid pg_hba.conf entry upon successful authentication.

2020-05-08 10:42:17 IST LOG: connection received: host=[local]
2020-05-08 10:42:17 IST LOG: connection authorized: user=u1 database=edb
application_name=psql
2020-05-08 10:42:17 IST DETAIL: Connection matched pg_hba.conf line 84:
"local all all md5"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1575

22.3.1.2 Summary of Configuration Parameters

This section contains a summary table listing all Advanced Server configuration parameters along with a number of key attributes of the parameters.

These attributes are described by the following columns of the summary table:

Parameter.Parameter. Configuration parameter name.

Scope of Effect.Scope of Effect. Scope of effect of the configuration parameter setting.

Cluster – Setting affects the entire database cluster (that is, all databases managed by the database server instance).
Database – Setting can vary by database and is established when the database is created. Applies to a small number of parameters related

to locale settings.
Session – Setting can vary down to the granularity of individual sessions.

In other words, different settings can be made for the following entities whereby the latter settings in this list override prior ones: a) the entire
database cluster, b) specific databases in the database cluster, c) specific roles, d) specific roles when connected to specific databases, e) a specific
session.

When Takes Effect.When Takes Effect. When a changed parameter setting takes effect.

Preset – Established when the Advanced Server product is built or a particular database is created. This is a read-only parameter and
cannot be changed.
Restart – Database server must be restarted.
Reload – Configuration file must be reloaded (or the database server can be restarted).
Immediate – Immediately effective in a session if the PGOPTIONS environment variable or the SET command is used to change the

setting in the current session. Effective in new sessions if ALTER DATABASE , ALTER ROLE , or ALTER ROLE IN DATABASE
commands are used to change the setting.

Authorized User.Authorized User. Type of operating system account or database role that must be used to put the parameter setting into effect.

EPAS service account – EDB Postgres Advanced Server service account (enterprisedb for an installation compatible with Oracle
databases, postgres for a PostgreSQL compatible mode installation).
Superuser – Database role with superuser privileges.
User – Any database role with permissions on the affected database object (the database or role to be altered with the ALTER command).
n/a – Parameter setting cannot be changed by any user.

Description.Description. Brief description of the configuration parameter.

EPAS Only.EPAS Only. ‘X’ – Configuration parameter is applicable to EDB Postgres Advanced Server only. No entry in this column indicates the configuration
parameter applies to PostgreSQL as well.

NoteNote

There are a number of parameters that should never be altered. These are designated as “Note: For internal use onlyNote: For internal use only” in the Description column.

The following table shows the summary of configuration parameters:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1576

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

allow_system_table
_mods

Cluster Restart EPAS service
account

Allows modifications of the structure of system tables.

application_name Session Immediate User Sets the application name to be reported in statistics
and logs.

archive_command Cluster Reload EPAS service
account

Sets the shell command that will be called to archive a
WAL file.

archive_mode Cluster Restart EPAS service
account

Allows archiving of WAL files using
archive_command .

archive_timeout Cluster Reload EPAS service
account

Forces a switch to the next xlog file if a new file has not
been started within N seconds.

array_nulls Session Immediate User Enable input of NULL elements in arrays.

authentication_tim
eout

Cluster Reload EPAS service
account

Sets the maximum allowed time to complete client
authentication.

autovacuum Cluster Reload EPAS service
account

Starts the autovacuum subprocess.

autovacuum_analyze
_scale_factor

Cluster Reload EPAS service
account

Number of tuple inserts, updates, or deletes prior to
analyze as a fraction of reltuples .

autovacuum_analyze
_threshold

Cluster Reload EPAS service
account

Minimum number of tuple inserts, updates, or deletes
prior to analyze.

autovacuum_freeze_
max_age

Cluster Restart EPAS service
account

Age at which to autovacuum a table to prevent
transaction ID wraparound.

autovacuum_max_wor
kers

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously running
autovacuum worker processes.

autovacuum_multixa
ct_freeze_max_age

Cluster Restart EPAS service
account

Multixact age at which to autovacuum a table to
prevent multixact wraparound.

autovacuum_naptime Cluster Reload EPAS service
account

Time to sleep between autovacuum runs.

autovacuum_vacuum_
cost_delay

Cluster Reload EPAS service
account

Vacuum cost delay in milliseconds, for autovacuum.

autovacuum_vacuum_
cost_limit

Cluster Reload EPAS service
account

Vacuum cost amount available before napping, for
autovacuum.

autovacuum_vacuum_
scale_factor

Cluster Reload EPAS service
account

Number of tuple updates or deletes prior to vacuum as a
fraction of reltuples .

autovacuum_vacuum_
threshold

Cluster Reload EPAS service
account

Minimum number of tuple updates or deletes prior to
vacuum.

autovacuum_work_me
m

Cluster Reload EPAS service
account

Sets the maximum memory to be used by each
autovacuum worker process.

backslash_quote Session Immediate User Sets whether "\'" is allowed in string literals.

bgwriter_delay Cluster Reload EPAS service
account

Background writer sleep time between rounds.

bgwriter_lru_maxpa
ges

Cluster Reload EPAS service
account

Background writer maximum number of LRU pages to
flush per round.

bgwriter_lru_multi
plier

Cluster Reload EPAS service
account

Multiple of the average buffer usage to free per round.

block_size Cluster Preset n/a Shows the size of a disk block.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1577

bonjour Cluster Restart EPAS service
account

Enables advertising the server via Bonjour.

bonjour_name Cluster Restart EPAS service
account

Sets the Bonjour service name.

bytea_output Session Immediate User Sets the output format for bytea .

check_function_bod
ies

Session Immediate User Check function bodies during CREATE FUNCTION .

checkpoint_complet
ion_target

Cluster Reload EPAS service
account

Time spent flushing dirty buffers during checkpoint, as
fraction of checkpoint interval.

checkpoint_segment
s

Deprecated Deprecated Deprecated Specifying a value for the parameter will prevent the
server from starting.

checkpoint_timeout Cluster Reload EPAS service
account

Sets the maximum time between automatic WAL
checkpoints.

checkpoint_warning Cluster Reload EPAS service
account

Enables warnings if checkpoint segments are filled
more frequently than this.

client_encoding Session Immediate User Sets the client's character set encoding.

client_min_message
s

Session Immediate User Sets the message levels that are sent to the client.

commit_delay Session Immediate Superuser Sets the delay in microseconds between transaction
commit and flushing WAL to disk.

commit_siblings Session Immediate User
Sets the minimum concurrent open transactions before
performing commit_delay .

config_file Cluster Restart EPAS service
account

Sets the server's main configuration file.

constraint_exclusi
on

Session Immediate User Enables the planner to use constraints to optimize
queries.

cpu_index_tuple_co
st

Session Immediate User Sets the planner's estimate of the cost of processing
each index entry during an index scan.

cpu_operator_cost Session Immediate User Sets the planner's estimate of the cost of processing
each operator or function call.

cpu_tuple_cost Session Immediate User Sets the planner's estimate of the cost of processing
each tuple (row).

cursor_tuple_fract
ion

Session Immediate User Sets the planner's estimate of the fraction of a cursor's
rows that will be retrieved.

custom_variable_cl
asses

Cluster Reload EPAS service
account

Deprecated in Advanced Server 9.2. X

data_checksums Cluster Preset n/a Shows whether data checksums are turned on for this
cluster.

data_directory Cluster Restart EPAS service
account

Sets the server's data directory.

datestyle Session Immediate User Sets the display format for date and time values.

db_dialect Session Immediate User Sets the precedence of built-in namespaces. X

dbms_alert.max_ale
rts

Cluster Restart EPAS service
account

Sets maximum number of alerts. X

dbms_pipe.total_me
ssage_buffer

Cluster Restart EPAS service
account

Specifies the total size of the buffer used for the
DBMS_PIPE package.

X

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1578

db_user_namespace Cluster Reload
EPAS service
account Enables per-database user names.

deadlock_timeout Session Immediate Superuser Sets the time to wait on a lock before checking for
deadlock.

debug_assertions Cluster Preset n/a Turns on various assertion checks. (Not supported in
EPAS builds.)

debug_pretty_print Session Immediate User Indents parse and plan tree displays.

debug_print_parse Session Immediate User Logs each query's parse tree.

debug_print_plan Session Immediate User Logs each query's execution plan.

debug_print_rewrit
ten

Session Immediate User Logs each query's rewritten parse tree.

default_heap_fillf
actor

Session Immediate User Create new tables with this heap fillfactor by default. X

default_statistics
_target

Session Immediate User Sets the default statistics target.

default_tablespace Session Immediate User Sets the default tablespace to create tables and indexes
in.

default_text_searc
h_config

Session Immediate User Sets default text search configuration.

default_transactio
n_deferrable

Session Immediate User Sets the default deferrable status of new transactions.

default_transactio
n_isolation

Session Immediate User Sets the transaction isolation level of each new
transaction.

default_transactio
n_read_only

Session Immediate User Sets the default read-only status of new transactions.

default_with_oids Session Immediate User Create new tables with OIDs by default.

default_with_rowid
s

Session Immediate User Create new tables with ROWID support (ROWIDs with
indexes) by default.

X

dynamic_library_pa
th

Session Immediate Superuser Sets the path for dynamically loadable modules.

dynamic_shared_mem
ory_type

Cluster Restart EPAS service
account

Selects the dynamic shared memory implementation
used.

edb_audit Cluster Reload EPAS service
account

Enable EDB Auditing to create audit reports in XML or
CSV format.

X

edb_audit_connect Cluster Reload EPAS service
account

Audits each successful connection. X

edb_audit_destinat
ion Cluster Reload

EPAS service
account

Sets edb_audit_directory or syslog as the
destination directory for audit files. The syslog setting
is only valid for a Linux system.

X

edb_audit_director
y

Cluster Reload EPAS service
account

Sets the destination directory for audit files. X

edb_audit_disconne
ct

Cluster Reload EPAS service
account

Audits end of a session. X

edb_audit_filename Cluster Reload EPAS service
account

Sets the file name pattern for audit files. X

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1579

edb_audit_rotation
_day

Cluster Reload
EPAS service
account Automatic rotation of log files based on day of week. X

edb_audit_rotation
_seconds

Cluster Reload EPAS service
account

Automatic log file rotation will occur after N seconds. X

edb_audit_rotation
_size

Cluster Reload EPAS service
account

Automatic log file rotation will occur after N
Megabytes.

X

edb_audit_statemen
t

Cluster Reload EPAS service
account

Sets the type of statements to audit. X

edb_audit_tag Session Immediate User Specify a tag to be included in the audit log. X

edb_connectby_orde
r

Session Immediate User
Sort results of CONNECT BY queries with no ORDER
BY to depth-first order. Note: For internal use only.

X

edb_data_redaction Session Immediate User Enable data redaction. X

edb_dynatune Cluster Restart EPAS service
account

Sets the edb utilization percentage. X

edb_dynatune_profi
le

Cluster Restart EPAS service
account

Sets the workload profile for dynatune. X

edb_enable_pruning Session Immediate User Enables the planner to early-prune partitioned tables. X

edb_log_every_bulk
_value

Session Immediate Superuser Sets the statements logged for bulk processing. X

edb_max_resource_g
roups

Cluster Restart EPAS service
account

Specifies the maximum number of resource groups for
simultaneous use.

X

edb_max_spins_per_
delay

Cluster Restart EPAS service
account

Specifies the number of times a session will spin while
waiting for a lock.

X

edb_redwood_date Session Immediate User
Determines whether DATE should behave like a
TIMESTAMP or not.

X

edb_redwood_greate
st_least

Session Immediate User Determines how GREATEST and LEAST functions
should handle NULL parameters.

X

edb_redwood_raw_na
mes

Session Immediate User Return the unmodified name stored in the PostgreSQL
system catalogs from Redwood interfaces.

X

edb_redwood_string
s

Session Immediate User Treat NULL as an empty string when concatenated
with a text value.

X

edb_resource_group Session Immediate User Specifies the resource group to be used by the current
process.

X

edb_sql_protect.en
abled

Cluster Reload EPAS service
account

Defines whether SQL/Protect should track queries or
not.

X

edb_sql_protect.le
vel

Cluster Reload EPAS service
account

Defines the behavior of SQL/Protect when an event is
found.

X

edb_sql_protect.ma
x_protected_relatio
ns

Cluster Restart
EPAS service
account

Sets the maximum number of relations protected by
SQL/Protect per role. X

edb_sql_protect.ma
x_protected_roles

Cluster Restart EPAS service
account

Sets the maximum number of roles protected by
SQL/Protect.

X

edb_sql_protect.ma
x_queries_to_save

Cluster Restart EPAS service
account

Sets the maximum number of offending queries to save
by SQL/Protect.

X

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1580

edb_stmt_level_tx Session Immediate User Allows continuing on errors instead of requiring a
transaction abort.

X

edb_wait_states.di
rectory

Cluster Restart EPAS service
account

The EDB wait states logs are stored in this directory. X

edb_wait_states.re
tention_period

Cluster Reload EPAS service
account

EDB wait state log files will be automatically deleted
after retention period.

X

edb_wait_states.sa
mpling_interval

Cluster Reload EPAS service
account

The interval between two EDB wait state sampling
cycles.

X

edbldr.empty_csv_f
ield

Session Immediate Superuser Specifies how EDB*Loader handles empty strings. X

effective_cache_si
ze

Session Immediate User Sets the planner's assumption about the size of the disk
cache.

effective_io_concu
rrency

Session Immediate User Number of simultaneous requests that can be handled
efficiently by the disk subsystem.

enable_bitmapscan Session Immediate User Enables the planner's use of bitmap-scan plans.

enable_hashagg Session Immediate User Enables the planner's use of hashed aggregation plans.

enable_hashjoin Session Immediate User Enables the planner's use of hash join plans.

enable_hints Session Immediate User Enable optimizer hints in SQL statements. X

enable_indexonlysc
an

Session Immediate User Enables the planner’s use of index-only-scan plans.

enable_indexscan Session Immediate User Enables the planner's use of index-scan plans.

enable_material Session Immediate User Enables the planner's use of materialization.

enable_mergejoin Session Immediate User Enables the planner's use of merge join plans.

enable_nestloop Session Immediate User Enables the planner's use of nested-loop join plans.

enable_seqscan Session Immediate User Enables the planner's use of sequential-scan plans.

enable_sort Session Immediate User Enables the planner's use of explicit sort steps.

enable_tidscan Session Immediate User Enables the planner's use of TID scan plans.

escape_string_warn
ing

Session Immediate User Warn about backslash escapes in ordinary string
literals.

event_source Cluster Restart EPAS service
account

Sets the application name used to identify PostgreSQL
messages in the event log.

exit_on_error Session Immediate User Terminate session on any error.

external_pid_file Cluster Restart EPAS service
account

Writes the postmaster PID to the specified file.

extra_float_digits Session Immediate User Sets the number of digits displayed for floating-point
values.

from_collapse_limi
t

Session Immediate User Sets the FROM -list size beyond which subqueries are
not collapsed.

fsync Cluster Reload EPAS service
account

Forces synchronization of updates to disk.

full_page_writes Cluster Reload EPAS service
account

Writes full pages to WAL when first modified after a
checkpoint.

geqo Session Immediate User Enables genetic query optimization.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1581

geqo_effort Session Immediate User GEQO: effort is used to set the default for other GEQO
parameters.

geqo_generations Session Immediate User GEQO: number of iterations of the algorithm.

geqo_pool_size Session Immediate User GEQO: number of individuals in the population.

geqo_seed Session Immediate User GEQO: seed for random path selection.

geqo_selection_bia
s

Session Immediate User GEQO: selective pressure within the population.

geqo_threshold Session Immediate User Sets the threshold of FROM items beyond which GEQO
is used.

gin_fuzzy_search_l
imit

Session Immediate User Sets the maximum allowed result for exact search by
GIN.

hba_file Cluster Restart EPAS service
account

Sets the server's "hba" configuration file.

hot_standby Cluster Restart EPAS service
account

Allows connections and queries during recovery.

hot_standby_feedba
ck

Cluster Reload EPAS service
account

Allows feedback from a hot standby to the primary that
will avoid query conflicts.

huge_pages Cluster Restart EPAS service
account

Use of huge pages on Linux.

icu_short_form Database Preset n/a Shows the ICU collation order configuration. X

ident_file Cluster Restart EPAS service
account

Sets the server's "ident" configuration file.

ignore_checksum_fa
ilure

Session Immediate Superuser Continues processing after a checksum failure.

ignore_system_inde
xes

Cluster/Session Reload/Immediate EPAS service
account/User

Disables reading from system indexes. (Can also be set
with PGOPTIONS at session start.)

index_advisor.enab
led

Session Immediate User Enable Index Advisor plugin. X

integer_datetimes Cluster Preset n/a Datetimes are integer based.

intervalStyle Session Immediate User Sets the display format for interval values.

join_collapse_limi
t

Session Immediate User Sets the FROM -list size beyond which JOIN
constructs are not flattened.

krb_caseins_users Cluster Reload EPAS service
account

Sets whether Kerberos and GSSAPI user names should
be treated as case-insensitive.

krb_server_keyfile Cluster Reload EPAS service
account

Sets the location of the Kerberos server key file.

lc_collate Database Preset n/a Shows the collation order locale.

lc_ctype Database Preset n/a Shows the character classification and case conversion
locale.

lc_messages Session Immediate Superuser Sets the language in which messages are displayed.

lc_monetary Session Immediate User Sets the locale for formatting monetary amounts.

lc_numeric Session Immediate User Sets the locale for formatting numbers.

lc_time Session Immediate User Sets the locale for formatting date and time values.

listen_addresses Cluster Restart EPAS service
account

Sets the host name or IP address(es) to listen to.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1582

local_preload_libr
aries

Cluster/Session Reload/Immediate EPAS service
account/User

Lists shared libraries to preload into each backend.
(Can also be set with PGOPTIONS at session start.)

lock_timeout Session Immediate User Sets the maximum time allowed that a statement may
wait for a lock.

lo_compat_privileg
es

Session Immediate Superuser Enables backward compatibility mode for privilege
checks on large objects.

log_autovacuum_min
_duration

Cluster Reload EPAS service
account

Sets the minimum execution time above which
autovacuum actions will be logged.

log_checkpoints Cluster Reload EPAS service
account

Logs each checkpoint.

log_connections Cluster/Session Reload/Immediate EPAS service
account/User

Logs each successful connection. (Can also be set with
PGOPTIONS at session start.)

log_destination Cluster Reload EPAS service
account

Sets the destination for server log output.

log_directory Cluster Reload EPAS service
account

Sets the destination directory for log files.

log_disconnections Cluster/Session Reload/Immediate EPAS service
account/User

Logs end of a session, including duration. (Can also be
set with PGOPTIONS at session start.)

log_duration Session Immediate Superuser Logs the duration of each completed SQL statement.

log_error_verbosit
y

Session Immediate Superuser Sets the verbosity of logged messages.

log_executor_stats Session Immediate Superuser Writes executor performance statistics to the server log.

log_file_mode Cluster Reload EPAS service
account

Sets the file permissions for log files.

log_filename Cluster Reload EPAS service
account

Sets the file name pattern for log files.

log_hostname Cluster Reload EPAS service
account

Logs the host name in the connection logs.

log_line_prefix Cluster Reload EPAS service
account

Controls information prefixed to each log line.

log_lock_waits Session Immediate Superuser Logs long lock waits.

log_min_duration_s
tatement

Session Immediate Superuser Sets the minimum execution time above which
statements will be logged.

log_min_error_stat
ement

Session Immediate Superuser Causes all statements generating error at or above this
level to be logged.

log_min_messages Session Immediate Superuser Sets the message levels that are logged.

log_parser_stats Session Immediate Superuser Writes parser performance statistics to the server log.

log_planner_stats Session Immediate Superuser Writes planner performance statistics to the server log.

log_rotation_age Cluster Reload EPAS service
account

Automatic log file rotation will occur after N minutes.

log_rotation_size Cluster Reload EPAS service
account

Automatic log file rotation will occur after N kilobytes.

log_statement Session Immediate Superuser Sets the type of statements logged.

log_statement_stat
s

Session Immediate Superuser Writes cumulative performance statistics to the server
log.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1583

log_temp_files Session Immediate Superuser Log the use of temporary files larger than this number
of kilobytes.

log_timezone Cluster Reload EPAS service
account

Sets the time zone to use in log messages.

log_truncate_on_ro
tation

Cluster Reload EPAS service
account

Truncate existing log files of same name during log
rotation.

logging_collector Cluster Restart EPAS service
account

Start a subprocess to capture stderr output and/or csv
logs into log files.

maintenance_work_m
em

Session Immediate User Sets the maximum memory to be used for maintenance
operations.

max_connections Cluster Restart EPAS service
account

Sets the maximum number of concurrent connections.

max_files_per_proc
ess

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously open files
for each server process.

max_function_args Cluster Preset n/a Shows the maximum number of function arguments.

max_identifier_len
gth

Cluster Preset n/a Shows the maximum identifier length.

max_index_keys Cluster Preset n/a Shows the maximum number of index keys.

max_locks_per_tran
saction

Cluster Restart EPAS service
account

Sets the maximum number of locks per transaction.

max_pred_locks_per
_transaction

Cluster Restart EPAS service
account

Sets the maximum number of predicate locks per
transaction.

max_prepared_trans
actions

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously prepared
transactions.

max_replication_sl
ots

Cluster Restart EPAS service
account

Sets the maximum number of simultaneously defined
replication slots.

max_stack_depth Session Immediate Superuser Sets the maximum stack depth, in kilobytes.

max_standby_archiv
e_delay

Cluster Reload EPAS service
account

Sets the maximum delay before canceling queries when
a hot standby server is processing archived WAL data.

max_standby_stream
ing_delay

Cluster Reload EPAS service
account

Sets the maximum delay before canceling queries when
a hot standby server is processing streamed WAL data.

max_wal_senders Cluster Restart EPAS service
account

Sets the maximum number of simultaneously running
WAL sender processes.

max_wal_size Cluster Reload
EPAS service
account

Sets the maximum size to which the WAL will grow
between automatic WAL checkpoints. The default is
1GB.

max_worker_process
es

Cluster Restart EPAS service
account

Maximum number of concurrent worker processes.

min_wal_size Cluster Reload EPAS service
account

Sets the threshold at which WAL logs will be recycled
rather than removed. The default is 80 MB.

nls_length_semanti
cs

Session Immediate Superuser Sets the semantics to use for char, varchar, varchar2
and long columns.

X

odbc_lib_path Cluster Restart EPAS service
account

Sets the path for ODBC library. X

optimizer_mode Session Immediate User Default optimizer mode. X

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1584

oracle_home Cluster Restart EPAS service
account

Sets the path for the Oracle home directory. X

password_encryptio
n

Session Immediate User Encrypt passwords.

pg_prewarm.autopre
warm

Cluster Restart EPAS service
account

Enables the autoprewarm background worker. X

pg_prewarm.autopre
warm_interval

Cluster Reload EPAS service
account

Sets the minimum number of seconds after which
autoprewarm dumps shared buffers.

X

port Cluster Restart EPAS service
account

Sets the TCP port on which the server listens.

post_auth_delay Cluster/Session Reload/Immediate
EPAS service
account/User

Waits N seconds on connection startup after
authentication. (Can also be set with PGOPTIONS at
session start.)

pre_auth_delay Cluster Reload EPAS service
account

Waits N seconds on connection startup before
authentication.

qreplace_function Session Immediate Superuser The function to be used by Query Replace feature. Note:
For internal use only.

X

query_rewrite_enab
led

Session Immediate User Child table scans will be skipped if their constraints
guarantee that no rows match the query.

X

query_rewrite_inte
grity

Session Immediate Superuser Sets the degree to which query rewriting must be
enforced.

X

quote_all_identifi
ers

Session Immediate User When generating SQL fragments, quote all identifiers.

random_page_cost Session Immediate User Sets the planner's estimate of the cost of a
nonsequentially fetched disk page.

restart_after_cras
h

Cluster Reload EPAS service
account

Reinitialize server after backend crash.

search_path Session Immediate User Sets the schema search order for names that are not
schema-qualified.

segment_size Cluster Preset n/a Shows the number of pages per disk file.

seq_page_cost Session Immediate User Sets the planner's estimate of the cost of a sequentially
fetched disk page.

server_encoding Database Preset n/a Sets the server (database) character set encoding.

server_version Cluster Preset n/a Shows the server version.

server_version_num Cluster Preset n/a Shows the server version as an integer.

session_preload_li
braries Session

Immediate but
only at connection
start

Superuser Lists shared libraries to preload into each backend.

session_replicatio
n_role

Session Immediate Superuser Sets the session's behavior for triggers and rewrite
rules.

shared_buffers Cluster Restart EPAS service
account

Sets the number of shared memory buffers used by the
server.

shared_preload_lib
raries

Cluster Restart EPAS service
account

Lists shared libraries to preload into server.

sql_inheritance Session Immediate User Causes subtables to be included by default in various
commands.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1585

ssl Cluster Reload EPAS service
account

Enables SSL connections.

ssl_ca_file Cluster Reload EPAS service
account

Location of the SSL certificate authority file.

ssl_cert_file Cluster Reload EPAS service
account

Location of the SSL server certificate file.

ssl_ciphers Cluster Reload EPAS service
account

Sets the list of allowed SSL ciphers.

ssl_crl_file Cluster Reload EPAS service
account

Location of the SSL certificate revocation list file.

ssl_ecdh_curve Cluster Reload EPAS service
account

Sets the curve to use for ECDH.

ssl_key_file Cluster Reload EPAS service
account

Location of the SSL server private key file.

ssl_prefer_server_
ciphers

Cluster Reload EPAS service
account

Give priority to server ciphersuite order.

ssl_renegotiation_
limit

Session Immediate User Set the amount of traffic to send and receive before
renegotiating the encryption keys.

standard_conformin
g_strings

Session Immediate User Causes '...' strings to treat backslashes literally.

statement_timeout Session Immediate User Sets the maximum allowed duration of any statement.

stats_temp_directo
ry

Cluster Reload EPAS service
account

Writes temporary statistics files to the specified
directory.

superuser_reserved
_connections

Cluster Restart EPAS service
account

Sets the number of connection slots reserved for
superusers.

synchronize_seqsca
ns

Session Immediate User Enable synchronized sequential scans.

synchronous_commit Session Immediate User Sets immediate fsync at commit.

synchronous_standb
y_names

Cluster Reload EPAS service
account

List of names of potential synchronous standbys.

syslog_facility Cluster Reload EPAS service
account

Sets the syslog "facility" to be used when syslog
enabled.

syslog_ident Cluster Reload EPAS service
account

Sets the program name used to identify PostgreSQL
messages in syslog.

tcp_keepalives_cou
nt

Session Immediate User Maximum number of TCP keepalive retransmits.

tcp_keepalives_idl
e

Session Immediate User Time between issuing TCP keepalives.

tcp_keepalives_int
erval

Session Immediate User Time between TCP keepalive retransmits.

temp_buffers Session Immediate User Sets the maximum number of temporary buffers used
by each session.

temp_file_limit Session Immediate Superuser Limits the total size of all temporary files used by each
session.

temp_tablespaces Session Immediate User Sets the tablespace(s) to use for temporary tables and
sort files.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1586

timed_statistics Session Immediate User Enables the recording of timed statistics. X

timezone Session Immediate User Sets the time zone for displaying and interpreting time
stamps.

timezone_abbreviat
ions

Session Immediate User Selects a file of time zone abbreviations.

trace_hints Session Immediate User Emit debug info about hints being honored. X

trace_notify Session Immediate User
Generates debugging output for LISTEN and
NOTIFY .

trace_recovery_mes
sages

Cluster Reload EPAS service
account

Enables logging of recovery-related debugging
information.

trace_sort Session Immediate User Emit information about resource usage in sorting.

track_activities Session Immediate Superuser Collects information about executing commnands.

track_activity_que
ry_size

Cluster Restart EPAS service
account

Sets the size reserved for
pg_stat_activity.current_query , in bytes.

track_counts Session Immediate Superuser Collects statistics on database activity.

track_functions Session Immediate Superuser Collects function-level statistics on database activity.

track_io_timing Session Immediate Superuser Collects timing statistics for database I/O activity.

transaction_deferr
able Session Immediate User

Whether to defer a read-only serializable transaction
until it can be executed with no possible serialization
failures.

transaction_isolat
ion

Session Immediate User Sets the current transaction's isolation level.

transaction_read_o
nly

Session Immediate User Sets the current transaction's read-only status.

transform_null_equ
als

Session Immediate User Treats "expr=NULL" as "expr IS NULL" .

unix_socket_direct
ories

Cluster Restart EPAS service
account

Sets the directory where the Unix-domain socket will be
created.

unix_socket_group Cluster Restart EPAS service
account

Sets the owning group of the Unix-domain socket.

unix_socket_permis
sions

Cluster Restart EPAS service
account

Sets the access permissions of the Unix-domain socket.

update_process_tit
le

Session Immediate Superuser Updates the process title to show the active SQL
command.

utl_encode.uudecod
e_redwood

Session Immediate User Allows decoding of Oracle-created uuencoded data. X

utl_file.umask Session Immediate User Umask used for files created through the UTL_FILE
package.

X

vacuum_cost_delay Session Immediate User Vacuum cost delay in milliseconds.

vacuum_cost_limit Session Immediate User Vacuum cost amount available before napping.

vacuum_cost_page_d
irty

Session Immediate User Vacuum cost for a page dirtied by vacuum.

vacuum_cost_page_h
it

Session Immediate User Vacuum cost for a page found in the buffer cache.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1587

vacuum_cost_page_m
iss

Session Immediate User Vacuum cost for a page not found in the buffer cache.

vacuum_defer_clean
up_age

Cluster Reload EPAS service
account

Number of transactions by which VACUUM and HOT
cleanup should be deferred, if any.

vacuum_freeze_min_
age

Session Immediate User Minimum age at which VACUUM should freeze a table
row.

vacuum_freeze_tabl
e_age

Session Immediate User Age at which VACUUM should scan whole table to
freeze tuples.

vacuum_multixact_f
reeze_min_age

Session Immediate User Minimum age at which VACUUM should freeze a
MultiXactId in a table row.

vacuum_multixact_f
reeze_table_age

Session Immediate User Multixact age at which VACUUM should scan whole
table to freeze tuples.

wal_block_size Cluster Preset n/a Shows the block size in the write ahead log.

wal_buffers Cluster Restart EPAS service
account

Sets the number of disk-page buffers in shared memory
for WAL.

wal_keep_segments Cluster Reload EPAS service
account

Sets the number of WAL files held for standby servers.

wal_level Cluster Restart EPAS service
account

Set the level of information written to the WAL.

wal_log_hints Cluster Restart EPAS service
account

Writes full pages to WAL when first modified after a
checkpoint, even for non-critical modifications.

wal_receiver_statu
s_interval

Cluster Reload EPAS service
account

Sets the maximum interval between WAL receiver
status reports to the primary.

wal_receiver_timeo
ut

Cluster Reload EPAS service
account

Sets the maximum wait time to receive data from the
primary.

wal_segment_size Cluster Preset n/a Shows the number of pages per write ahead log
segment.

wal_sender_timeout Cluster Reload EPAS service
account

Sets the maximum time to wait for WAL replication.

wal_sync_method Cluster Reload EPAS service
account

Selects the method used for forcing WAL updates to
disk.

wal_writer_delay Cluster Reload EPAS service
account

WAL writer sleep time between WAL flushes.

work_mem Session Immediate User Sets the maximum memory to be used for query
workspaces.

xloginsert_locks Cluster Restart EPAS service
account

Sets the number of locks used for concurrent xlog
insertions.

xmlbinary Session Immediate User Sets how binary values are to be encoded in XML.

xmloption Session Immediate User
Sets whether XML data in implicit parsing and
serialization operations is to be considered as
documents or content fragments.

zero_damaged_pages Session Immediate Superuser Continues processing past damaged page headers.

Parameter Scope of Effect
When Takes
Effect

Authorized

User
Description

E
P
A
S
O
nl
y

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1588

22.3.1.3 Configuration Parameters by Functionality

This section provides more detail for certain groups of configuration parameters.

The section heading for each parameter is followed by a list of attributes:

Parameter Type. Type of values the parameter can accept. See Setting Configuration Parameters section for a discussion of parameter type
values.
Default Value. Default setting if a value is not explicitly set in the configuration file.
Range. Permitted range of values.
Minimum Scope of Effect. Smallest scope for which a distinct setting can be made. Generally, the minimal scope of a distinct setting is

either the entire cluster (the setting is the same for all databases and sessions thereof, in the cluster), or per session (the setting may vary
by role, database, or individual session). (This attribute has the same meaning as the Scope of Effect column in the table of Summary of
Configuration Parameters).
When Value Changes Take Effect. Least invasive action required to activate a change to a parameter’s value. All parameter setting

changes made in the configuration file can be put into effect with a restart of the database server; however certain parameters require a database
server restart . Some parameter setting changes can be put into effect with a reload of the configuration file without stopping the database
server. Finally, other parameter setting changes can be put into effect with some client side action whose result is immediate . (This attribute has
the same meaning as the When Takes Effect column in the table of Summary of Configuration Parameters).
Required Authorization to Activate. The type of user authorization to activate a change to a parameter’s setting. If a database server

restart or a configuration file reload is required, then the user must be a EPAS service account (enterprisedb or postgres depending upon
the Advanced Server compatibility installation mode). (This attribute has the same meaning as the Authorized User column in the table of
Summary of Configuration Parameters).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1589

22.3.1.3.1 Top Performance Related Parameters

This section discusses the configuration parameters that have the most immediate impact on performance.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1590

22.3.1.3.1.1 shared_buffers

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 32MB

Range:Range: 128kB to system dependent

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the amount of memory the database server uses for shared memory buffers. The default is typically 32 megabytes (32MB), but might be less if your
kernel settings will not support it (as determined during initdb). This setting must be at least 128 kilobytes. (Non-default values of BLCKSZ change
the minimum.) However, settings significantly higher than the minimum are usually needed for good performance.

If you have a dedicated database server with 1GB or more of RAM, a reasonable starting value for shared_buffers is 25% of the memory in your
system. There are some workloads where even large settings for shared_buffers are effective, but because Advanced Server also relies on the
operating system cache, it is unlikely that an allocation of more than 40% of RAM to shared_buffers will work better than a smaller amount.

On systems with less than 1GB of RAM, a smaller percentage of RAM is appropriate, so as to leave adequate space for the operating system (15% of
memory is more typical in these situations). Also, on Windows, large values for shared_buffers aren't as effective. You may find better results keeping
the setting relatively low and using the operating system cache more instead. The useful range for shared_buffers on Windows systems is generally
from 64MB to 512MB.

Increasing this parameter might cause Advanced Server to request more System V shared memory than your operating system's default configuration
allows. See the section Shared Memory and Semaphores in the PostgreSQL Core Documentation for information on how to adjust those
parameters, if necessary.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1591

22.3.1.3.1.2 work_mem

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 1MB

Range:Range: 64kB to 2097151kB

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files. The value defaults to one
megabyte (1MB). Note that for a complex query, several sort or hash operations might be running in parallel; each operation will be allowed to use as
much memory as this value specifies before it starts to write data into temporary files. Also, several running sessions could be doing such operations
concurrently. Therefore, the total memory used could be many times the value of work_mem ; it is necessary to keep this fact in mind when choosing the
value. Sort operations are used for ORDER BY , DISTINCT , and merge joins. Hash tables are used in hash joins, hash-based aggregation, and hash-
based processing of IN subqueries.

Reasonable values are typically between 4MB and 64MB, depending on the size of your machine, how many concurrent connections you expect
(determined by max_connections), and the complexity of your queries.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1592

22.3.1.3.1.3 maintenance_work_mem

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 16MB

Range:Range: 1024kB to 2097151kB

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM , CREATE INDEX , and ALTER TABLE ADD
FOREIGN KEY . It defaults to 16 megabytes (16MB). Since only one of these operations can be executed at a time by a database session, and an
installation normally doesn't have many of them running concurrently, it's safe to set this value significantly larger than work_mem . Larger settings might
improve performance for vacuuming and for restoring database dumps.

Note that when autovacuum runs, up to autovacuum_max_workers times this memory may be allocated, so be careful not to set the default value too
high.

A good rule of thumb is to set this to about 5% of system memory, but not more than about 512MB. Larger values won't necessarily improve performance.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1593

22.3.1.3.1.4 wal_buffers

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 64kB

Range:Range: 32kB to system dependent

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

The amount of memory used in shared memory for WAL data. The default is 64 kilobytes (64kB). The setting need only be large enough to hold the amount
of WAL data generated by one typical transaction, since the data is written out to disk at every transaction commit.

Increasing this parameter might cause Advanced Server to request more System V shared memory than your operating system's default configuration
allows. See the section “Shared Memory and Semaphores” in the PostgreSQL Core Documentation for information on how to adjust those parameters, if
necessary.

Although even this very small setting does not always cause a problem, there are situations where it can result in extra fsync calls, and degrade overall
system throughput. Increasing this value to 1MB or so can alleviate this problem. On very busy systems, an even higher value may be needed, up to a
maximum of about 16MB. Like shared_buffers , this parameter increases Advanced Server’s initial shared memory allocation, so if increasing it
causes an Advanced Server start failure, you will need to increase the operating system limit.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1594

22.3.1.3.1.5 checkpoint_segments

Now deprecated; this parameter is not supported by Advanced Server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1595

22.3.1.3.1.6 checkpoint_completion_target

Parameter Type:Parameter Type: Floating point

Default Value:Default Value: 0.5

Range:Range: 0 to 1

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the target of checkpoint completion as a fraction of total time between checkpoints. This spreads out the checkpoint writes while the system
starts working towards the next checkpoint.

The default of 0.5 means aim to finish the checkpoint writes when 50% of the next checkpoint is ready. A value of 0.9 means aim to finish the checkpoint
writes when 90% of the next checkpoint is done, thus throttling the checkpoint writes over a larger amount of time and avoiding spikes of performance
bottlenecking.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1596

22.3.1.3.1.7 checkpoint_timeout

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 5min

Range:Range: 30s to 3600s

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Maximum time between automatic WAL checkpoints, in seconds. The default is five minutes (5min). Increasing this parameter can increase the amount of
time needed for crash recovery.

Increasing checkpoint_timeout to a larger value, such as 15 minutes, can reduce the I/O load on your system, especially when using large values for
shared_buffers .

The downside of making the aforementioned adjustments to the checkpoint parameters is that your system will use a modest amount of additional disk
space, and will take longer to recover in the event of a crash. However, for most users, this is a small price to pay for a significant performance
improvement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1597

22.3.1.3.1.8 max_wal_size

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 1 GB

Range:Range: 2 to 2147483647

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

max_wal_size specifies the maximum size that the WAL will reach between automatic WAL checkpoints. This is a soft limit; WAL size can exceed
max_wal_size under special circumstances (when under a heavy load, a failing archive_command, or a high wal_keep_segments setting).

Increasing this parameter can increase the amount of time needed for crash recovery. This parameter can only be set in the postgresql.conf file or on
the server command line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1598

22.3.1.3.1.9 min_wal_size

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 80 MB

Range:Range: 2 to 2147483647

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

If WAL disk usage stays below the value specified by min_wal_size , old WAL files are recycled for future use at a checkpoint, rather than removed. This
ensures that enough WAL space is reserved to handle spikes in WAL usage (like when running large batch jobs). This parameter can only be set in the
postgresql.conf file or on the server command line.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1599

22.3.1.3.1.10 bgwriter_delay

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 200ms

Range:Range: 10ms to 10000ms

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the delay between activity rounds for the background writer. In each round the writer issues writes for some number of dirty buffers (controllable
by the bgwriter_lru_maxpages and bgwriter_lru_multiplier parameters). It then sleeps for bgwriter_delay milliseconds, and
repeats.

The default value is 200 milliseconds (200ms). Note that on many systems, the effective resolution of sleep delays is 10 milliseconds; setting
bgwriter_delay to a value that is not a multiple of 10 might have the same results as setting it to the next higher multiple of 10.

Typically, when tuning bgwriter_delay , it should be reduced from its default value. This parameter is rarely increased, except perhaps to save on
power consumption on a system with very low utilization.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1600

22.3.1.3.1.11 seq_page_cost

Parameter Type:Parameter Type: Floating point

Default Value:Default Value: 1

Range:Range: 0 to 1.79769e+308

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Sets the planner's estimate of the cost of a disk page fetch that is part of a series of sequential fetches. The default is 1.0. This value can be overridden for a
particular tablespace by setting the tablespace parameter of the same name. (Refer to the ALTER TABLESPACE command in the PostgreSQL Core
Documentation.)

The default value assumes very little caching, so it's frequently a good idea to reduce it. Even if your database is significantly larger than physical memory,
you might want to try setting this parameter to less than 1 (rather than its default value of 1) to see whether you get better query plans that way. If your
database fits entirely within memory, you can lower this value much more, perhaps to 0.1.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1601

22.3.1.3.1.12 random_page_cost

Parameter Type:Parameter Type: Floating point

Default Value:Default Value: 4

Range:Range: 0 to 1.79769e+308

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Sets the planner's estimate of the cost of a non-sequentially-fetched disk page. The default is 4.0. This value can be overridden for a particular tablespace
by setting the tablespace parameter of the same name. (Refer to the ALTER TABLESPACE command in the PostgreSQL Core Documentation.)

Reducing this value relative to seq_page_cost will cause the system to prefer index scans; raising it will make index scans look relatively more
expensive. You can raise or lower both values together to change the importance of disk I/O costs relative to CPU costs, which are described by the
cpu_tuple_cost and cpu_index_tuple_cost parameters.

The default value assumes very little caching, so it's frequently a good idea to reduce it. Even if your database is significantly larger than physical memory,
you might want to try setting this parameter to 2 (rather than its default of 4) to see whether you get better query plans that way. If your database fits
entirely within memory, you can lower this value much more, perhaps to 0.1.

Although the system will let you do so, never set random_page_cost less than seq_page_cost . However, setting them equal (or very close to
equal) makes sense if the database fits mostly or entirely within memory, since in that case there is no penalty for touching pages out of sequence. Also, in
a heavily-cached database you should lower both values relative to the CPU parameters, since the cost of fetching a page already in RAM is much smaller
than it would normally be.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1602

22.3.1.3.1.13 effective_cache_size

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 128MB

Range:Range: 8kB to 17179869176kB

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Sets the planner's assumption about the effective size of the disk cache that is available to a single query. This is factored into estimates of the cost of using
an index; a higher value makes it more likely index scans will be used, a lower value makes it more likely sequential scans will be used. When setting this
parameter you should consider both Advanced Server’s shared buffers and the portion of the kernel's disk cache that will be used for Advanced Server data
files. Also, take into account the expected number of concurrent queries on different tables, since they will have to share the available space. This
parameter has no effect on the size of shared memory allocated by Advanced Server, nor does it reserve kernel disk cache; it is used only for estimation
purposes. The default is 128 megabytes (128MB).

If this parameter is set too low, the planner may decide not to use an index even when it would be beneficial to do so. Setting effective_cache_size
to 50% of physical memory is a normal, conservative setting. A more aggressive setting would be approximately 75% of physical memory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1603

22.3.1.3.1.14 synchronous_commit

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Specifies whether transaction commit will wait for WAL records to be written to disk before the command returns a success indication to the client. The
default, and safe, setting is on. When off, there can be a delay between when success is reported to the client and when the transaction is really guaranteed
to be safe against a server crash. (The maximum delay is three times wal_writer_delay .)

Unlike fsync , setting this parameter to off does not create any risk of database inconsistency: an operating system or database crash might result in
some recent allegedly-committed transactions being lost, but the database state will be just the same as if those transactions had been aborted cleanly.

So, turning synchronous_commit off can be a useful alternative when performance is more important than exact certainty about the durability of a
transaction. See the section Asynchronous Commit in the PostgreSQL Core Documentation for information.

This parameter can be changed at any time; the behavior for any one transaction is determined by the setting in effect when it commits. It is therefore
possible, and useful, to have some transactions commit synchronously and others asynchronously. For example, to make a single multistatement
transaction commit asynchronously when the default is the opposite, issue SET LOCAL synchronous_commit TO OFF within the transaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1604

22.3.1.3.1.15 edb_max_spins_per_delay

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 1000

Range:Range: 10 to 1000

Minimum Scope of Effect:Minimum Scope of Effect: Per cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Use edb_max_spins_per_delay to specify the maximum number of times that a session will spin while waiting for a spin-lock. If a lock is not
acquired, the session will sleep. If you do not specify an alternative value for edb_max_spins_per_delay , the server will enforce the default value of
1000 .

This may be useful for systems that use NUMA (non-uniform memory access) architecture.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1605

22.3.1.3.1.16 pg_prewarm.autoprewarm

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

This parameter controls whether or not the database server should run autoprewarm , which is a background worker process that automatically dumps
shared buffers to disk before a shutdown. It then prewarms the shared buffers the next time the server is started, meaning it loads blocks from the disk
back into the buffer pool.

The advantage is that it shortens the warm up times after the server has been restarted by loading the data that has been dumped to disk before shutdown.

If pg_prewarm.autoprewarm is set to on, the autoprewarm worker is enabled. If the parameter is set to off, autoprewarm is disabled. The
parameter is on by default.

Before autoprewarm can be used, you must add $libdir/pg_prewarm to the libraries listed in the shared_preload_libraries
configuration parameter of the postgresql.conf file as shown by the following example:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/dbms_aq,$libdir/pg_prewarm'

After modifying the shared_preload_libraries parameter, restart the database server after which the autoprewarm background worker is
launched immediately after the server has reached a consistent state.

The autoprewarm process will start loading blocks that were previously recorded in $PGDATA/autoprewarm.blocks until there is no free buffer
space left in the buffer pool. In this manner, any new blocks that were loaded either by the recovery process or by the querying clients, are not replaced.

Once the autoprewarm process has finished loading buffers from disk, it will periodically dump shared buffers to disk at the interval specified by the
pg_prewarm.autoprewarm_interval parameter. See the pg_prewarm.autoprewarm_interval for information on the autoprewarm background

worker. Upon the next server restart, the autoprewarm process will prewarm shared buffers with the blocks that were last dumped to disk.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1606

22.3.1.3.1.17 pg_prewarm.autoprewarm_interval

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 300s

Range:Range: 0s to 2147483s

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

This is the minimum number of seconds after which the autoprewarm background worker dumps shared buffers to disk. The default is 300 seconds. If
set to 0, shared buffers are not dumped at regular intervals, but only when the server is shut down.

See the pg_prewarm.autoprewarm for information on the autoprewarm background worker.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1607

22.3.1.3.2 Resource Usage / Memory

The configuration parameters in this section control resource usage pertaining to memory.

edb_dynatune

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 0

Range:Range: 0 to 100

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Determines how much of the host system’s resources are to be used by the database server based upon the host machine’s total available resources and
the intended usage of the host machine.

When Advanced Server is initially installed, the edb_dynatune parameter is set in accordance with the selected usage of the host machine on which it
was installed (i.e., development machine, mixed use machine, or dedicated server). For most purposes, there is no need for the database administrator to
adjust the various configuration parameters in the postgresql.conf file in order to improve performance.

The edb_dynatune parameter can be set to any integer value between 0 and 100, inclusive. A value of 0, turns off the dynamic tuning feature thereby
leaving the database server resource usage totally under the control of the other configuration parameters in the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine’s resources to the database server. This setting would be used for a
development machine where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database server. This setting might be used for a dedicated application
server that may have a fixed number of other applications running on the same machine as Advanced Server.

The highest values (e.g., 67 - 100) dedicate most of the server’s resources to the database server. This setting would be used for a host machine that is
totally dedicated to running Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further fine-tuned by adjusting the other configuration parameters in
the postgresql.conf file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune . You can change the value of a
parameter by un-commenting the configuration parameter, specifying the desired value, and restarting the database server.

edb_dynatune_profile

Parameter Type:Parameter Type: Enum

Default Value:Default Value: oltp

Range:Range: {oltp | reporting | mixed}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1608

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

This parameter is used to control tuning aspects based upon the expected workload profile on the database server.

The following are the possible values:

oltp. Recommended when the database server is processing heavy online transaction processing workloads.
reporting. Recommended for database servers used for heavy data reporting.
mixed. Recommended for servers that provide a mix of transaction processing and data reporting.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1609

22.3.1.3.3 Resource Usage / EDB Resource Manager

The configuration parameters in this section control resource usage through EDB Resource Manager.

edb_max_resource_groups

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 16

Range:Range: 0 to 65536

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

This parameter controls the maximum number of resource groups that can be used simultaneously by EDB Resource Manager. More resource groups can
be created than the value specified by edb_max_resource_groups , however, the number of resource groups in active use by processes in these
groups cannot exceed this value.

Parameter edb_max_resource_groups should be set comfortably larger than the number of groups you expect to maintain so as not to run out.

edb_resource_group

Parameter Type:Parameter Type: String

Default Value:Default Value: none

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Set the edb_resource_group parameter to the name of the resource group to which the current session is to be controlled by EDB Resource Manager
according to the group’s resource type settings.

If the parameter is not set, then the current session does not utilize EDB Resource Manager.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1610

22.3.1.3.4 Query Tuning

This section describes the configuration parameters used for optimizer hints.

enable_hints

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Optimizer hints embedded in SQL commands are utilized when enable_hints is on. Optimizer hints are ignored when this parameter is off.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1611

22.3.1.3.5 Query Tuning / Planner Method Configuration

This section describes the configuration parameters used for planner method configuration.

edb_enable_pruning

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

When set to TRUE , edb_enable_pruning allows the query planner to early-prune partitioned tables. Early-pruning means that the query
planner can prune (i.e., ignore) partitions that would not be searched in a query before generating query plans. This helps improve performance time
as it eliminates the generation of query plans of partitions that would not be searched.

Conversely, late-pruning means that the query planner prunes partitions after generating query plans for each partition. (The
constraint_exclusion configuration parameter controls late-pruning.)

The ability to early-prune depends upon the nature of the query in the WHERE clause. Early-pruning can be utilized in only simple queries with constraints
of the type WHERE column = literal (e.g., WHERE deptno = 10) .

Early-pruning is not used for more complex queries such as WHERE column = expression (e.g., WHERE deptno = 10 + 5) .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1612

22.3.1.3.6 Reporting and Logging / What to Log

The configuration parameters in this section control reporting and logging.

trace_hints

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Use with the optimizer hints feature to provide more detailed information regarding whether or not a hint was used by the planner. Set the
client_min_messages and trace_hints configuration parameters as follows:

SET client_min_messages TO info;
SET trace_hints TO true;

The SELECT command with the NO_INDEX hint shown below illustrates the additional information produced when the aforementioned configuration
parameters are set.

EXPLAIN SELECT /*+ NO_INDEX(accounts accounts_pkey) */ * FROM accounts
WHERE aid = 100;

INFO: [HINTS] Index Scan of [accounts].[accounts_pkey] rejected because
of NO_INDEX hint.

INFO: [HINTS] Bitmap Heap Scan of [accounts].[accounts_pkey] rejected
because of NO_INDEX hint.

 QUERY PLAN

Seq Scan on accounts (cost=0.00..14461.10 rows=1 width=97)
 Filter: (aid = 100)
(2 rows)

edb_log_every_bulk_value

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1613

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Superuser

Bulk processing logs the resulting statements into both the Advanced Server log file and the EDB Audit log file. However, logging each and every statement
in bulk processing is costly. This can be controlled by the edb_log_every_bulk_value configuration parameter. When set to true , each and every
statement in bulk processing is logged. During bulk execution, when edb_log_every_bulk_value is set to false , a log message is recorded once
per bulk processing along with the number of rows processed. In addition, the duration is emitted once per bulk processing. Default is set to false .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1614

22.3.1.3.7 Auditing Settings

This section describes configuration parameters used by the Advanced Server database auditing feature.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1615

22.3.1.3.7.1 edb_audit

Parameter Type:Parameter Type: Enum

Default Value:Default Value: none

Range:Range: {none | csv | xml}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Enables or disables database auditing. The values xml or csv will enable database auditing. These values represent the file format in which auditing
information will be captured. none will disable database auditing and is also the default.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1616

22.3.1.3.7.2 edb_audit_directory

Parameter Type:Parameter Type: String

Default Value:Default Value: edb_audit

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the directory where the audit log files will be created. The path of the directory can be absolute or relative to the Advanced Server data
directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1617

22.3.1.3.7.3 edb_audit_filename

Parameter Type:Parameter Type: String

Default Value:Default Value: audit-%Y%m%d_%H%M%S

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the file name of the audit file where the auditing information will be stored. The default file name will be audit-%Y%m%d_%H%M%S . The escape
sequences, %Y, %m etc., will be replaced by the appropriate current values according to the system date and time.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1618

22.3.1.3.7.4 edb_audit_rotation_day

Parameter Type:Parameter Type: String

Default Value:Default Value: every

Range:Range: {none | every | sun | mon | tue | wed | thu | fri | sat} ...

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the day of the week on which to rotate the audit files. Valid values are sun , mon , tue , wed , thu , fri , sat , every , and none . To
disable rotation, set the value to none . To rotate the file every day, set the edb_audit_rotation_day value to every . To rotate the file on a
specific day of the week, set the value to the desired day of the week.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1619

22.3.1.3.7.5 edb_audit_rotation_size

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 0MB

Range:Range: 0MB to 5000MB

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies a file size threshold in megabytes when file rotation will be forced to occur. The default value is 0MB. If the parameter is commented out or set to
0, rotation of the file on a size basis will not occur.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1620

22.3.1.3.7.6 edb_audit_rotation_seconds

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 0s

Range:Range: 0s to 2147483647s

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the rotation time in seconds when a new log file should be created. To disable this feature, set this parameter to 0.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1621

22.3.1.3.7.7 edb_audit_connect

Parameter Type:Parameter Type: Enum

Default Value:Default Value: failed

Range:Range: {none | failed | all}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Enables auditing of database connection attempts by users. To disable auditing of all connection attempts, set edb_audit_connect to none . To
audit all failed connection attempts, set the value to failed . To audit all connection attempts, set the value to all .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1622

22.3.1.3.7.8 edb_audit_disconnect

Parameter Type:Parameter Type: Enum

Default Value:Default Value: none

Range:Range: {none | all}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Enables auditing of database disconnections by connected users. To enable auditing of disconnections, set the value to all . To disable, set the value to
none .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1623

22.3.1.3.7.9 edb_audit_statement

Parameter Type:Parameter Type: String

Default Value:Default Value: ddl, error

Range:Range: {none | ddl | dml | insert | update | delete | truncate | select | error | create | drop | alter |
grant | revoke | rollback | set | all} ...

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

This configuration parameter is used to specify auditing of different categories of SQL statements as well as those statements related to specific SQL
commands. To log errors, set the parameter value to error . To audit all DDL statements such as CREATE TABLE , ALTER TABLE , etc., set the
parameter value to ddl . To audit specific types of DDL statements, the parameter values can include those specific SQL commands (create , drop , or
alter). In addition, the object type may be specified following the command such as create table , create view , drop role , etc. All

modification statements such as INSERT , UPDATE , DELETE or TRUNCATE can be audited by setting edb_audit_statement to dml . To audit
specific types of DML statements, the parameter values can include the specific SQL commands, insert , update , delete , or truncate . Include
parameter values select , grant , revoke , or rollback to audit statements regarding those SQL commands. To audit SET statements, include
the parameter value to SET . Setting the value to all will audit every statement while none disables this feature.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1624

22.3.1.3.7.10 edb_audit_tag

Parameter Type:Parameter Type: String

Default Value:Default Value: none

Minimum Scope of Effect:Minimum Scope of Effect: Session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: User

Use edb_audit_tag to specify a string value that will be included in the audit log when the edb_audit parameter is set to csv or xml .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1625

22.3.1.3.7.11 edb_audit_destination

Parameter Type:Parameter Type: Enum

Default Value:Default Value: file

Range:Range: {file | syslog}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies whether the audit log information is to be recorded in the directory as given by the edb_audit_directory parameter or to the directory and
file managed by the syslog process. Set to file to use the directory specified by edb_audit_directory (the default setting).

Set to syslog to use the syslog process and its location as configured in the /etc/syslog.conf file. The syslog setting is valid only for Advanced
Server running on a Linux host, and is not supported on Windows systems.

NoteNote

In recent Linux versions, syslog has been replaced by rsyslog and the configuration file is in /etc/rsyslog.conf .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1626

22.3.1.3.7.12 edb_log_every_bulk_value

For information on edb_log_every_bulk_value , see the edb_log_every_bulk_value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1627

22.3.1.3.8 Client Connection Defaults / Locale and Formatting

This section describes configuration parameters affecting locale and formatting.

icu_short_form

Parameter Type:Parameter Type: String

Default Value:Default Value: none

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Database

When Value Changes Take Effect:When Value Changes Take Effect: n/a

Required Authorization to Activate:Required Authorization to Activate: n/a

The configuration parameter icu_short_form is a parameter containing the default ICU short form name assigned to a database or to the Advanced
Server instance. See Unicode Collation Algorithm for general information about the ICU short form and the Unicode Collation Algorithm.

This configuration parameter is set either when the CREATE DATABASE command is used with the ICU_SHORT_FORM parameter in which case the
specified short form name is set and appears in the icu_short_form configuration parameter when connected to this database, or when an Advanced
Server instance is created with the initdb command used with the --icu_short_form option in which case the specified short form name is set
and appears in the icu_short_form configuration parameter when connected to a database in that Advanced Server instance, and the database does
not override it with its own ICU_SHORT_FORM parameter with a different short form.

Once established in the manner described, the icu_short_form configuration parameter cannot be changed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1628

22.3.1.3.9 Client Connection Defaults / Statement Behavior

This section describes configuration parameters affecting statement behavior.

default_heap_fillfactor

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 100

Range:Range: 10 to 100

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Sets the fillfactor for a table when the FILLFACTOR storage parameter is omitted from a CREATE TABLE command.

The fillfactor for a table is a percentage between 10 and 100. 100 (complete packing) is the default. When a smaller fillfactor is specified, INSERT
operations pack table pages only to the indicated percentage; the remaining space on each page is reserved for updating rows on that page. This gives
UPDATE a chance to place the updated copy of a row on the same page as the original, which is more efficient than placing it on a different page. For a

table whose entries are never updated, complete packing is the best choice, but in heavily updated tables smaller fillfactors are appropriate.

edb_data_redaction

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Data redaction is the support of policies to limit the exposure of certain sensitive data to certain users by altering the displayed information.

The default setting is TRUE so the data redaction is applied to all users except for superusers and the table owner:

Superusers and table owner bypass data redaction.
All other users get the redaction policy applied and see the reformatted data.

If the parameter is disabled by setting it to FALSE , then the following occurs:

Superusers and table owner still bypass data redaction.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1629

All other users will get an error.

For information on data redaction, see the EDB Postgres Advanced Server Security Features Guide.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1630

22.3.1.3.10 Client Connection Defaults / Other Defaults

The parameters in this section set other miscellaneous client connection defaults.

oracle_home

Parameter Type:Parameter Type: String

Default Value:Default Value: none

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Before creating a link to an Oracle server, you must direct Advanced Server to the correct Oracle home directory. Set the LD_LIBRARY_PATH
environment variable on Linux (or PATH on Windows) to the lib directory of the Oracle client installation directory.

Alternatively, you can also set the value of the oracle_home configuration parameter in the postgresql.conf file. The value specified in the
oracle_home configuration parameter will override the LD_LIBRARY_PATH environment variable in Linux and PATH environment variable in

Windows.

NoteNote

The oracle_home configuration parameter should provide the correct path to the Oracle client i.e. OCI library.

To set the oracle_home configuration parameter in the postgresql.conf file, edit the file, adding the following line:

oracle_home = 'lib_directory'

Substitute the name of the oracle_home path to the Oracle client installation directory that contains libclntsh.so in Linux and oci.dll in
Windows for lib_directory .

After setting the oracle_home configuration parameter, you must restart the server for the changes to take effect. Restart the server,

on Linux, using the systemctl command or pg_ctl services.

on Windows, from the Windows Services console.

odbc_lib_path

Parameter Type:Parameter Type: String

Default Value:Default Value: none

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1631

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

If you will be using an ODBC driver manager, and if it is installed in a non-standard location, you specify the location by setting the odbc_lib_path
configuration parameter in the postgresql.conf file:

odbc_lib_path = 'complete_path_to_libodbc.so'

The configuration file must include the complete pathname to the driver manager shared library (typically libodbc.so).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1632

22.3.1.3.11 Compatibility Options

The configuration parameters described in this section control various database compatibility features.

edb_redwood_date

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

When DATE appears as the data type of a column in the commands, it is translated to TIMESTAMP at the time the table definition is stored in the
database if the configuration parameter edb_redwood_date is set to TRUE . Thus, a time component will also be stored in the column along with the
date.

If edb_redwood_date is set to FALSE the column’s data type in a CREATE TABLE or ALTER TABLE command remains as a native PostgreSQL
DATE data type and is stored as such in the database. The PostgreSQL DATE data type stores only the date without a time component in the column.

Regardless of the setting of edb_redwood_date , when DATE appears as a data type in any other context such as the data type of a variable in an SPL
declaration section, or the data type of a formal parameter in an SPL procedure or SPL function, or the return type of an SPL function, it is always internally
translated to a TIMESTAMP and thus, can handle a time component if present.

edb_redwood_greatest_least

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

The GREATEST function returns the parameter with the greatest value from its list of parameters. The LEAST function returns the parameter with the
least value from its list of parameters.

When edb_redwood_greatest_least is set to TRUE , the GREATEST and LEAST functions return null when at least one of the parameters is
null.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1633

SET edb_redwood_greatest_least TO on;

SELECT GREATEST(1, 2, NULL, 3);

greatest

(1 row)

When edb_redwood_greatest_least is set to FALSE , null parameters are ignored except when all parameters are null in which case null is
returned by the functions.

SET edb_redwood_greatest_least TO off;

SELECT GREATEST(1, 2, NULL, 3);

greatest

 3
(1 row)

SELECT GREATEST(NULL, NULL, NULL);

greatest

(1 row)

edb_redwood_raw_names

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

When edb_redwood_raw_names is set to its default value of FALSE , database object names such as table names, column names, trigger names,
program names, user names, etc. appear in uppercase letters when viewed from Redwood catalogs (that is, system catalogs prefixed by ALL_ , DBA_ , or
USER_). In addition, quotation marks enclose names that were created with enclosing quotation marks.

When edb_redwood_raw_names is set to TRUE , the database object names are displayed exactly as they are stored in the PostgreSQL system
catalogs when viewed from the Redwood catalogs. Thus, names created without enclosing quotation marks appear in lowercase as expected in PostgreSQL.
Names created with enclosing quotation marks appear exactly as they were created, but without the quotation marks.

For example, the following user name is created, and then a session is started with that user.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1634

CREATE USER reduser IDENTIFIED BY password;
edb=# \c - reduser
Password for user reduser:
You are now connected to database "edb" as user "reduser".

When connected to the database as reduser, the following tables are created.

CREATE TABLE all_lower (col INTEGER);
CREATE TABLE ALL_UPPER (COL INTEGER);
CREATE TABLE "Mixed_Case" ("Col" INTEGER);

When viewed from the Redwood catalog, USER_TABLES , with edb_redwood_raw_names set to the default value FALSE , the names appear in
uppercase except for the Mixed_Case name, which appears as created and also with enclosing quotation marks.

edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
--------------+--------------+------------------+---------+-----------
 REDUSER | ALL_LOWER | | VALID | N
 REDUSER | ALL_UPPER | | VALID | N
 REDUSER | "Mixed_Case" | | VALID | N
(3 rows)

When viewed with edb_redwood_raw_names set to TRUE , the names appear in lowercase except for the Mixed_Case name, which appears as
created, but now without the enclosing quotation marks.

edb=> SET edb_redwood_raw_names TO true;
SET
edb=> SELECT * FROM USER_TABLES;
 schema_name | table_name | tablespace_name | status | temporary
-------------+------------+------------------+--------+-----------
reduser | all_lower | | VALID | N
reduser | all_upper | | VALID | N
reduser | Mixed_Case | | VALID | N
(3 rows)

These names now match the case when viewed from the PostgreSQL pg_tables catalog.

edb=> SELECT schemaname, tablename, tableowner FROM pg_tables WHERE
tableowner = 'reduser';
 schemaname | tablename | tableowner
------------+------------+------------
reduser | all_lower | reduser
reduser | all_upper | reduser
reduser | Mixed_Case | reduser
(3 rows)

edb_redwood_strings

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1635

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

If the edb_redwood_strings parameter is set to TRUE , when a string is concatenated with a null variable or null column, the result is the original
string. If edb_redwood_strings is set to FALSE , the native PostgreSQL behavior is maintained, which is the concatenation of a string with a null
variable or null column gives a null result.

The following example illustrates the difference.

The sample application contains a table of employees. This table has a column named comm that is null for most employees. The following query is run
with edb_redwood_string set to FALSE . The concatenation of a null column with non-empty strings produces a final result of null, so only
employees that have a commission appear in the query result. The output line for all other employees is null.

SET edb_redwood_strings TO off;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00

 MARTIN 1,250.00 1,400.00

 TURNER 1,500.00 .00

(14 rows)

The following is the same query executed when edb_redwood_strings is set to TRUE . Here, the value of a null column is treated as an empty string.
The concatenation of an empty string with a non-empty string produces the non-empty string.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1636

SET edb_redwood_strings TO on;

SELECT RPAD(ename,10) || ' ' || TO_CHAR(sal,'99,999.99') || ' ' ||
TO_CHAR(comm,'99,999.99') "EMPLOYEE COMPENSATION" FROM emp;

 EMPLOYEE COMPENSATION

 SMITH 800.00
 ALLEN 1,600.00 300.00
 WARD 1,250.00 500.00
 JONES 2,975.00
 MARTIN 1,250.00 1,400.00
 BLAKE 2,850.00
 CLARK 2,450.00
 SCOTT 3,000.00
 KING 5,000.00
 TURNER 1,500.00 .00
 ADAMS 1,100.00
 JAMES 950.00
 FORD 3,000.00
 MILLER 1,300.00
(14 rows)

edb_stmt_level_tx

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

The term statement level transaction isolation describes the behavior whereby when a runtime error occurs in a SQL command, all the
updates on the database caused by that single command are rolled back. For example, if a single UPDATE command successfully updates five rows, but
an attempt to update a sixth row results in an exception, the updates to all six rows made by this UPDATE command are rolled back. The effects of prior
SQL commands that have not yet been committed or rolled back are pending until a COMMIT or ROLLBACK command is executed.

In Advanced Server, if an exception occurs while executing a SQL command, all the updates on the database since the start of the transaction are rolled
back. In addition, the transaction is left in an aborted state and either a COMMIT or ROLLBACK command must be issued before another transaction can
be started.

If edb_stmt_level_tx is set to TRUE , then an exception will not automatically roll back prior uncommitted database updates. If
edb_stmt_level_tx is set to FALSE , then an exception will roll back uncommitted database updates.

NoteNote

Use edb_stmt_level_tx set to TRUE only when absolutely necessary, as this may cause a negative performance impact.

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE , the abort of the second INSERT command also rolls back the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1637

The following example run in PSQL shows that when edb_stmt_level_tx is FALSE , the abort of the second INSERT command also rolls back the
first INSERT command. Note that in PSQL, the command \set AUTOCOMMIT off must be issued, otherwise every statement commits automatically
defeating the purpose of this demonstration of the effect of edb_stmt_level_tx .

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO off;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept".

COMMIT;
SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
(0 rows)

In the following example, with edb_stmt_level_tx set to TRUE , the first INSERT command has not been rolled back after the error on the second
INSERT command. At this point, the first INSERT command can either be committed or rolled back.

\set AUTOCOMMIT off
SET edb_stmt_level_tx TO on;

INSERT INTO emp (empno,ename,deptno) VALUES (9001, 'JONES', 40);
INSERT INTO emp (empno,ename,deptno) VALUES (9002, 'JONES', 00);
ERROR: insert or update on table "emp" violates foreign key constraint
"emp_ref_dept_fk"
DETAIL: Key (deptno)=(0) is not present in table "dept"

SELECT empno, ename, deptno FROM emp WHERE empno > 9000;

empno | ename | deptno
-------+-------+--------
 9001 | JONES | 40
(1 row)

COMMIT;

A ROLLBACK command could have been issued instead of the COMMIT command in which case the insert of employee number 9001 would have been
rolled back as well.

db_dialect

Parameter Type:Parameter Type: Enum

Default Value:Default Value: postgres

Range:Range: {postgres | redwood}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1638

Required Authorization to Activate:Required Authorization to Activate: Session user

In addition to the native PostgreSQL system catalog, pg_catalog , Advanced Server contains an extended catalog view. This is the sys catalog for the
expanded catalog view. The db_dialect parameter controls the order in which these catalogs are searched for name resolution.

When set to postgres , the namespace precedence is pg_catalog then sys , giving the PostgreSQL catalog the highest precedence. When set to
redwood , the namespace precedence is sys then pg_catalog , giving the expanded catalog views the highest precedence.

default_with_rowids

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

When set to on , CREATE TABLE includes a ROWID column in newly created tables, which can then be referenced in SQL commands. In earlier
versions of Advanced Server ROWIDs were mapped to OIDs , but from Advanced Server version 12 onwards, the ROWID is an auto-incrementing value
based on a sequence that starts with 1 and assigned to each row of a table created with ROWIDs option. By default, a unique index is created on a
ROWID column.

The ALTER and DROP operations are restricted on a ROWID column.

To restore a database with ROWIDs from Advanced Server 11 or an earlier version, you must perform the following:

pg_dump: If a table includes OIDs then specify --convert-oids-to-rowids to dump a database. Otherwise, ignore the OIDs to continue
table creation on Advanced Server version 12 onwards.
pg_upgrade: Errors out. But if a table includes OIDs or ROWIDs , then you must perform the following steps:

1. Take a dump of the tables by specifying --convert-oids-to-rowids option.
2. Drop the tables and then perform the upgrade.
3. Restore the dump after the upgrade is successful into a new cluster that contains the dumped tables into a target database.

optimizer_mode

Parameter Type:Parameter Type: Enum

Default Value:Default Value: choose

Range:Range: {choose | ALL_ROWS | FIRST_ROWS | FIRST_ROWS_10 | FIRST_ROWS_100 | FIRST_ROWS_1000}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1639

Sets the default optimization mode for analyzing optimizer hints.

The following table shows the possible values:

Hint Description

ALL_ROWS Optimizes for retrieval of all rows of the result set.

CHOOSE Does no default optimization based on assumed number of rows to be retrieved from the result set. This is the default.

FIRST_ROWS Optimizes for retrieval of only the first row of the result set.

FIRST_ROWS_10 Optimizes for retrieval of the first 10 rows of the results set.

FIRST_ROWS_100 Optimizes for retrieval of the first 100 rows of the result set.

FIRST_ROWS_1000 Optimizes for retrieval of the first 1000 rows of the result set.

These optimization modes are based upon the assumption that the client submitting the SQL command is interested in viewing only the first n rows of the
result set and will then abandon the remainder of the result set. Resources allocated to the query are adjusted as such.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1640

22.3.1.3.12 Customized Options

In previous releases of Advanced Server, the custom_variable_classes was required by those parameters not normally known to be added by add-
on modules (such as procedural languages).

custom_variable_classes

The custom_variable_classes parameter is deprecated in Advanced Server 9.2; parameters that previously depended on this parameter no longer
require its support.

dbms_alert.max_alerts

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 100

Range:Range: 0 to 500

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the maximum number of concurrent alerts allowed on a system using the DBMS_ALERTS package.

dbms_pipe.total_message_buffer

Parameter Type: Integer

Default Value:Default Value: 30 Kb

Range:Range: 30 Kb to 256 Kb

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Specifies the total size of the buffer used for the DBMS_PIPE package.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1641

index_advisor.enabled

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Provides the capability to temporarily suspend Index Advisor in an EDB-PSQL or PSQL session. The Index Advisor plugin, index_advisor , must be
loaded in the EDB-PSQL or PSQL session in order to use the index_advisor.enabled configuration parameter.

The Index Advisor plugin can be loaded as shown by the following example:

$ psql -d edb -U enterprisedb
Password for user enterprisedb:
psql (13.0.0)
Type "help" for help.

edb=# LOAD 'index_advisor';
LOAD

Use the SET command to change the parameter setting to control whether or not Index Advisor generates an alternative query plan as shown by the
following example:

edb=# SET index_advisor.enabled TO off;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
(2 rows)

edb=# SET index_advisor.enabled TO on;
SET
edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN

 Seq Scan on t (cost=0.00..1693.00 rows=9864 width=8)
 Filter: (a < 10000)
 Result (cost=0.00..327.88 rows=9864 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..327.88
 rows=9864 width=8)
 Index Cond: (a < 10000)
(6 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1642

edb_sql_protect.enabled

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Controls whether or not SQL/Protect is actively monitoring protected roles by analyzing SQL statements issued by those roles and reacting according to the
setting of edb_sql_protect.level . When you are ready to begin monitoring with SQL/Protect set this parameter to on.

edb_sql_protect.level

Parameter Type:Parameter Type: Enum

Default Value:Default Value: passive

Range:Range: {learn | passive | active}

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the action taken by SQL/Protect when a SQL statement is issued by a protected role.

The edb_sql_protect.level configuration parameter can be set to one of the following values to use either learn mode, passive mode, or active
mode:

learn.learn. Tracks the activities of protected roles and records the relations used by the roles. This is used when initially configuring SQL/Protect so the
expected behaviors of the protected applications are learned.
passive.passive. Issues warnings if protected roles are breaking the defined rules, but does not stop any SQL statements from executing. This is the next step
after SQL/Protect has learned the expected behavior of the protected roles. This essentially behaves in intrusion detection mode and can be run in
production when properly monitored.
active.active. Stops all invalid statements for a protected role. This behaves as a SQL firewall preventing dangerous queries from running. This is
particularly effective against early penetration testing when the attacker is trying to determine the vulnerability point and the type of database
behind the application. Not only does SQL/Protect close those vulnerability points, but it tracks the blocked queries allowing administrators to be
alerted before the attacker finds an alternate method of penetrating the system.

If you are using SQL/Protect for the first time, set edb_sql_protect.level to learn .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1643

edb_sql_protect.max_protected_relations

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 1024

Range:Range: 1 to 2147483647

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the maximum number of relations that can be protected per role. Please note the total number of protected relations for the server will be the number
of protected relations times the number of protected roles. Every protected relation consumes space in shared memory. The space for the maximum
possible protected relations is reserved during database server startup.

If the server is started when edb_sql_protect.max_protected_relations is set to a value outside of the valid range (for example, a value of
2,147,483,648), then a warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_relations": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully, but with edb_sql_protect.max_protected_relations set to the default value of 1024.

Though the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared
memory is available and the parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be acceptable. If the value is such that the space in shared memory cannot
be reserved, the database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In such cases, reduce the parameter value until the database server can be started successfully.

edb_sql_protect.max_protected_roles

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 64

Range:Range: 1 to 2147483647

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1644

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the maximum number of roles that can be protected.

Every protected role consumes space in shared memory. Please note that the server will reserve space for the number of protected roles times the number
of protected relations (edb_sql_protect.max_protected_relations). The space for the maximum possible protected roles is reserved during
database server startup.

If the database server is started when edb_sql_protect.max_protected_roles is set to a value outside of the valid range (for example, a value of
2,147,483,648), then a warning message is logged in the database server log file:

2014-07-18 16:04:12 EDT WARNING: invalid value for parameter
"edb_sql_protect.max_protected_roles": "2147483648"
2014-07-18 16:04:12 EDT HINT: Value exceeds integer range.

The database server starts successfully, but with edb_sql_protect.max_protected_roles set to the default value of 64.

Though the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared
memory is available and the parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be acceptable. If the value is such that the space in shared memory cannot
be reserved, the database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In such cases, reduce the parameter value until the database server can be started successfully.

edb_sql_protect.max_queries_to_save

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 5000

Range:Range: 100 to 2147483647

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the maximum number of offending queries to save in view edb_sql_protect_queries .

Every query that is saved consumes space in shared memory. The space for the maximum possible queries that can be saved is reserved during database
server startup.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1645

If the database server is started when edb_sql_protect.max_queries_to_save is set to a value outside of the valid range (for example, a value of
10), then a warning message is logged in the database server log file:

2014-07-18 13:05:31 EDT WARNING: 10 is outside the valid range for
parameter "edb_sql_protect.max_queries_to_save" (100 .. 2147483647)

The database server starts successfully, but with edb_sql_protect.max_queries_to_save set to the default value of 5000.

Though the upper range for the parameter is listed as the maximum value for an integer data type, the practical setting depends on how much shared
memory is available and the parameter value used during database server startup.

As long as the space required can be reserved in shared memory, the value will be acceptable. If the value is such that the space in shared memory cannot
be reserved, the database server startup fails with an error message such as the following:

2014-07-18 15:22:17 EDT FATAL: could not map anonymous shared memory:
Cannot allocate memory
2014-07-18 15:22:17 EDT HINT: This error usually means that PostgreSQL's
request for a shared memory segment exceeded available memory, swap
space or huge pages. To reduce the request size (currently 2070118400
bytes), reduce PostgreSQL's shared memory usage, perhaps by reducing
shared_buffers or max_connections.

In such cases, reduce the parameter value until the database server can be started successfully.

edb_wait_states.directory

Parameter Type:Parameter Type: String

Default Value:Default Value: edb_wait_states

Range:Range: n/a

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Restart

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the directory path where the EDB wait states log files are stored. The specified path should be a full, absolute path and not a relative path. However,
the default setting is edb_wait_states , which makes $PGDATA/edb_wait_states the default directory location. For information on EDB wait
states see EDB Wait States under Performance Analysis and Tuning.

edb_wait_states.retention_period

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 604800s

Range:Range: 86400s to 2147483647s

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1646

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the period of time after which the log files for EDB wait states will be deleted. The default is 604800 seconds, which is 7 days. For information on EDB
wait states see EDB Wait States under Performance Analysis and Tuning.

edb_wait_states.sampling_interval

Parameter Type:Parameter Type: Integer

Default Value:Default Value: 1s

Range:Range: 1s to 2147483647s

Minimum Scope of Effect:Minimum Scope of Effect: Cluster

When Value Changes Take Effect:When Value Changes Take Effect: Reload

Required Authorization to Activate:Required Authorization to Activate: EPAS service account

Sets the timing interval between two sampling cycles for EDB wait states. The default setting is 1 second. For information on EDB wait states see EDB
Wait States under Performance Analysis and Tuning.

edbldr.empty_csv_field

Parameter Type:Parameter Type: Enum

Default Value:Default Value: NULL

Range:Range: {NULL | empty_string | pgsql}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Use the edbldr.empty_csv_field parameter to specify how EDB*Loader will treat an empty string. The valid values for the
edbldr.empty_csv_field parameter are:

Parameter Setting EDB*Loader Behavior

NULL An empty field is treated as NULL .

empty_string An empty field is treated as a string of length zero.

pgsql An empty field is treated as a NULL if it does not contain quotes and as an empty string if it contains
quotes.

For more information about the edbldr.empty_csv_field parameter in EDB*Loader, see the Database Compatibility for Oracle Developers Tools and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1647

For more information about the edbldr.empty_csv_field parameter in EDB*Loader, see the Database Compatibility for Oracle Developers Tools and
Utilities Guide at the EDB website:

https://www.enterprisedb.com/docs

utl_encode.uudecode_redwood

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: false

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

When set to TRUE , Advanced Server’s UTL_ENCODE.UUDECODE function can decode uuencoded data that was created by the Oracle implementation
of the UTL_ENCODE.UUENCODE function.

When set to the default setting of FALSE , Advanced Server’s UTL_ENCODE.UUDECODE function can decode uuencoded data created by Advanced
Server’s UTL_ENCODE.UUENCODE function.

utl_file.umask

Parameter Type:Parameter Type: String

Default Value:Default Value: 0077

Range:Range: Octal digits for umask settings

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

The utl_file.umask parameter sets the file mode creation mask or simply, the mask, in a manner similar to the Linux umask command. This is for
usage only within the Advanced Server UTL_FILE package.

NoteNote

The utl_file.umask parameter is not supported on Windows systems.

The value specified for utl_file.umask is a 3 or 4-character octal string that would be valid for the Linux umask command. The setting determines
the permissions on files created by the UTL_FILE functions and procedures. (Refer to any information source regarding Linux or Unix systems for
information on file permissions and the usage of the umask command.)

The following shows the results of the default utl_file.umask setting of 0077. Note that all permissions are denied on users belonging to the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1648

https://www.enterprisedb.com/docs

The following shows the results of the default utl_file.umask setting of 0077. Note that all permissions are denied on users belonging to the
enterprisedb group as well as all other users. Only user enterprisedb has read and write permissions on the file.

-rw------- 1 enterprisedb enterprisedb 21 Jul 24 16:08 utlfile

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1649

22.3.1.3.13 Ungrouped

Configuration parameters in this section apply to Advanced Server only and are for a specific, limited purpose.

nls_length_semantics

Parameter Type:Parameter Type: Enum

Default Value:Default Value: byte

Range:Range: {byte | char}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Superuser

This parameter has no effect in Advanced Server.

For example, the form of the ALTER SESSION command is accepted in Advanced Server without throwing a syntax error, but does not alter the session
environment:

ALTER SESSION SET nls_length_semantics = char;

NoteNote

Since the setting of this parameter has no effect on the server environment, it does not appear in the system view pg_settings .

query_rewrite_enabled

Parameter Type:Parameter Type: Enum

Default Value:Default Value: false

Range:Range: {true | false | force}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

This parameter has no effect in Advanced Server.

For example, the following form of the ALTER SESSION command is accepted in Advanced Server without throwing a syntax error, but does not alter the
session environment:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1650

ALTER SESSION SET query_rewrite_enabled = force;

NoteNote

Since the setting of this parameter has no effect on the server environment, it does not appear in the system view pg_settings .

query_rewrite_integrity

Parameter Type:Parameter Type: Enum

Default Value:Default Value: enforced

Range:Range: {enforced | trusted | stale_tolerated}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Superuser

This parameter has no effect in Advanced Server.

For example, the following form of the ALTER SESSION command is accepted in Advanced Server without throwing a syntax error, but does not alter the
session environment:

ALTER SESSION SET query_rewrite_integrity = stale_tolerated;

NoteNote

Since the setting of this parameter has no effect on the server environment, it does not appear in the system view pg_settings .

timed_statistics

Parameter Type:Parameter Type: Boolean

Default Value:Default Value: true

Range:Range: {true | false}

Minimum Scope of Effect:Minimum Scope of Effect: Per session

When Value Changes Take Effect:When Value Changes Take Effect: Immediate

Required Authorization to Activate:Required Authorization to Activate: Session user

Controls the collection of timing data for the Dynamic Runtime Instrumentation Tools Architecture (DRITA) feature. When set to on, timing data is
collected.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1651

NoteNote

When Advanced Server is installed, the postgresql.conf file contains an explicit entry setting timed_statistics to off. If this entry is
commented out letting timed_statistics to default, and the configuration file is reloaded, timed statistics collection would be turned on.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1652

22.3.2 Index Advisor

The Index Advisor utility helps determine which columns you should index to improve performance in a given workload. Index Advisor considers B-tree
(single-column or composite) index types, and does not identify other index types (GIN, GiST, Hash) that may improve performance. Index Advisor is
installed with EDB Postgres Advanced Server.

Index Advisor works with Advanced Server's query planner by creating hypothetical indexes that the query planner uses to calculate execution costs as if
such indexes were available. Index Advisor identifies the indexes by analyzing SQL queries supplied in the workload.

There are three ways to use Index Advisor to analyze SQL queries:

Invoke the Index Advisor utility program, supplying a text file containing the SQL queries that you wish to analyze; Index Advisor will generate a text
file with CREATE INDEX statements for the recommended indexes.

Provide queries at the EDB-PSQL command line that you want Index Advisor to analyze.

Access Index Advisor through the Postgres Enterprise Manager client. When accessed via the PEM client, Index Advisor works with SQL Profiler,
providing indexing recommendations on code captured in SQL traces. For more information about using SQL Profiler and Index Advisor with PEM, see
the Using the Index Advisor section in the Postgres Enterprise Manager documentation.

Index Advisor will attempt to make indexing recommendations on INSERT , UPDATE , DELETE and SELECT statements. When invoking Index Advisor,
you supply the workload in the form of a set of queries (if you are providing the command in an SQL file) or an EXPLAIN statement (if you are specifying
the SQL statement at the psql command line). Index Advisor displays the query plan and estimated execution cost for the supplied query, but does not
actually execute the query.

During the analysis, Index Advisor compares the query execution costs with and without hypothetical indexes. If the execution cost using a hypothetical
index is less than the execution cost without it, both plans are reported in the EXPLAIN statement output, metrics that quantify the improvement are
calculated, and Index Advisor generates the CREATE INDEX statement needed to create the index.

If no hypothetical index can be found that reduces the execution cost, Index Advisor displays only the original query plan output of the EXPLAIN
statement.

NoteNote

Index Advisor doesn't actually create indexes on the tables. Use the CREATE INDEX statements supplied by Index Advisor to add any
recommended indexes to your tables.

An extension supplied with EDB Postgres Advanced Server creates the table in which Index Advisor stores the indexing recommendations generated by the
analysis. The extension also creates a function and a view of the table to simplify retrieving and interpreting the results.

If you choose to forego running the script, Index Advisor will log recommendations in a temporary table that is available only for the duration of the Index
Advisor session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1653

https://www.enterprisedb.com/docs/pem/latest/profiling_workloads/index_advisor/
https://www.enterprisedb.com/docs/pem/latest/

22.3.2.1 Index Advisor Components

The Index Advisor shared library interacts with the query planner to make indexing recommendations. On Windows, the Advanced Server installer creates
the following shared library in the libdir subdirectory of your Advanced Server home directory. For Linux, install the edb-asxx-server-
indexadvisor RPM package where xx is the Advanced Server version number.

On Linux:

index_advisor.so

On Windows:

index_advisor.dll

Please note that libraries in the libdir directory can only be loaded by a superuser. A database administrator can allow a non-superuser to use Index
Advisor by manually copying the Index Advisor file from the libdir directory into the libdir/plugins directory (under your Advanced Server home
directory). Only a trusted non-superuser should be allowed access to the plugin; this is an unsafe practice in a production environment.

The installer also creates the Index Advisor utility program and setup script:

pg_advise_index

pg_advise_index is a utility program that reads a user-supplied input file containing SQL queries and produces a text file containing CREATE
INDEX statements that can be used to create the indexes recommended by the Index Advisor. The pg_advise_index program is located in the bin
subdirectory of the Advanced Server home directory.

NoteNote

pg_advise_index asks the backend process to load the index_advisor plugin first from $libdir/plugins . If not found, then it writes the
error in the server log file and attempts to load from $libdir .

index_advisor_log

Index Advisor logs indexing recommendations in the index_advisor_log table. If Index Advisor does not find the index_advisor_log table in
the user's search path, Index Advisor will store any indexing recommendations in a temporary table of the same name. The temporary table exists only for
the duration of the current session.

show_index_recommendations()

show_index_recommendations() is a PL/pgSQL function that interprets and displays the recommendations made during a specific Index Advisor
session (as identified by its backend process ID).

index_recommendations

Index Advisor creates the index_recommendations view based on information stored in the index_advisor_log table during a query analysis.
The view produces output in the same format as the show_index_recommendations() function, but contains Index Advisor recommendations for all
stored sessions, while the result set returned by the show_index_recommendations() function are limited to a specified session.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1654

22.3.2.2 Index Advisor Configuration

Index Advisor does not require configuration to generate recommendations that are available only for the duration of the current session; to store the
results of multiple sessions, you must create the index_advisor_log table (where Advanced Server will store Index Advisor recommendations). To
create the index_advisor_log table , you must run the index_advisor.sql script.

When selecting a storage schema for the Index Advisor table, function and view, keep in mind that all users that invoke Index Advisor (and query the result
set) must have USAGE privileges on the schema. The schema must be in the search path of all users that are interacting with the Index Advisor.

1. Place the selected schema at the start of your search_path parameter. For example, if your search path is currently:

search_path=public, accounting

and you want the Index Advisor objects to be created in a schema named advisor , use the command:

SET search_path = advisor, public, accounting;

2. Create the index_advisor extension, which creates the database objects. Connect to the database as the database superuser using psql, and
enter the command:

NoteNote

If you're using Index Advisor in an earlier version of EDB Postgres Advanced Server and upgrading to the latest version, then use this
command to create the index_advisor extension:

This command creates the extension and links any of the old database objects to it.

3. Grant privileges on the index_advisor_log table to all Index Advisor users; this step is not necessary if the Index Advisor user is a superuser, or
the owner of these database objects.

Grant SELECT and INSERT privileges on the index_advisor_log table to allow a user to invoke Index Advisor.
Grant DELETE privileges on the index_advisor_log table to allow the specified user to delete the table contents.
Grant SELECT privilege on the index_recommendations view.

The following example demonstrates the creation of the Index Advisor database objects in a schema named ia , which will then be accessible to an Index
Advisor user with user name ia_user :

running asas thethe databasedatabase superuser usingusing psql
createcreate extension index_advisor
;

running asas thethe databasedatabase superuser usingusing psql
createcreate extension index_advisor version 1.1;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1655

While using Index Advisor, the specified schema (ia) must be included in ia_user 's search_path parameter.

running asas enterprisedb user
edb--psql --d edb --U
enterprisedb

running commands inside
psql
CREATECREATE SCHEMASCHEMA
ia;
SETSET search_path TOTO
ia;
CREATECREATE EXTENSION
index_advisor;
GRANTGRANT USAGEUSAGE ONON SCHEMASCHEMA ia TOTO
ia_user;
GRANTGRANT SELECTSELECT, INSERTINSERT, DELETEDELETE ONON index_advisor_log TOTO
ia_user;
GRANTGRANT SELECTSELECT ONON index_recommendations TOTO
ia_user;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1656

22.3.2.3 Using Index Advisor

When you invoke Index Advisor, you must supply a workload; the workload is either a query (specified at the command line), or a file that contains a set of
queries (executed by the pg_advise_index() function). After analyzing the workload, Index Advisor will either store the result set in a temporary
table, or in a permanent table. You can review the indexing recommendations generated by Index Advisor and use the CREATE INDEX statements
generated by Index Advisor to create the recommended indexes.

NoteNote

You should not run Index Advisor in read-only transactions.

The following examples assume that superuser enterprisedb is the Index Advisor user, and the Index Advisor database objects have been created in a
schema in the search_path of superuser enterprisedb .

The examples in the following sections use the table created with the statement shown below:

CREATE TABLE t(a INT, b INT);
INSERT INTO t SELECT s, 99999 - s FROM generate_series(0,99999) AS s;
ANALYZE t;

The resulting table contains the following rows:

a | b
-------+-------
 0 | 99999
 1 | 99998
 2 | 99997
 3 | 99996
 .
 .
 .
99997 | 2
99998 | 1
99999 | 0

Using the pg_advise_index Utility

When invoking the pg_advise_index utility, you must include the name of a file that contains the queries that will be executed by
pg_advise_index ; the queries may be on the same line, or on separate lines, but each query must be terminated by a semicolon. Queries within the file

should not begin with the EXPLAIN keyword.

The following example shows the contents of a sample workload.sql file:

SELECT * FROM t WHERE a = 500;
SELECT * FROM t WHERE b < 1000;

Run the pg_advise_index program as shown in the code sample below:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1657

$ pg_advise_index -d edb -h localhost -U enterprisedb -s 100M -o advisory.sql
workload.sql
poolsize = 102400 KB
load workload from file 'workload.sql'
Analyzing queries .. done.
size = 2184 KB, benefit = 1684.720000
size = 2184 KB, benefit = 1655.520000
/* 1. t(a): size=2184 KB, benefit=1684.72 */
/* 2. t(b): size=2184 KB, benefit=1655.52 */
/* Total size = 4368KB */

In the code sample, the -d , -h , and -U options are psql connection options.

-s

-s is an optional parameter that limits the maximum size of the indexes recommended by Index Advisor. If Index Advisor does not return a result set, -s
may be set too low.

-o

The recommended indexes are written to the file specified after the -o option.

The information displayed by the pg_advise_index program is logged in the index_advisor_log table. In response to the command shown in the
example, Index Advisor writes the following CREATE INDEX statements to the advisory.sql output file.

create index idx_t_1 on t (a);
create index idx_t_2 on t (b);

You can create the recommended indexes at the psql command line with the CREATE INDEX statements in the file, or create the indexes by executing
the advisory.sql script.

$ edb-psql -d edb -h localhost -U enterprisedb -e -f advisory.sql
create index idx_t_1 on t (a);
CREATE INDEX
create index idx_t_2 on t (b);
CREATE INDEX

NoteNote

pg_advise_index asks the backend process to load the index_advisor plugin first from $libdir/plugins . If not found, then it writes the
error in the server log file and attempts to load from $libdir .

Using Index Advisor at the psql Command Line

You can use Index Advisor to analyze SQL statements entered at the edb-psql (or psql) command line; the following steps detail loading the Index Advisor
plugin and using Index Advisor:

1. Connect to the server with the edb-psql command line utility, and load the Index Advisor plugin:

$ edb-psql -d edb -U enterprisedb
...
edb=# LOAD 'index_advisor';
LOAD

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1658

2. Use the edb-psql command line to invoke each SQL command that you would like Index Advisor to analyze. Index Advisor stores any
recommendations for the queries in the index_advisor_log table. If the index_advisor_log table does not exist in the user's
search_path , a temporary table is created with the same name. This temporary table exists only for the duration of the user's session.

After loading the Index Advisor plugin, Index Advisor will analyze all SQL statements and log any indexing recommendations for the duration of the session.

If you would like Index Advisor to analyze a query (and make indexing recommendations) without actually executing the query, preface the SQL statement
with the EXPLAIN keyword.

If you do not preface the statement with the EXPLAIN keyword, Index Advisor will analyze the statement while the statement executes, writing the
indexing recommendations to the index_advisor_log table for later review.

In the example that follows, the EXPLAIN statement displays the normal query plan, followed by the query plan of the same query, if the query were using
the recommended hypothetical index:

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;

 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t
 (cost=0.00..337.10 rows=10105 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t
 (cost=0.00..8.28 rows=1 width=8)
 Index Cond: (a = 100)
(6 rows)

After loading the Index Advisor plugin, the default value of index_advisor.enabled is on . The Index Advisor plugin must be loaded to use a SET
or SHOW command to display the current value of index_advisor.enabled .

You can use the index_advisor.enabled parameter to temporarily disable Index Advisor without interrupting the psql session:

edb=# SET index_advisor.enabled TO off;
SET

To enable Index Advisor, set the parameter to on :

edb=# SET index_advisor.enabled TO on;
SET

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1659

22.3.2.4 Reviewing the Index Advisor Recommendations

There are several ways to review the index recommendations generated by Index Advisor. You can:

Query the index_advisor_log table.
Run the show_index_recommendations function.
Query the index_recommendations view.

Using the show_index_recommendations() Function

To review the recommendations of the Index Advisor utility using the show_index_recommendations() function, call the function, specifying the
process ID of the session:

SELECT show_index_recommendations(pid);

Where pid is the process ID of the current session. If you do not know the process ID of your current session, passing a value of NULL will also return a
result set for the current session.

The following code fragment shows an example of a row in a result set:

edb=# SELECT show_index_recommendations(null);
 show_index_recommendations

create index idx_t_a on t(a);/* size: 2184 KB, benefit: 3040.62,
gain: 1.39222666981456 */
(1 row)

In the example, create index idx_t_a on t(a) is the SQL statement needed to create the index suggested by Index Advisor. Each row in the
result set shows:

The command required to create the recommended index.
The maximum estimated size of the index.
The calculated benefit of using the index.
The estimated gain that will result from implementing the index.

You can display the results of all Index Advisor sessions from the following view:

SELECT * FROM index_recommendations;

Querying the index_advisor_log Table

Index Advisor stores indexing recommendations in a table named index_advisor_log . Each row in the index_advisor_log table contains the
result of a query where Index Advisor determines it can recommend a hypothetical index to reduce the execution cost of that query.

Column Type Description

reloid oid OID of the base table for the index

relname name Name of the base table for the index

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1660

attrs integer[] Recommended index columns (identified by column number)

benefit real Calculated benefit of the index for this query

index_size integer Estimated index size in disk-pages

backend_pid integer Process ID of the process generating this recommendation

timestamp timestamp Date/Time when the recommendation was generated

Column Type Description

You can query the index_advisor_log table at the psql command line. The following example shows the index_advisor_log table entries
resulting from two Index Advisor sessions. Each session contains two queries, and can be identified (in the table below) by a different backend_pid
value. For each session, Index Advisor generated two index recommendations.

edb=# SELECT * FROM index_advisor_log;
 reloid | relname | attrs | benefit | index_size | backend_pid | timestamp
---------+---------+-------+---------+------------+-------------+------------

 16651 | t | {1} | 1684.72 | 2184 | 3442 | 22-MAR-11
16:44:32.712638 -04:00
 16651 | t | {2} | 1655.52 | 2184 | 3442 | 22-MAR-11
16:44:32.759436 -04:00
 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11
16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00
(4 rows)

Index Advisor added the first two rows to the table after analyzing the following two queries executed by the pg_advise_index utility:

SELECT * FROM t WHERE a = 500;
SELECT * FROM t WHERE b < 1000;

The value of 3442 in column backend_pid identifies these results as coming from the session with process ID 3442 .

The value of 1 in column attrs in the first row indicates that the hypothetical index is on the first column of the table (column a of table t).

The value of 2 in column attrs in the second row indicates that the hypothetical index is on the second column of the table (column b of table t).

Index Advisor added the last two rows to the table after analyzing the following two queries (executed at the psql command line):

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1661

edb=# EXPLAIN SELECT * FROM t WHERE a < 10000;
 QUERY PLAN
--

Seq Scan on t (cost=0.00..1693.00 rows=10105 width=8)
 Filter: (a < 10000)
Result (cost=0.00..337.10 rows=10105 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:1" on t (cost=0.00..337.10
rows=10105 width=8)
 Index Cond: (a < 10000)
(6 rows)

edb=# EXPLAIN SELECT * FROM t WHERE a = 100;
 QUERY PLAN
--

Seq Scan on t (cost=0.00..1693.00 rows=1 width=8)
 Filter: (a = 100)
Result (cost=0.00..8.28 rows=1 width=8)
 One-Time Filter: '===[HYPOTHETICAL PLAN]==='::text
 -> Index Scan using "<hypothetical-index>:3" on t (cost=0.00..8.28
rows=1 width=8)
 Index Cond: (a = 100)
(6 rows)

The values in the benefit column of the index_advisor_log table are calculated using the following formula:

benefit = (normal execution cost) - (execution cost with hypothetical index)

The value of the benefit column for the last row of the index_advisor_log table (shown in the example) is calculated using the query plan for the
following SQL statement:

EXPLAIN SELECT * FROM t WHERE a = 100;

The execution costs of the different execution plans are evaluated and compared:

benefit = (Seq Scan on t cost) - (Index Scan using <hypothetical-index>)

and the benefit is added to the table:

benefit = 1693.00 - 8.28

benefit = 1684.72

You can delete rows from the index_advisor_log table when you no longer have the need to review the results of the queries stored in the row.

Querying the index_recommendations View

The index_recommendations view contains the calculated metrics and the CREATE INDEX statements to create the recommended indexes for all
sessions whose results are currently in the index_advisor_log table. You can display the results of all stored Index Advisor sessions by querying the
index_recommendations view as shown below:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1662

SELECT * FROM index_recommendations;

Using the example shown in the previous section (Querying the index_advisor_log Table), the index_recommendations view displays
the following:

edb=# SELECT * FROM index_recommendations;
 backend_pid | show_index_recommendations
-------------+---

 3442 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
1684.72, gain: 0.771392654586624 */
 3442 | create index idx_t_b on t(b);/* size: 2184 KB, benefit:
1655.52, gain: 0.758021539820856 */
 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */
(3 rows)

Within each session, the results of all queries that benefit from the same recommended index are combined to produce one set of metrics per
recommended index, reflected in the fields named benefit and gain .

The formulas for the fields are as follows:

size = MAX(index size of all queries)
benefit = SUM(benefit of each query)
gain = SUM(benefit of each query) / MAX(index size of all queries)

So for example, using the following query results from the process with a backend_pid of 3506 :

 reloid | relname | attrs | benefit | index_size | backend_pid | timestamp
---------+---------+-------+---------+------------+-------------+------------

 16651 | t | {1} | 1355.9 | 2184 | 3506 | 22-MAR-11
16:48:28.317016 -04:00
 16651 | t | {1} | 1684.72 | 2184 | 3506 | 22-MAR-11
16:51:45.927906 -04:00

The metrics displayed from the index_recommendations view for backend_pid 3506 are:

backend_pid | show_index_recommendations
-------------+---

 3506 | create index idx_t_a on t(a);/* size: 2184 KB, benefit:
3040.62, gain: 1.39222666981456 */

The metrics from the view are calculated as follows:

benefit = (benefit from 1st query) + (benefit from 2nd query)
benefit = 1355.9 + 1684.72
benefit = 3040.62

and

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1663

gain = ((benefit from 1st query) + (benefit from 2nd query)) / MAX(index
size of all queries)
gain = (1355.9 + 1684.72) / MAX(2184, 2184)
gain = 3040.62 / 2184
gain = 1.39223

The gain metric is useful when comparing the relative advantage of the different recommended indexes derived during a given session. The larger the gain
value, the better the cost effectiveness derived from the index weighed against the possible disk space consumption of the index.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1664

22.3.2.5 Index Advisor Limitations

Index Advisor does not consider Index Only scans; it does consider Index scans when making recommendations.

Index Advisor ignores any computations found in the WHERE clause. Effectively, the index field in the recommendations will not be any kind of expression;
the field will be a simple column name.

Index Advisor does not consider inheritance when recommending hypothetical indexes. If a query references a parent table, Index Advisor does not make
any index recommendations on child tables.

Restoration of a pg_dump backup file that includes the index_advisor_log table or any tables for which indexing recommendations were made
and stored in the index_advisor_log table, may result in "broken links" between the index_advisor_log table and the restored tables
referenced by rows in the index_advisor_log table because of changes in object identifiers (OIDs).

If it is necessary to display the recommendations made prior to the backup, you can replace the old OIDs in the reloid column of the
index_advisor_log table with the new OIDs of the referenced tables using the SQL UPDATE statement:

UPDATE index_advisor_log SET reloid = new_oid WHERE reloid = old_oid;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1665

22.3.3 SQL Profiler

Inefficient SQL code is one of, if not the leading cause of database performance problems. The challenge for database administrators and developers is
locating and then optimizing this code in large, complex systems.

SQL Profiler helps you locate and optimize poorly running SQL code.

Specific features and benefits of SQL Profiler include the following:

On-Demand Traces.On-Demand Traces. You can capture SQL traces at any time by manually setting up your parameters and starting the trace.
Scheduled Traces.Scheduled Traces. For inconvenient times, you can also specify your trace parameters and schedule them to run at some later time.
Save Traces.Save Traces. Execute your traces and save them for later review.
Trace Filters.Trace Filters. Selectively filter SQL captures by database and by user, or capture every SQL statement sent by all users against all databases.
Trace Output Analyzer.Trace Output Analyzer. A graphical table lets you quickly sort and filter queries by duration or statement, and a graphical or text based EXPLAIN
plan lays out your query paths and joins.
Index Advisor Integration.Index Advisor Integration. Once you have found your slow queries and optimized them, you can also let the Index Advisor recommend the creation of
underlying table indices to further improve performance.

The following describes the installation process.

Step 1:Step 1: Install SQL Profiler

SQL Profiler is installed by the EDB Postgres Advanced Server installer on Windows or from the edb-asxx-server-sqlprofiler package along with
the edb-asxx-server package installation, where xx is the EDB Postgres Advanced Server version number.

Step 2:Step 2: Add the SQL Profiler library

Modify the postgresql.conf parameter file for the instance to include the SQL Profiler library in theshared_preload_libraries configuration
parameter.

For Linux installations, the parameter value should include:

$libdir/sql-profiler

On Windows, the parameter value should include:

$libdir\sql-profiler.dll

Step 3:Step 3: Create the SQL Profiler extension

Create the SQL Profiler extension in your database with the following command:

Step 4:Step 4: Stop and restart the server for the changes to take effect

After configuring SQL Profiler, it's ready to use with all databases that reside on the server. You can take advantage of SQL Profiler functionality with EDB
Postgres Enterprise Manager. For more information about Postgres Enterprise Manager, see the PEM documentation.

CREATECREATE EXTENSION sql_profiler;

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1666

https://www.enterprisedb.com/docs/pem/latest

22.3.4 pgsnmpd

pgsnmpd is an SNMP agent that can return hierarchical information about the current state of Advanced Server on a Linux system. pgsnmpd is
distributed and installed using the edb-asxx-pgsnmpd RPM package where xx is the Advanced Server version number. The pgsnmpd agent can
operate as a stand-alone SNMP agent, as a pass-through sub-agent, or as an AgentX sub-agent.

After installing Advanced Server, you will need to update the LD_LIBRARY_PATH variable. Use the command:

$ export LD_LIBRARY_PATH=/usr/edb/as13/lib:$LD_LIBRARY_PATH

This command does not persistently alter the value of LD_LIBRARY_PATH . Consult the documentation for your distribution of Linux for information
about persistently setting the value of LD_LIBRARY_PATH .

The examples that follow demonstrate the simplest usage of pgsnmpd , implementing read only access. pgsnmpd is based on the net-snmp library; for
more information about net-snmp, visit:

http://net-snmp.sourceforge.net/

Configuring pgsnmpd

The pgsnmpd configuration file is named snmpd.conf . For information about the directives that you can specify in the configuration file, please review
the snmpd.conf man page (man snmpd.conf).

You can create the configuration file by hand, or you can use the snmpconf perl script to create the configuration file. The perl script is distributed with
net-snmp package.

net-snmp is an open-source package available from:

http://www.net-snmp.org/

To use the snmpconf configuration file wizard, download and install net-snmp. When the installation completes, open a command line and enter:

snmpconf

When the configuration file wizard opens, it may prompt you to read in an existing configuration file. Enter none to generate a new configuration file (not
based on a previously existing configuration file).

snmpconf is a menu-driven wizard. Select menu item 1: snmpd.conf to start the configuration wizard. As you select each top-level menu option
displayed by snmpconf , the wizard walks through a series of questions, prompting you for information required to build the configuration file. When you
have provided information in each of the category relevant to your system, enter Finished to generate a configuration file named snmpd.conf . Copy
the file to:

/usr/edb/as13/share/

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1667

http://net-snmp.sourceforge.net/
http://www.net-snmp.org/

Setting the Listener Address

By default, pgsnmpd listens on port 161 . If the listener port is already being used by another service, you may receive the following error:

Error opening specified endpoint "udp:161".

You can specify an alternate listener port by adding the following line to your snmpd.conf file:

agentaddress $host_address:2000

The example instructs pgsnmpd to listen on UDP port 2000 , where $host_address is the IP address of the server (e.g., 127.0.0.1).

Before invoking pgsnmpd , you must create the pgsnmpd schema and set the search path to create tables in the pgsnmpd schema using the following
commands:

CREATE SCHEMA pgsnmpd;
SET search_path = pgsnmpd;
\i pgsnmpd.sql

Invoking pgsnmpd

Ensure that an instance of Advanced Server is up and running (pgsnmpd will connect to this server). Open a command line and assume superuser
privileges, before invoking pgsnmpd with a command that takes the following form:

POSTGRES_INSTALL_HOME/bin/pgsnmpd -b
 -c POSTGRES_INSTALL_HOME/share/snmpd.conf
 -C "user=enterprisedb dbname=edb password=safe_password
 port=5444"

Where POSTGRES_INSTALL_HOME specifies the Advanced Server installation directory.

Include the -b option to specify that pgsnmpd should run in the background.

Include the -c option, specifying the path and name of the pgsnmpd configuration file.

Include connection information for your installation of Advanced Server (in the form of a libpq connection string) after the -C option.

Viewing pgsnmpd Help

Include the --help option when invoking the pgsnmpd utility to view other pgsnmpd command line options:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1668

pgsnmpd --help
 Version PGSQL-SNMP-Ver1.0
 usage: pgsnmpd [-s] [-b] [-c FILE] [-x address] [-g] [-C "Connect String"]
 -s : run as AgentX sub-agent of an existing snmpd process
 -b : run in the background
 -c : configuration file name
 -g : use syslog
 -C : libpq connection string
 -x : address:port of a network interface
 -V : display version strings

Requesting Information from pgsnmpd

You can use net-snmp commands to query the pgsnmpd service. For example:

snmpgetnext -v 2c -c public localhost .1.3.6.1.4.1.5432.1.4.2.1.1.0

In the above example:

-v 2c option instructs the snmpgetnext client to send the request in SNMP version 2c format.

-c public specifies the community name.

localhost indicates the host machine running the pgsnmpd server.

.1.3.6.1.4.1.5432.1.4.2.1.1.0 is the identity of the requested object. To see a list of all databases, increment the last digit by one (e.g. .1.1,
.1.2, .1.3 etc.).

The encodings required to query any given object are defined in the MIB (Management Information Base). An SNMP client can monitor a variety of servers;
the server type determines the information exposed by a given server. Each SNMP server describes the exposed data in the form of a MIB (Management
information base). By default, pgsnmpd searches for MIB's in the following locations:

/usr/share/snmp/mibs

$HOME/.snmp/mibs

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1669

22.3.5 EDB Audit Logging

Advanced Server allows database and security administrators, auditors, and operators to track and analyze database activities using the EDB Audit Logging
functionality. EDB Audit Logging generates audit log files, which contains all of the relevant information. The audit logs can be configured to record
information such as:

When a role establishes a connection to an Advanced Server database
What database objects a role creates, modifies, or deletes when connected to Advanced Server
When any failed authentication attempts occur

The parameters specified in the configuration files, postgresql.conf or postgresql.auto.conf , control the information included in the audit
logs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1670

22.3.5.1 Audit Logging Configuration Parameters

Use the following configuration parameters to control database auditing. See Summary of Configuration Parameters to determine if a change to the
configuration parameter takes effect immediately, or if the configuration needs to be reloaded, or if the database server needs to be restarted.

edb_audit

Enables or disables database auditing. The values xml or csv will enable database auditing. These values represent the file format in which auditing
information will be captured. none will disable database auditing and is also the default.

NoteNote

The logging_collector parameter must be set to on to enable the edb_audit parameter.

edb_audit_directory

Specifies the directory where the log files will be created. The path of the directory can be relative or absolute to the data folder. The default is the
PGDATA/edb_audit directory.

edb_audit_filename

Specifies the file name of the audit file where the auditing information will be stored. The default file name will be audit-%Y%m%d_%H%M%S . The escape
sequences, %Y , %m etc., will be replaced by the appropriate current values according to the system date and time.

edb_audit_rotation_day

Specifies the day of the week on which to rotate the audit files. Valid values are sun , mon , tue , wed , thu , fri , sat , every , and none . To
disable rotation, set the value to none . To rotate the file every day, set the edb_audit_rotation_day value to every . To rotate the file on a
specific day of the week, set the value to the desired day of the week. every is the default value.

edb_audit_rotation_size

Specifies a file size threshold in megabytes when file rotation will be forced to occur. The default value is 0 MB. If the parameter is commented out or set to
0, rotation of the file on a size basis will not occur.

edb_audit_rotation_seconds

Specifies the rotation time in seconds when a new log file should be created. To disable this feature, set this parameter to 0, which is the default.

edb_audit_connect

Enables auditing of database connection attempts by users. To disable auditing of all connection attempts, set edb_audit_connect to none . To
audit all failed connection attempts, set the value to failed , which is the default. To audit all connection attempts, set the value to all .

edb_audit_disconnect

Enables auditing of database disconnections by connected users. To enable auditing of disconnections, set the value to all . To disable, set the value to
none , which is the default.

edb_audit_statement

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1671

This configuration parameter is used to specify auditing of different categories of SQL statements. Various combinations of the following values may be
specified: none , dml , insert , update , delete , truncate , select , error , rollback , ddl , create , drop , alter , grant ,
revoke , set and all . The default is ddl and error . See Selecting SQL Statements to Audit for information regarding the setting of this

parameter.

edb_audit_tag

Use this configuration parameter to specify a string value that will be included in the audit log file for each entry as a tracking tag.

edb_log_every_bulk_value

Bulk processing logs the resulting statements into both the Advanced Server log file and the EDB Audit log file. However, logging each and every statement
in bulk processing is costly. This can be controlled by the edb_log_every_bulk_value configuration parameter. When set to true , each and every
statement in bulk processing is logged. During bulk execution, when edb_log_every_bulk_value is set to false , a log message is recorded once
per bulk processing along with the number of rows processed. In addition, the duration is emitted once per bulk processing. Default is set to false .

edb_audit_destination

Specifies whether the audit log information is to be recorded in the directory as given by the edb_audit_directory parameter or to the directory and
file managed by the syslog process. Set to file to use the directory specified by edb_audit_directory , which is the default setting.

Set to syslog to use the syslog process and its location as configured in the /etc/syslog.conf file. The syslog setting is valid for Advanced
Server running on a Linux host and is not supported on Windows systems. Note:Note: In recent Linux versions, syslog has been replaced by rsyslog and the
configuration file is in /etc/rsyslog.conf .

NoteNote

Advanced Server allows administrative users associated with administrative privileges to audit statements by any user, group, or role. By auditing
specific users, you can minimize the number of audit records generated. For information, see the examples under Selecting SQL Statements to
Audit.

The following section describes selection of specific SQL statements for auditing using the edb_audit_statement parameter.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1672

22.3.5.2 Selecting SQL Statements to Audit

The edb_audit_statement permits inclusion of one or more, comma-separated values to control which SQL statements are to be audited. The
following is the general format:

edb_audit_statement = 'value_1[, value_2]...'

The comma-separated values may include or omit space characters following the comma. The values can be specified in any combination of lowercase or
uppercase letters.

The basic parameter values are the following:

all – Results in the auditing and logging of every statement including any error messages on statements.
none – Disables all auditing and logging. A value of none overrides any other value included in the list.
ddl – Results in the auditing of all data definition language (DDL) statements (CREATE , ALTER , and DROP) as well as GRANT and REVOKE

data control language (DCL) statements.
dml – Results in the auditing of all data manipulation language (DML) statements (INSERT , UPDATE , DELETE , and TRUNCATE).
select – Results in the auditing of SELECT statements.
set – Results in the auditing of SET statements.
rollback – Results in the auditing of ROLLBACK statements.
error – Results in the logging of all error messages that occur. Unless the error value is included, no error messages are logged regarding any

errors that occur on SQL statements related to any of the other preceding parameter values except when all is used.

Data Definition Language and Data Control Language Statements describes additional parameter values for selecting particular
DDL or DCL statements for auditing.

Data Manipulation Language Statements describes additional parameter values for selecting particular DML statements for auditing.

If an unsupported value is included in the edb_audit_statement parameter, then an error occurs when applying the setting to the database server.
See the database server log file for the error such as in the following example where create materialized vw results in the error. (The correct value
is create materialized view .)

2017-07-16 11:20:39 EDT LOG: invalid value for parameter
"edb_audit_statement": "create materialized vw, create sequence, grant"
2017-07-16 11:20:39 EDT FATAL: configuration file "/var/lib/edb/as13/data/
postgresql.conf" contains errors

The following sections describe the values for the SQL language types DDL, DCL, and DML.

Data Definition Language and Data Control Language Statements

This section describes values that can be included in the edb_audit_statement parameter to audit DDL and DCL statements.

The following general rules apply:

If the edb_audit_statement parameter includes either ddl or all , then all DDL statements are audited. In addition, the DCL statements
GRANT and REVOKE are audited as well.

If the edb_audit_statement is set to none , then no DDL nor DCL statements are audited.
Specific types of DDL and DCL statements can be chosen for auditing by including a combination of values within the edb_audit_statement
parameter.

Use the following syntax to specify an edb_audit_statement parameter value for DDL statements:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1673

{ create | alter | drop } [<object_type>]

object_type is any of the following:

ACCESS METHOD

AGGREGATE

CAST

COLLATION

CONVERSION

DATABASE

EVENT TRIGGER

EXTENSION

FOREIGN TABLE

FUNCTION

INDEX

LANGUAGE

LARGE OBJECT

MATERIALIZED VIEW

OPERATOR

OPERATOR CLASS

OPERATOR FAMILY

POLICY

PUBLICATION

ROLE

RULE

SCHEMA

SEQUENCE

SERVER

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1674

SUBSCRIPTION

TABLE

TABLESPACE

TEXT SEARCH CONFIGURATION

TEXT SEARCH DICTIONARY

TEXT SEARCH PARSER

TEXT SEARCH TEMPLATE

TRANSFORM

TRIGGER

TYPE

USER MAPPING

VIEW

Descriptions of object types as used in SQL commands can be found in the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-commands.html

If object_type is omitted from the parameter value, then all of the specified command statements (either create , alter , or drop) are audited.

Use the following syntax to specify an edb_audit_statement parameter value for DCL statements:

{ grant | revoke }

The following are some DDL and DCL examples.

Example 1Example 1

The following is an example where edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'create, alter, error'

Thus, only SQL statements invoked by the CREATE and ALTER commands are audited. Error messages are also included in the audit log.

The database session that occurs is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1675

https://www.postgresql.org/docs/current/static/sql-commands.html

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0)
Type "help" for help.

edb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 create, alter, error
(1 row)

edb=# CREATE ROLE adminuser;
CREATE ROLE
edb=# ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'password';
ERROR: syntax error at or near ","
LINE 1: ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD 'passwo...
 ^
edb=# ALTER ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';
ALTER ROLE
edb=# CREATE DATABASE auditdb;
CREATE DATABASE
edb=# ALTER DATABASE auditdb OWNER TO adminuser;
ALTER DATABASE
edb=# \c auditdb adminuser
Password for user adminuser:
You are now connected to database "auditdb" as user "adminuser".
auditdb=# CREATE SCHEMA edb;
CREATE SCHEMA
auditdb=# SET search_path TO edb;
SET
auditdb=# CREATE TABLE department (
auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
auditdb(# loc VARCHAR2(13)
auditdb(#);
CREATE TABLE
auditdb=# DROP TABLE department;
DROP TABLE
auditdb=# CREATE TABLE dept (
auditdb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
auditdb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
auditdb(# loc VARCHAR2(13)
auditdb(#);
CREATE TABLE

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1676

2020-05-25 12:32:22.799 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,1,"authentication",2020-05-25 12:32:22 IST,4/19,0,AUDIT,00000,
"connection authorized:user=enterprisedb database=edb",,,,,,,,,"","client
backend","","connect"

2020-05-25 12:34:05.843 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,2,"idle",2020-05-25 12:32:22 IST,4/23,0,AUDIT,00000,"statement: CREATE
ROLE adminuser;",,,,,,,,,"psql","client backend","CREATE ROLE","create"

2020-05-25 12:34:16.617 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,3,"idle",2020-05-25 12:32:22 IST,4/24,0,ERROR,42601,"syntax error at or
near "",""",,,,,,"ALTER ROLE adminuser WITH LOGIN, SUPERUSER, PASSWORD
'password';",32,,"psql","client backend","","error"

2020-05-25 12:34:29.954 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,4,"idle",2020-05-25 12:32:22 IST,4/25,0,AUDIT,00000,"statement: ALTER
ROLE adminuser WITH LOGIN SUPERUSER PASSWORD 'password';",,,,,,,,,"psql",
"client backend","ALTER ROLE","alter"

2020-05-25 12:34:40.114 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,5,"idle",2020-05-25 12:32:22 IST,4/26,0,AUDIT,00000,"statement: CREATE
DATABASE auditdb;",,,,,,,,,"psql","client backend","CREATE DATABASE","create"

2020-05-25 12:34:50.591 IST,"enterprisedb","edb",72518,"[local]",5ecb6d7e.
11b46,6,"idle",2020-05-25 12:32:22 IST,4/27,0,AUDIT,00000,"statement: ALTER
DATABASE auditdb OWNER TO adminuser;",,,,,,,,,"psql","client backend","ALTER
DATABASE","alter"

2020-05-25 12:35:01.554 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,1,"authentication",2020-05-25 12:35:01 IST,5/11,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","","connect"

2020-05-25 12:35:12.931 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,2,"idle",2020-05-25 12:35:01 IST,5/13,0,AUDIT,00000,"statement: CREATE
SCHEMA edb;",,,,,,,,,"psql","client backend","CREATE SCHEMA","create"

2020-05-25 12:37:18.547 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,3,"idle",2020-05-25 12:35:01 IST,5/15,0,AUDIT,00000,"statement: CREATE
TABLE department
(
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend","CREATE TABLE","create"

2020-05-25 12:39:09.065 IST,"adminuser","auditdb",75531,"[local]",5ecb6e1d.
1270b,4,"idle",2020-05-25 12:35:01 IST,5/17,0,AUDIT,00000,"statement: CREATE
TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend","CREATE TABLE","create"

The CREATE and ALTER statements for the adminuser role and auditdb database are audited. The error for the ALTER ROLE adminuser
statement is also logged since error is included in the edb_audit_statement parameter.

Similarly, the CREATE statements for schema edb and tables department and dept are audited.

Note that the DROP TABLE department statement is not in the audit log since there is no edb_audit_statement setting that would result in the

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1677

Note that the DROP TABLE department statement is not in the audit log since there is no edb_audit_statement setting that would result in the
auditing of successfully processed DROP statements such as ddl , all , or drop .

Example 2Example 2

The following is an example where edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'create view,create materialized view,create sequence,grant'

Thus, only SQL statements invoked by the CREATE VIEW , CREATE MATERIALIZED VIEW , CREATE SEQUENCE and GRANT commands are
audited.

The database session that occurs is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1678

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement
--
 create view,create materialized view,create sequence,grant
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=# CREATE TABLE emp (
auditdb(# empno NUMBER(4) NOT NULL CONSTRAINT emp_pk PRIMARY KEY,
auditdb(# ename VARCHAR2(10),
auditdb(# job VARCHAR2(9),
auditdb(# mgr NUMBER(4),
auditdb(# hiredate DATE,
auditdb(# sal NUMBER(7,2) CONSTRAINT emp_sal_ck CHECK (sal > 0),
auditdb(# comm NUMBER(7,2),
auditdb(# deptno NUMBER(2) CONSTRAINT emp_ref_dept_fk
auditdb(# REFERENCES dept(deptno)
auditdb(#);
CREATE TABLE
auditdb=# CREATE VIEW salesemp AS
auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =
'SALESMAN';
CREATE VIEW
auditdb=# CREATE MATERIALIZED VIEW managers AS
auditdb-# SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job =
'MANAGER';
SELECT 0
auditdb=# CREATE SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;
CREATE SEQUENCE
auditdb=# GRANT ALL ON dept TO PUBLIC;
GRANT
auditdb=# GRANT ALL ON emp TO PUBLIC;
GRANT

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1679

2020-05-25 14:05:29.163 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,1,"authentication",2020-05-25 14:05:29 IST,4/28,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","","connect"

2020-05-25 14:12:06.318 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,2,"idle",2020-05-25 14:05:29 IST,4/34,0,AUDIT,00000,"statement: CREATE
VIEW salesemp AS SELECT empno, ename, hiredate, sal, comm FROM emp WHERE job
= 'SALESMAN';",,,,,,,,,"psql","client backend","CREATE VIEW","create"

2020-05-25 14:13:26.657 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,3,"idle",2020-05-25 14:05:29 IST,4/36,0,AUDIT,00000,"statement: CREATE
MATERIALIZED VIEW managers AS SELECT empno, ename, hiredate, sal, comm FROM
emp WHERE job = 'MANAGER';",,,,,,,,,"psql","client backend","CREATE
MATERIALIZED VIEW","create"

2020-05-25 14:13:38.928 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,4,"idle",2020-05-25 14:05:29 IST,4/37,0,AUDIT,00000,"statement: CREATE
SEQUENCE next_empno START WITH 8000 INCREMENT BY 1;",,,,,,,,,"psql","client
backend","CREATE SEQUENCE","create"

2020-05-25 14:13:51.434 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,5,"idle",2020-05-25 14:05:29 IST,4/38,0,AUDIT,00000,"statement: GRANT
ALL ON dept TO PUBLIC;",,,,,,,,,"psql","client backend","GRANT","grant"

2020-05-25 14:14:03.737 IST,"adminuser","auditdb",40810,"[local]",5ecb8351.
9f6a,6,"idle",2020-05-25 14:05:29 IST,4/39,0,AUDIT,00000,"statement: GRANT
ALL ON emp TO PUBLIC;",,,,,,,,,"psql","client backend","GRANT","grant"

The CREATE VIEW and CREATE MATERIALIZED VIEW statements are audited. Note that the prior CREATE TABLE emp statement is not audited
since none of the values create , create table , ddl , nor all are included in the edb_audit_statement parameter.

The CREATE SEQUENCE and GRANT statements are audited since those values are included in the edb_audit_statement parameter.

Example 3Example 3

The following is an example where edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'none'

The session for users who connect as ADMIN or SYSDBA can be fully audited. An admin user is connected to a database auditdb as ADMINUSER ,
the following ALTER USER command specifies that ADMINUSER is to be audited.

ALTER USER adminuser SET edb_audit_statement = "all";

Setting the edb_audit_statement parameter to all allows auditing all of the SQL statements for an admin user.

The database session that occurs is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1680

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 all
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=> CREATE TABLE dept
auditdb-> (deptno NUMBER(2),
auditdb(> dname VARCHAR2(14),
auditdb(> loc VARCHAR2(13));
CREATE TABLE
auditdb=> INSERT INTO dept VALUES (10, 'ACCOUNTING', 'NEW YORK');
INSERT 0 1
auditdb=> INSERT INTO dept VALUES (20, 'RESEARCH', 'DALLAS');
INSERT 0 1
auditdb=> INSERT INTO dept VALUES (30, 'SALES', 'CHICAGO');
INSERT 0 1
auditdb=> UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 20;
UPDATE 1
auditdb=> SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 30 | SALES | CHICAGO
 20 | RESEARCH | BEDFORD
(3 rows)

auditdb=> DELETE FROM emp WHERE deptno = 40;
ERROR: relation "emp" does not exist
LINE 1: DELETE FROM emp WHERE deptno = 40;
 ^
auditdb=> DELETE FROM dept WHERE deptno = 10;
DELETE 1
auditdb=> SELECT * FROM dept;
 deptno | dname | loc
--------+----------+---------
 30 | SALES | CHICAGO
 20 | RESEARCH | BEDFORD
(2 rows)

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1681

2021-06-23 06:06:59.027 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,1,"authentication",2021-06-23 06:06:59 IST,4/19,0,AUDIT,00000,"connection authorized:
user=adminuser database=auditdb",,,,,,,,,"","client backend",,"","","connect"

2021-06-23 06:07:33.192 IST,"adminuser","auditdb",66316,"[local]",60daab0c.
1030c,2,"idle",2021-06-23 06:07:33 IST,4/16,0,AUDIT,00000,"statement: SHOW edb_audit_connect;
",,,,,,,,,"psql","client backend",,"SHOW","","sql statement"

2021-06-23 06:08:12.474 IST,"adminuser","auditdb",66316,"[local]",60daab0c.
1030c,3,"idle",2021-06-23 06:08:12 IST,4/17,0,AUDIT,00000,"statement: SHOW edb_audit_statement;
",,,,,,,,,"psql","client backend",,"SHOW","","sql statement"

2021-06-23 06:08:20.519 IST,"adminuser","auditdb",66922,"[local]",60dab036.
1056a,4,"idle",2021-06-23 06:08:20 IST,4/15,0,AUDIT,00000,"statement: SET search_path TO edb;
",,,,,,,,,"psql","client backend",,"SET","","set"

2021-06-23 06:09:27.613 IST,"adminuser","auditdb",60218,"[local]",60dab117.
10602,5,"idle",2021-06-23 06:09:59 IST,4/21,0,AUDIT,00000,"statement: CREATE TABLE dept
 (deptno NUMBER(2),
 dname VARCHAR2(14),
 loc VARCHAR2(13));",,,,,,,,,"psql","client backend",,"CREATE TABLE","","create"

2021-06-23 06:09:39.238 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,6,"idle",2021-06-23 06:09:29 IST,4/22,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (10, 'ACCOUNTING', 'NEW YORK');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-06-23 06:09:39.242 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,7,"idle",2021-06-23 06:09:29 IST,4/23,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (20, 'RESEARCH', 'DALLAS');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-06-23 06:09:39.247 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,8,"idle",2021-06-23 06:08:35 IST,4/24,0,AUDIT,00000,"statement: INSERT INTO
dept VALUES (30, 'SALES', 'CHICAGO');",,,,,,,,,"psql","client backend",,"INSERT","","insert"

2021-06-23 06:10:04.849 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,9,"idle",2021-06-23 06:08:59 IST,4/25,0,AUDIT,00000,"statement: UPDATE dept SET loc = 'BEDFORD'
WHERE deptno = 20;",,,,,,,,,"psql","client backend",,"UPDATE","","update"

2021-06-23 06:10:16.045 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,10,"idle",2021-06-23 06:08:59 IST,4/26,0,AUDIT,00000,"statement: SELECT * FROM dept;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

2021-06-23 06:10:40.593 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,11,"idle",2021-06-23 06:08:59 IST,4/27,0,AUDIT,00000,"statement: DELETE FROM emp WHERE deptno = 40;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

2021-06-23 06:10:40.594 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,12,"DELETE",2021-06-23 06:08:59 IST,4/27,0,ERROR,42P01,"relation ""emp"" does not exist",,,,,,
"DELETE FROM emp WHERE deptno = 40;",13,,"psql","client backend",,"DELETE","","error"

2021-06-23 06:11:02.563 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,13,"idle",2021-06-23 06:08:59 IST,4/28,0,AUDIT,00000,"statement: DELETE FROM dept WHERE deptno = 10;
",,,,,,,,,"psql","client backend",,"DELETE","","delete"

2021-06-23 06:11:14.585 IST,"adminuser","auditdb",60218,"[local]",60d3083b.
eb3a,14,"idle",2021-06-23 06:08:59 IST,4/29,0,AUDIT,00000,"statement: SELECT * FROM dept;",,,,,,,,,
"psql","client backend",,"SELECT","","select"

Example 4Example 4

The following is an example where edb_audit_connect and edb_audit_statement are set with the following non-default values:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1682

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'all'

The audit session for a user carol can be fully blocked by the database administrators using the ALTER USER command:

ALTER USER carol SET edb_audit_statement = "none";

NoteNote

The database administrator can allow a specific user to audit any SQL statements by specifying the ALTER USER command and setting the
edb_audit_statement parameter to any desired value.

The database session that occurs is the following:

$ psql auditdb carol
Password for user carol:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 none
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=> CREATE TABLE salgrade
auditdb-> (grade NUMBER,
auditdb(> losal NUMBER,
auditdb(> hisal NUMBER);
CREATE TABLE
INSERT INTO salgrade VALUES (1, 700, 1200);
INSERT INTO salgrade VALUES (2, 1201, 1400);
INSERT INTO salgrade VALUES (3, 1401, 2000);

The resulting audit log file contains only the connection authentication information. Setting the edb_audit_statement parameter to none does not
allow auditing any of the SQL statements for carol , and thereby no audit logs are generated.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

2021-06-29 02:27:26.240 IST,"carol","auditdb",68072,"[local]",60dabd4e.
109e8,1,"authentication",2021-06-29 02:27:26 IST,4/13,0,AUDIT,00000,"connection authorized: user=carol
database=auditdb",,,,,,,,,"","client backend",,"","","connect"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1683

Data Manipulation Language Statements

This section describes the values that can be included in the edb_audit_statement parameter to audit DML statements.

The following general rules apply:

If the edb_audit_statement parameter includes either dml or all , then all DML statements are audited.
If the edb_audit_statement is set to none , then no DML statements are audited.
Specific types of DML statements can be chosen for auditing by including a combination of values within the edb_audit_statement
parameter.

Use the following syntax to specify an edb_audit_statement parameter value for SQL INSERT , UPDATE , DELETE , or TRUNCATE statements:

{ insert | update | delete | truncate }

ExampleExample

The following is an example where edb_audit_connect and edb_audit_statement are set with the following non-default values:

logging_collector = 'on'
edb_audit_connect = 'all'
edb_audit_statement = 'UPDATE, DELETE, error'

Thus, only SQL statements invoked by the UPDATE and DELETE commands are audited. All errors are also included in the audit log (even errors not
related to the UPDATE and DELETE commands).

The database session that occurs is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1684

$ psql auditdb adminuser
Password for user adminuser:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_connect;
 edb_audit_connect

 all
(1 row)

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 UPDATE, DELETE, error
(1 row)

auditdb=# SET search_path TO edb;
SET
auditdb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (20,'RESEARCH','DALLAS');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (30,'SALES','CHICAGO');
INSERT 0 1
auditdb=# INSERT INTO dept VALUES (40,'OPERATIONS','BOSTON');
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7369,'SMITH','CLERK',7902,'17-DEC-80',800,NULL,20);
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7499,'ALLEN','SALESMAN',7698,'20-FEB-81',1600,300,30);
INSERT 0 1
auditdb=# INSERT INTO emp VALUES (7521,'WARD','SALESMAN',7698,'22-FEB-81',1250,500,30);
INSERT 0 1
 .
 .
 .
auditdb=# INSERT INTO emp VALUES (7934,'MILLER','CLERK',7782,'23-JAN-82',1300,NULL,10);
INSERT 0 1
auditdb=# UPDATE dept SET loc = 'BEDFORD' WHERE deptno = 40;
UPDATE 1
auditdb=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+----------
 10 | ACCOUNTING | NEW YORK
 20 | RESEARCH | DALLAS
 30 | SALES | CHICAGO
 40 | OPERATIONS | BEDFORD
(4 rows)

auditdb=# DELETE FROM emp WHERE deptno = 10;
DELETE 3
auditdb=# TRUNCATE employee;
ERROR: relation "employee" does not exist
auditdb=# TRUNCATE emp;
TRUNCATE TABLE
auditdb=# \q

The resulting audit log file contains the following.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1685

2020-05-25 15:17:16.392 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,1,"authentication",2020-05-25 15:17:16 IST,5/3,0,AUDIT,00000,
"connection authorized:user=adminuser database=auditdb",,,,,,,,,"","client
backend","",connect"

2020-05-25 15:19:18.066 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,2,"idle",2020-05-25 15:17:16 IST,5/14,0,AUDIT,00000,"statement: UPDATE
dept SET loc = 'BEDFORD' WHERE deptno = 40;",,,,,,,,,"psql","client backend",
"UPDATE","update"

2020-05-25 15:19:38.524 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,3,"idle",2020-05-25 15:17:16 IST,5/16,0,AUDIT,00000,"statement: DELETE
FROM emp WHERE deptno = 10;",,,,,,,,,"psql","client backend","DELETE","delete"

2020-05-25 15:19:48.149 IST,"adminuser","auditdb",123420,"[local]",5ecb9424.
1e21c,4,"TRUNCATE TABLE",2020-05-25 15:17:16 IST,5/17,0,ERROR,42P01,"relation
""employee""does not exist",,,,,,"TRUNCATE employee;",,,"psql","client backend
","TRUNCATE TABLE","error"

The UPDATE dept and DELETE FROM emp statements are audited. Note that all of the prior INSERT statements are not audited since none of the
values insert , dml , nor all are included in the edb_audit_statement parameter.

The SELECT * FROM dept statement is not audited as well since neither select nor all is included in the edb_audit_statement
parameter.

Since error is specified in the edb_audit_statement parameter, but not the truncate value, the error on the TRUNCATE employee
statement is logged in the audit file, but not the successful TRUNCATE emp statement.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1686

22.3.5.3 Enabling Audit Logging

The following steps describe how to configure Advanced Server to log all connections, disconnections, DDL statements, DCL statements, DML statements,
and any statements resulting in an error.

1. Enable auditing by the setting the edb_audit parameter to xml or csv .
2. Set the file rotation day when the new file will be created by setting the parameter edb_audit_rotation_day to the desired value.
3. To audit all connections, set the parameter, edb_audit_connect , to all .
4. To audit all disconnections, set the parameter, edb_audit_disconnect , to all .
5. To audit DDL, DCL, DML and other statements, set the parameter, edb_audit_statement according to the instructions in Selecting SQL

Statements to Audit.

The setting of the edb_audit_statement parameter in the configuration file affects the entire database cluster.

The type of statements that are audited as controlled by the edb_audit_statement parameter can be further refined according to the database in use
as well as the database role running the session:

The edb_audit_statement parameter can be set as an attribute of a specified database with the ALTER DATABASE dbname SET
edb_audit_statement command. This setting overrides the edb_audit_statement parameter in the configuration file for statements
executed when connected to database dbname .
The edb_audit_statement parameter can be set as an attribute of a specified role with the ALTER ROLE rolename SET
edb_audit_statement command. This setting overrides the edb_audit_statement parameter in the configuration file as well as any
setting assigned to the database by the previously described ALTER DATABASE command when the specified role is running the current session.
The edb_audit_statement parameter can be set as an attribute of a specified role when using a specified database with the ALTER ROLE
rolename IN DATABASE dbname SET edb_audit_statement command. This setting overrides the edb_audit_statement
parameter in the configuration file as well as any setting assigned to the database by the previously described ALTER DATABASE command as
well as any setting assigned to the role with the ALTER ROLE command without the IN DATABASE clause as previously described.

The following are examples of this technique.

The database cluster is established with edb_audit_statement set to all as shown in its postgresql.conf file:

logging_collector = 'on'
edb_audit_statement = 'all' # Statement type to be audited:
 # none, dml, insert, update, delete, truncate,
 # select, error, rollback, ddl, create, drop,
 # alter, grant, revoke, set, all

A database and role are established with the following settings for the edb_audit_statement parameter:

Database auditdb with ddl , insert , update , and delete
Role admin with select , truncate , and set
Role admin in database auditdb with create table , insert , and update

Creation and alteration of the database and role are shown by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1687

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0)
Type "help" for help.

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 all
(1 row)

edb=# CREATE DATABASE auditdb;
CREATE DATABASE
edb=# ALTER DATABASE auditdb SET edb_audit_statement TO 'ddl, insert, update, delete';
ALTER DATABASE
edb=# CREATE ROLE admin WITH LOGIN SUPERUSER PASSWORD 'password';
CREATE ROLE
edb=# ALTER ROLE admin SET edb_audit_statement TO 'select, truncate';
ALTER ROLE
edb=# ALTER ROLE admin IN DATABASE auditdb SET edb_audit_statement TO 'create table, insert, update';
ALTER ROLE

The following demonstrates the changes made and the resulting audit log file for three cases.

Case 1:Case 1: Changes made in database auditdb by role enterprisedb . Only ddl, insert, update , and delete statements are audited:

$ psql auditdb enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 ddl, insert, update, delete
(1 row)

auditdb=# CREATE TABLE audit_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT);
CREATE TABLE
auditdb=# INSERT INTO audit_tbl VALUES (1, 'Row 1');
INSERT 0 1
auditdb=# UPDATE audit_tbl SET f2 = 'Row A' WHERE f1 = 1;
UPDATE 1
auditdb=# SELECT * FROM audit_tbl; <== Should not be audited
 f1 | f2
----+-------
 1 | Row A
(1 row)

auditdb=# TRUNCATE audit_tbl; <== Should not be audited
TRUNCATE TABLE

The following audit log file shows entries only for the CREATE TABLE , INSERT INTO audit_tbl , and UPDATE audit_tbl statements. The
SELECT * FROM audit_tbl and TRUNCATE audit_tbl statements were not audited.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1688

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement:INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

Case 2:Case 2: Changes made in database edb by role admin . Only select , truncate , and set statements are audited:

$ psql edb admin
Password for user admin:
psql.bin (13.0.0)
Type "help" for help.

edb=# SHOW edb_audit_statement;
 edb_audit_statement

 select, truncate, set
(1 row)

edb=# SET default_with_rowids TO TRUE;
SET

edb=# CREATE TABLE edb_tbl (f1 INTEGER PRIMARY KEY, f2 TEXT); <== Should not be audited
CREATE TABLE
edb=# INSERT INTO edb_tbl VALUES (1, 'Row 1'); <== Should not be audited
INSERT 0 1
edb=# SELECT * FROM edb_tbl;
 f1 | f2
----+-------
 1 | Row 1
(1 row)

edb=# TRUNCATE edb_tbl;
TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The last two entries representing the second case show only the SET default_with_rowids
TO TRUE , SELECT * FROM edb_tbl and TRUNCATE edb_tbl statements. The CREATE TABLE edb_tbl and INSERT INTO edb_tbl
statements were not audited.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1689

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

2021-02-18 08:04:57.434 IST,"admin","edb",3182,"[local]",602e65dc.c6e,1,
"idle",2021-02-18 08:04:28 IST,4/22,0,AUDIT,00000,"statement: SET default_with_rowids TO TRUE;
",,,,,,,,,"psql","client backend","SET","","set"

2021-02-18 08:06:01.662 IST,"admin","edb",3182,"[local]",602e65dc.c6e,2,
"idle",2021-02-18 08:04:28 IST,4/27,0,AUDIT,00000,"statement: SELECT * FROM edb_tbl;
",,,,,,,,,"psql","client backend","SELECT","","select"

2021-02-18 08:06:11.125 IST,"admin","edb",3182,"[local]",602e65dc.c6e,3,
"idle",2021-02-18 08:04:28 IST,4/28,0,AUDIT,00000,"statement: TRUNCATE edb_tbl;
",,,,,,,,,"psql","client backend","TRUNCATE TABLE","","truncate"

Case 3:Case 3: Changes made in database auditdb by role admin . Only create table, insert , and update statements are audited:

$ psql auditdb admin
Password for user admin:
psql.bin (13.0.0)
Type "help" for help.

auditdb=# SHOW edb_audit_statement;
 edb_audit_statement

 create table, insert, update
(1 row)

auditdb=# CREATE TABLE audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);
CREATE TABLE
auditdb=# INSERT INTO audit_tbl_2 VALUES (1, 'Row 1');
INSERT 0 1
auditdb=# SELECT * FROM audit_tbl_2; <== Should not be audited
 f1 | f2
----+-------
 1 | Row 1
(1 row)

auditdb=# TRUNCATE audit_tbl_2; <== Should not be audited
TRUNCATE TABLE

Continuation of the audit log file now appears as follows. The next to last two entries representing the third case show only CREATE TABLE
audit_tbl_2 and INSERT INTO audit_tbl_2 statements. The SELECT * FROM audit_tbl_2 and TRUNCATE audit_tbl_2
statements were not audited.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1690

2020-05-25 15:59:12.332 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,2,
"idle",2020-05-25 15:59:02 IST,5/7,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl(f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 15:59:22.419 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,3,
"idle",2020-05-25 15:59:02 IST,5/8,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

2020-05-25 15:59:32.180 IST,"enterprisedb","auditdb",41837,"[local]",5ecb9dee.a36d,4,
"idle",2020-05-25 15:59:02 IST,5/9,0,AUDIT,00000,"statement: UPDATE
audit_tbl SET f2 = 'Row A' WHERE f1 = 1;",,,,,,,,,"psql","client backend","UPDATE","","update"

2021-02-18 08:04:57.434 IST,"admin","edb",3182,"[local]",602e65dc.c6e,1,
"idle",2021-02-18 08:04:28 IST,4/22,0,AUDIT,00000,"statement: SET default_with_rowids TO TRUE;
",,,,,,,,,"psql","client backend","SET","","set"

2021-02-18 08:06:01.662 IST,"admin","edb",3182,"[local]",602e65dc.c6e,2,
"idle",2021-02-18 08:04:28 IST,4/27,0,AUDIT,00000,"statement: SELECT * FROM edb_tbl;
",,,,,,,,,"psql","client backend","SELECT","","select"

2021-02-18 08:06:11.125 IST,"admin","edb",3182,"[local]",602e65dc.c6e,3,
"idle",2021-02-18 08:04:28 IST,4/28,0,AUDIT,00000,"statement: TRUNCATE edb_tbl;
",,,,,,,,,"psql","client backend","TRUNCATE TABLE","","truncate"

2020-05-25 17:30:59.057 IST,"admin","auditdb",122093,"[local]",5ecbb370.1dced,2,
"idle",2020-05-25 17:30:48 IST,5/11,0,AUDIT,00000,"statement: CREATE TABLE
audit_tbl_2 (f1 INTEGER PRIMARY KEY, f2 TEXT);",,,,,,,,,"psql","client backend","CREATE TABLE","","create"

2020-05-25 17:31:08.866 IST,"admin","auditdb",122093,"[local]",5ecbb370.1dced,3,
"idle",2020-05-25 17:30:48 IST,5/12,0,AUDIT,00000,"statement: INSERT INTO
audit_tbl_2 VALUES (1, 'Row 1');",,,,,,,,,"psql","client backend","INSERT","","insert"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1691

22.3.5.4 Audit Log File

The audit log file can be generated in either CSV or XML format depending upon the setting of the edb_audit configuration parameter.

The information in the audit log is based on the logging performed by PostgreSQL as described in the section “Using CSV-Format Log Output” within
Section “Error Reporting and Logging” in the PostgreSQL core documentation, available at:

https://www.postgresql.org/docs/current/static/runtime-config-logging.html

The following table lists the fields in the order they appear in the CSV audit log format. The table contains the following information:

Field.Field. Name of the field as shown in the sample table definition in the PostgreSQL documentation as previously referenced.
XML Element/Attribute.XML Element/Attribute. For the XML format, name of the XML element and its attribute (if used), referencing the value.
Data Type.Data Type. Data type of the field as given by the PostgreSQL sample table definition.
Description.Description. Description of the field.

The fields that do not have any values for logging appear as consecutive commas (,,) in the CSV format.

Field XML
Element/Attribute

Data Type Description

log_time event/log_time
timestamp
with time
zone

Log date/time of the statement.

user_name event/user text Database user who executed the statement.

database_nam
e

event/database text Database in which the statement was executed.

process_id event/process_id integer Operating system process ID in which the statement was executed.

connection_f
rom

event/remote_hos
t

text Host and port location from where the statement was executed.

session_id event/session_id text Session ID in which the statement was executed.

session_line
_num

event/session_li
ne_num

bigint Order of the statement within the session.

process_stat
us

event/process_st
atus

text Processing status.

session_star
t_time

event/session_st
art_time

timestamp
with time
zone

Date/time when the session was started.

virtual_tran
saction_id

event/virtual_tr
ansaction_id

text Virtual transaction ID of the statement.

transaction_
id

event/transactio
n_id

bigint Regular transaction ID of the statement.

error_severi
ty

error_severity text Statement severity. Values are AUDIT for audited statements and ERROR
for any resulting error messages.

sql_state_co
de

event/sql_state_
code

text SQL state code returned for the statement. The sql_state_code is not
logged when its value is 00000 for XML log format.

message message text The SQL statement that was attempted for execution.

detail detail text Error message detail.

hint hint text Hint for error.

internal_que
ry

internal_query text Internal query that led to the error, if any.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1692

https://www.postgresql.org/docs/current/static/runtime-config-logging.html

internal_que
ry_pos

internal_query_p
os

integer Character count of the error position therein.

context context text Error context.

query query text User query that led to the error. (For errors only)

query_pos query_pos integer Character count of the error position therein. (For errors only)

location location text Location of the error in the source code. The location field will be populated if
log_error_verbosity is set to verbose.

application_
name

event/applicatio
n_name

text Name of the application from which the statement was executed. (for example,
psql.bin).

backend_type
event/backend_ty
pe text

The backend_type corresponds to what
pg_stat_activity.backend_type shows and is added as a column to

the csv log.

command_tag event/command_ta
g

text SQL command of the statement.

audit_tag event/audit_tag text Value specified by the audit_tag parameter in the configuration file.

type event/type text Determines the audit event_type to identify messages in the log.

Field XML
Element/Attribute

Data Type Description

The following examples are generated in the CSV and XML formats.

The non-default audit settings in the postgresql.conf file are as follows:

logging_collector = 'on'
edb_audit = 'csv'
edb_audit_connect = 'all'
edb_audit_disconnect = 'all'
edb_audit_statement = 'ddl, dml, select, error'
edb_audit_tag = 'edbaudit'

The edb_audit parameter is changed to xml when generating the XML format.

The audited session is the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1693

$ psql edb enterprisedb
Password for user enterprisedb:
psql.bin (13.0.0)
Type "help" for help.

edb=# CREATE SCHEMA edb;
CREATE SCHEMA
edb=# SET search_path TO edb;
SET
edb=# CREATE TABLE dept (
edb(# deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
edb(# dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
edb(# loc VARCHAR2(13)
edb(#);
CREATE TABLE
edb=# INSERT INTO dept VALUES (10,'ACCOUNTING','NEW YORK');
INSERT 0 1
edb=# UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;
ERROR: relation "department" does not exist
LINE 1: UPDATE department SET loc = 'BOSTON' WHERE deptno = 10;
 ^
edb=# UPDATE dept SET loc = 'BOSTON' WHERE deptno = 10;
UPDATE 1
edb=# SELECT * FROM dept;
 deptno | dname | loc
--------+------------+--------
 10 | ACCOUNTING | BOSTON
(1 row)

edb=# \q

CSV Audit Log FileCSV Audit Log File

The following is the CSV format of the audit log file.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1694

2020-05-22 16:53:37.817 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,1,"authentication",2020-05-22 16:53:37 IST,4/21,0,AUDIT,00000,
"connection authorized:user=enterprisedb database=edb",,,,,,,,,"","client
backend","","edbaudit","connect"

2020-05-22 16:53:42.279 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,2,"idle",2020-05-22 16:53:37 IST,4/23,0,AUDIT,00000,"statement: CREATE
SCHEMA edb;",,,,,,,,,"psql","client backend","CREATE SCHEMA","edbaudit",
"create"

2020-05-22 16:54:07.896 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,3,"idle",2020-05-22 16:53:37 IST,4/25,0,AUDIT,00000,"statement: CREATE
TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13)
);",,,,,,,,,"psql","client backend","CREATE TABLE","edbaudit","create"

2020-05-22 16:54:20.500 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,4,"idle",2020-05-22 16:53:37 IST,4/26,0,AUDIT,00000,"statement: INSERT
INTO dept VALUES(10,'ACCOUNTING','NEW YORK');",,,,,,,,,"psql","client backend
","INSERT","edbaudit","insert"

2020-05-22 16:54:34.821 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,5,"idle",2020-05-22 16:53:37 IST,4/27,0,AUDIT,00000,"statement: UPDATE
department SET loc = 'BOSTON' WHERE deptno = 10;",,,,,,,,,"psql","client
backend","UPDATE","edbaudit","update"

2020-05-22 16:54:34.821 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,6,"UPDATE",2020-05-22 16:53:37 IST,4/27,0,ERROR,42P01,"relation "
"department"" does not exist",,,,,,"UPDATE department SET loc = 'BOSTON'
WHERE deptno = 10;",8,,"psql","client backend","UPDATE","edbaudit","error"

2020-05-22 16:54:51.308 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,7,"idle",2020-05-22 16:53:37 IST,4/28,0,AUDIT,00000,"statement: UPDATE
dept SET loc = 'BOSTON' WHERE deptno = 10;",,,,,,,,,"psql","client backend",
"UPDATE","edbaudit","update"

2020-05-22 16:55:00.774 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,8,"idle",2020-05-22 16:53:37 IST,4/29,0,AUDIT,00000,"statement: SELECT *
FROM dept;",,,,,,,,,"psql","client backend","SELECT","edbaudit","select"

2020-05-22 16:55:06.548 IST,"enterprisedb","edb",55279,"[local]",5ec7b639.
d7ef,9,"idle",2020-05-22 16:53:37 IST,,0,AUDIT,00000,"disconnection: session
time: 0:01:28.732 user=enterprisedb database=edb host=[local]",,,,,,,,,"psql",
"client backend","","edbaudit","disconnect"

XML Audit Log FileXML Audit Log File

The following is the XML format of the audit log file. The output has been formatted for more clarity in the appearance in the example.

<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="1" process_status=
 "authentication"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:11:17.806 IST"
 virtual_transaction_id="4/19" type="connect" audit_tag="edbaudit"
 backend_type="client backend">
 <error_severity>AUDIT</error_severity>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1695

 <message>connection authorized: user=enterprisedb database=edb</
 message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="2" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:11:32.558 IST"
 virtual_transaction_id="4/21" type="create" command_tag="CREATE SCHEMA
 " audit_tag="edbaudit" application_name="psql" backend_type="client
 backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE SCHEMA edb;</message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="3" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:00.199 IST"
 virtual_transaction_id="4/23" type="create" command_tag="CREATE TABLE"
 audit_tag="edbaudit" application_name="psql" backend_type="client
 backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE TABLE dept (
 deptno NUMBER(2) NOT NULL CONSTRAINT dept_pk PRIMARY KEY,
 dname VARCHAR2(14) CONSTRAINT dept_dname_uq UNIQUE,
 loc VARCHAR2(13));
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="4" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:10.992 IST"
 virtual_transaction_id="4/24" type="insert" command_tag="INSERT" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: INSERT INTO dept VALUES
 (10,'ACCOUNTING','NEW YORK'
);
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="5" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:21.764 IST"
 virtual_transaction_id="4/25" type="update" command_tag="UPDATE" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: UPDATE department SET loc = 'BOSTON'
 WHERE deptno = 10;
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="6" process_status="UPDATE"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:21.765 IST"
 virtual_transaction_id="4/25" type="error" sql_state_code="42P01"
 command_tag="UPDATE" audit_tag="edbaudit" application_name="psql"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1696

 backend_type="client backend">
 <error_severity>ERROR</error_severity>
 <message>relation "department" does not exist</message>
 <query>UPDATE department SET loc = 'BOSTON' WHERE deptno =
 10;</query>
 <query_pos>8</query_pos>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="7" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:34.878 IST"
 virtual_transaction_id="4/26" type="update" command_tag="UPDATE" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: UPDATE dept SET loc = 'BOSTON' WHERE
 deptno = 10;
 </message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="8" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:45.471 IST"
 virtual_transaction_id="4/27" type="select" command_tag="SELECT" audit_
 tag="edbaudit" application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: SELECT * FROM dept;</message>
</event>
<event user="enterprisedb" database="edb" process_id="5941" remote_host=
"[local]"
 session_id="5ec7ac4d.1735" session_line_num="9" process_status="idle"
 session_start_time="2020-05-22 16:11:17 IST" log_time="2020-05-22
 16:12:53.048 IST"
 type="disconnect" audit_tag="edbaudit" application_name="psql" backend_
 type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>disconnection: session time: 0:01:35.243 user=enterprisedb
 database=edb host=[local]</message>
</event>

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1697

22.3.5.5 Using Error Codes to Filter Audit Logs

Advanced Server includes an extension that you can use to exclude log file entries that include a user-specified error code from the Advanced Server log
files. To filter audit log entries, you must first enable the extension by modifying the postgresql.conf file, adding the following value to the values
specified in the shared_preload_libraries parameter:

$libdir/edb_filter_log

Then, use the edb_filter_log.errcodes parameter to specify any error codes you wish to omit from the log files:

edb_filter_log.errcode = 'error_code'

Where error_code specifies one or more error codes that you wish to omit from the log file. Provide multiple error codes in a comma-delimited list.

For example, if edb_filter_log is enabled, and edb_filter_log.errcode is set to '23505,23502,22012' , any log entries that return one
of the following SQLSTATE errors:

23505 (for violating a unique constraint)

23502 (for violating a not-null constraint)

22012 (for dividing by zero)

will be omitted from the log file.

For a complete list of the error codes supported by Advanced Server audit log filtering, see the core documentation at:

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1698

https://www.postgresql.org/docs/current/static/errcodes-appendix.html

22.3.5.6 Using Command Tags to Filter Audit Logs

Each entry in the log file except for those displaying an error message contains a command tag. A command tag is the SQL command executed for that
particular log entry. The command tag makes it possible to use subsequent tools to scan the log file to find entries related to a particular SQL command.

The following is an example in XML form. The example has been formatted for easier review. The command tag is displayed as the command_tag
attribute of the event element with values CREATE ROLE , ALTER ROLE , and DROP ROLE in the example.

<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="2" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:21.147 IST"
 virtual_transaction_id="4/30" type="create" command_tag="CREATE ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: CREATE ROLE newuser WITH LOGIN;</message>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="3" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:34.142 IST"
 virtual_transaction_id="4/31" type="error" sql_state_code="42601"
 application_name="psql" backend_type="client backend">
 <error_severity>ERROR</error_severity>
 <message>unrecognized role option "super"</message>
 <query>ALTER ROLE newuser WITH SUPER USER;</query>
 <query_pos>25</query_pos>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="4" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:44.680 IST"
 virtual_transaction_id="4/32" type="alter" command_tag="ALTER ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: ALTER ROLE newuser WITH SUPERUSER;</message>
</event>
<event user="enterprisedb" database="edb" process_id="64234" remote_host=
"[local]"
 session_id="5ecbc7e6.faea" session_line_num="5" process_status="idle"
 session_start_time="2020-05-25 18:58:06 IST" log_time="2020-05-25
 18:58:58.173 IST"
 virtual_transaction_id="4/33" type="drop" command_tag="DROP ROLE"
 application_name="psql" backend_type="client backend">
 <error_severity>AUDIT</error_severity>
 <message>statement: DROP ROLE newuser;</message>
</event>

The following is the same example in CSV form. The command tag is the next to last column of each entry. In the listing, the column that appears empty (""),
would be the value of the edb_audit_tag parameter if provided.

Each audit log entry has been split and displayed across multiple lines, and a blank line has been inserted between the audit log entries for more clarity in
the appearance of the results.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1699

2020-05-25 19:09:32.105 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,2,"idle",2020-05-25 19:09:07 IST,4/30,0,AUDIT,00000,"statement: CREATE
ROLE newuser WITH LOGIN;",,,,,,,,,"psql","client backend","CREATE ROLE","",
"create"

2020-05-25 19:09:50.975 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,3,"idle",2020-05-25 19:09:07 IST,4/31,0,ERROR,42601,"unrecognized role
option ""super""",,,,,,"ALTER ROLE newuser WITH SUPER USER;",25,,"psql",
"client backend","","","error"

2020-05-25 19:10:04.128 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,4,"idle",2020-05-25 19:09:07 IST,4/32,0,AUDIT,00000,"statement: ALTER
ROLE newuser WITH SUPERUSER;",,,,,,,,,"psql","client backend","ALTER ROLE","",
"alter"

2020-05-25 19:10:15.959 IST,"enterprisedb","edb",77212,"[local]",5ecbca7b.
12d9c,5,"idle",2020-05-25 19:09:07 IST,4/33,0,AUDIT,00000,"statement: DROP
ROLE newuser;",,,,,,,,,"psql","client backend","DROP ROLE","","drop"

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1700

22.3.5.7 Redacting Passwords from Audit Logs

You can use the edb_filter_log.redact_password_commands extension to instruct the server to redact stored passwords from the log file. Note
that the module only recognizes the following syntax:

{CREATE|ALTER} {USER|ROLE|GROUP} identifier { [WITH] [ENCRYPTED] PASSWORD
'nonempty_string_literal' | IDENTIFIED BY { 'nonempty_string_literal' |
bareword } } [REPLACE { 'nonempty_string_literal' | bareword }]

When such a statement is logged by log_statement , the server will redact the old and new passwords to 'x'. For example, the command:

ALTER USER carol PASSWORD '1safepwd' REPLACE 'old_pwd';

Will be added to log files as:

statement: ALTER USER carol PASSWORD 'x' REPLACE 'x';

When a statement that includes a redacted password is logged, the server redacts the statement text. When the statement is logged as context for some
other message, the server omits the statement from the context.

To enable password redaction, you must first enable the extension by modifying the postgresql.conf file, adding the following value to the values
specified in the shared_preload_libraries parameter:

$libdir/edb_filter_log

Then, set edb_filter_log.redact_password_commands to true :

edb_filter_log.redact_password_commands = true

After modifying the postgresql.conf file, you must restart the server for the changes to take effect.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1701

22.3.6 Unicode Collation Algorithm

The Unicode Collation Algorithm (UCA) is a specification (Unicode Technical Report #10) that defines a customizable method of collating and comparing
Unicode data. Collation means how data is sorted as with a SELECT … ORDER BY clause. Comparison is relevant for searches that use ranges with less
than, greater than, or equal to operators.

Customizability is an important factor for various reasons such as the following.

Unicode supports a vast number of languages. Letters that may be common to several languages may be expected to collate in different orders
depending upon the language.
Characters that appear with letters in certain languages such as accents or umlauts have an impact on the expected collation depending upon the
language.
In some languages, combinations of several consecutive characters should be treated as a single character with regards to its collation sequence.
There may be certain preferences as to the collation of letters according to case. For example, should the lowercase form of a letter collate before
the uppercase form of the same letter or vice versa.
There may be preferences as to whether punctuation marks such as underscore characters, hyphens, or space characters should be considered in
the collating sequence or should they simply be ignored as if they did not exist in the string.

Given all of these variations with the vast number of languages supported by Unicode, there is a necessity for a method to select the specific criteria for
determining a collating sequence. This is what the Unicode Collation Algorithm defines.

NoteNote

In addition, another advantage for using ICU collations (the implementation of the Unicode Collation Algorithm) is for performance. Sorting
tasks, including B-tree index creation, can complete in less than half the time it takes with a non-ICU collation. The exact performance gain
depends on your operating system version, the language of your text data, and other factors.

The following sections provide a brief, simplified explanation of the Unified Collation Algorithm concepts. As the algorithm and its usage are quite complex
with numerous variations, refer to the official documents cited in these sections for complete details.

Basic Unicode Collation Algorithm Concepts

The official information for the Unicode Collation Algorithm is specified in Unicode Technical Report #10, which can be found on The Unicode Consortium
website at:

http://www.unicode.org/reports/tr10/

The ICU – International Components for Unicode also provides much useful information. An explanation of the collation concepts can be found on their
website located at:

http://userguide.icu-project.org/collation/concepts

The basic concept behind the Unicode Collation Algorithm is the use of multilevel comparison. This means that a number of levels are defined, which are
listed as level 1 through level 5 in the following bullet points. Each level defines a type of comparison. Strings are first compared using the primary level,
also called level 1.

If the order can be determined based on the primary level, then the algorithm is done. If the order cannot be determined based on the primary level, then
the secondary level, level 2, is applied. If the order can be determined based on the secondary level, then the algorithm is done, otherwise the tertiary level
is applied, and so on. There is typically, a final tie-breaking level to determine the order if it cannot be resolved by the prior levels.

Level 1 – Primary Level for Base Characters.Level 1 – Primary Level for Base Characters. The order of basic characters such as letters and digits determines the difference such as A < B .
Level 2 – Secondary Level for Accents.Level 2 – Secondary Level for Accents. If there are no primary level differences, then the presence or absence of accents and other such characters
determine the order such as a < á .
Level 3 – Tertiary Level for Case.Level 3 – Tertiary Level for Case. If there are no primary level or secondary level differences, then a difference in case determines the order such as a
< A .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1702

http://www.unicode.org/reports/tr10/
http://userguide.icu-project.org/collation/concepts

Level 4 – Quaternary Level for Punctuation.Level 4 – Quaternary Level for Punctuation. If there are no primary, secondary, or tertiary level differences, then the presence or absence of white
space characters, control characters, and punctuation determine the order such as -A < A .
Level 5 – Identical Level for Tie-Breaking.Level 5 – Identical Level for Tie-Breaking. If there are no primary, secondary, tertiary, or quaternary level differences, then some other difference
such as the code point values determines the order.

International Components for Unicode

The Unicode Collation Algorithm is implemented by open source software provided by the International Components for Unicode (ICU). The software is a
set of C/C++ and Java libraries.

When Advanced Server is used to create a collation that invokes the ICU components to produce the collation, the result is referred to as an ICU collation.

Locale Collations

When creating a collation for a locale, a predefined ICU short form name for the given locale is typically provided.

An ICU short form is a method of specifying collation attributes, which are the properties of a collation. Collation Attributes provides additional
information on collation attributes.

There are predefined ICU short forms for locales. The ICU short form for a locale incorporates the collation attribute settings typically used for the given
locale. This simplifies the collation creation process by eliminating the need to specify the entire list of collation attributes for that locale.

The system catalog pg_catalog.pg_icu_collate_names contains a list of the names of the ICU short forms for locales. The ICU short form name is
listed in column icu_short_form .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1703

edb=# SELECT icu_short_form, valid_locale FROM pg_icu_collate_names ORDER BY
valid_locale;
 icu_short_form | valid_locale
----------------+--------------
 LAF | af
 LAR | ar
 LAS | as
 LAZ | az
 LBE | be
 LBG | bg
 LBN | bn
 LBS | bs
 LBS_ZCYRL | bs_Cyrl
 LROOT | ca
 LROOT | chr
 LCS | cs
 LCY | cy
 LDA | da
 LROOT | de
 LROOT | dz
 LEE | ee
 LEL | el
 LROOT | en
 LROOT | en_US
 LEN_RUS_VPOSIX | en_US_POSIX
 LEO | eo
 LES | es
 LET | et
 LFA | fa
 LFA_RAF | fa_AF
 .
 .
 .

If needed, the default characteristics of an ICU short form for a given locale can be overridden by specifying the collation attributes to override that
property. This is discussed in the next section.

Collation Attributes

When creating an ICU collation, the desired characteristics of the collation must be specified. As discussed in Locale Collations , this can typically
be done with an ICU short form for the desired locale. However, if more specific information is required, the specification of the collation properties can be
done by using collation attributes.

Collation attributes define the rules of how characters are to be compared for determining the collation sequence of text strings. As Unicode covers a vast
set of languages in numerous variations according to country, territory and culture, these collation attributes are quite complex.

For the complete, precise meaning and usage of collation attributes, see Section “Collator Naming Scheme” on the ICU – International Components for
Unicode website at:

http://userguide.icu-project.org/collation/concepts

The following is a brief summary of the collation attributes and how they are specified using the ICU short form method

Each collation attribute is represented by an uppercase letter, which are listed in the following bullet points. The possible valid values for each attribute are
given by codes shown within the parentheses. Some codes have general meanings for all attributes. XX means to set the attribute off. OO means to set the
attribute on. DD means to set the attribute to its default value.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1704

http://userguide.icu-project.org/collation/concepts

A – Alternate (N, S, D).A – Alternate (N, S, D). Handles treatment of variable characters such as white spaces, punctuation marks, and symbols. When set to non-ignorable
(N), differences in variable characters are treated with the same importance as differences in letters. When set to shifted (S), then differences in
variable characters are of minor importance (that is, the variable character is ignored when comparing base characters).
C – Case First (X, L, U, D).C – Case First (X, L, U, D). Controls whether a lowercase letter sorts before the same uppercase letter (L), or the uppercase letter sorts before the
same lowercase letter (U). Off (X) is typically specified when lowercase first (L) is desired.
E – Case Level (X, O, D).E – Case Level (X, O, D). Set in combination with the Strength attribute, the Case Level attribute is used when accents are to be ignored, but not
case.
F – French Collation (X, O, D).F – French Collation (X, O, D). When set to on, secondary differences (presence of accents) are sorted from the back of the string as done in the
French Canadian locale.
H – Hiragana Quaternary (X, O, D).H – Hiragana Quaternary (X, O, D). Introduces an additional level to distinguish between the Hiragana and Katakana characters for compatibility
with the JIS X 4061 collation of Japanese character strings.
N – Normalization Checking (X, O, D).N – Normalization Checking (X, O, D). Controls whether or not text is thoroughly normalized for comparison. Normalization deals with the issue of
canonical equivalence of text whereby different code point sequences represent the same character, which then present issues when sorting or
comparing such characters. Languages such as Arabic, ancient Greek, Hebrew, Hindi, Thai, or Vietnamese should be used with Normalization
Checking set to on.
S – Strength (1, 2, 3, 4, I, D).S – Strength (1, 2, 3, 4, I, D). Maximum collation level used for comparison. Influences whether accents or case are taken into account when
collating or comparing strings. Each number represents a level. A setting of I represents identical strength (that is, level 5).
T – Variable Top (hexadecimal digits).T – Variable Top (hexadecimal digits). Applicable only when the Alternate attribute is not set to non-ignorable (N). The hexadecimal digits specify the
highest character sequence that is to be considered ignorable. For example, if white space is to be ignorable, but visible variable characters are not
to be ignorable, then Variable Top set to 0020 would be specified along with the Alternate attribute set to S and the Strength attribute set to 3. (The
space character is hexadecimal 0020. Other non-visible variable characters such as backspace, tab, line feed, carriage return, etc. have values less
than 0020. All visible punctuation marks have values greater than 0020.)

A set of collation attributes and their values is represented by a text string consisting of the collation attribute letter concatenated with the desired
attribute value. Each attribute/value pair is joined to the next pair with an underscore character as shown by the following example.

AN_CX_EX_FX_HX_NO_S3

Collation attributes can be specified along with a locale’s ICU short form name to override those default attribute settings of the locale.

The following is an example where the ICU short form named LROOT is modified with a number of other collation attribute/value pairs.

AN_CX_EX_LROOT_NO_S3

In the preceding example, the Alternate attribute (A) is set to non-ignorable (N). The Case First attribute (C) is set to off (X) . The Case Level
attribute (E) is set to off (X) . The Normalization attribute (N) is set to on (O) . The Strength attribute (S) is set to the tertiary level 3 . LROOT is
the ICU short form to which these other attributes are applying modifications.

Using a Collation

A newly defined ICU collation can be used anywhere the COLLATION "collation_name" clause can be used in a SQL command such as in the
column specifications of the CREATE TABLE command or appended to an expression in the ORDER BY clause of a SELECT command.

The following are some examples of the creation and usage of ICU collations based on the English language in the United States (en_US.UTF8).

In these examples, ICU collations are created with the following characteristics.

Collation icu_collate_lowercase forces the lowercase form of a letter to sort before its uppercase counterpart (CL).

Collation icu_collate_uppercase forces the uppercase form of a letter to sort before its lowercase counterpart (CU).

Collation icu_collate_ignore_punct causes variable characters (white space and punctuation marks) to be ignored during sorting (AS).

Collation icu_collate_ignore_white_sp causes white space and other non-visible variable characters to be ignored during sorting, but visible
variable characters (punctuation marks) are not ignored (AS , T0020).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1705

CREATE COLLATION icu_collate_lowercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CL_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_uppercase (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AN_CU_EX_NX_LROOT'
);

CREATE COLLATION icu_collate_ignore_punct (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3'
);

CREATE COLLATION icu_collate_ignore_white_sp (
 LOCALE = 'en_US.UTF8',
 ICU_SHORT_FORM = 'AS_CX_EX_NX_LROOT_L3_T0020'
);

NoteNote

When creating collations, ICU may generate notice and warning messages when attributes are given to modify the LROOT collation.

The following psql command lists the collations.

edb=# \dO
 List of collations
 Schema | Name | Collate | Ctype | ICU
--------------+-----------------------------+------------+------------+-----------------------

 enterprisedb | icu_collate_ignore_punct | en_US.UTF8 | en_US.UTF8 | AS_CX_EX_NX_LROOT_L3
 enterprisedb | icu_collate_ignore_white_sp | en_US.UTF8 | en_US.UTF8 |
 AS_CX_EX_NX_LROOT_L3_T0020
 enterprisedb | icu_collate_lowercase | en_US.UTF8 | en_US.UTF8 | AN_CL_EX_NX_LROOT
 enterprisedb | icu_collate_uppercase | en_US.UTF8 | en_US.UTF8 | AN_CU_EX_NX_LROOT
(4 rows)

The following table is created and populated.

CREATE TABLE collate_tbl (
 id INTEGER,
 c2 VARCHAR(2)
);

INSERT INTO collate_tbl VALUES (1, 'A');
INSERT INTO collate_tbl VALUES (2, 'B');
INSERT INTO collate_tbl VALUES (3, 'C');
INSERT INTO collate_tbl VALUES (4, 'a');
INSERT INTO collate_tbl VALUES (5, 'b');
INSERT INTO collate_tbl VALUES (6, 'c');
INSERT INTO collate_tbl VALUES (7, '1');
INSERT INTO collate_tbl VALUES (8, '2');
INSERT INTO collate_tbl VALUES (9, '.B');
INSERT INTO collate_tbl VALUES (10, '-B');
INSERT INTO collate_tbl VALUES (11, ' B');

The following query sorts on column c2 using the default collation. Note that variable characters (white space and punctuation marks) with id column

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1706

The following query sorts on column c2 using the default collation. Note that variable characters (white space and punctuation marks) with id column
values of 9 , 10 , and 11 are ignored and sort with the letter B .

edb=# SELECT * FROM collate_tbl ORDER BY c2;
 id | c2
-----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 11 | B
 10 | -B
 9 | .B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_lowercase , which forces the lowercase form of a letter to sort before the
uppercase form of the same base letter. Also note that the AN attribute forces variable characters to be included in the sort order at the same level when
comparing base characters so rows with id values of 9 , 10 , and 11 appear at the beginning of the sort list before all letters and numbers.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_lowercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 2 | B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_uppercase , which forces the uppercase form of a letter to sort before the
lowercase form of the same base letter.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE "icu_collate_uppercase";
 id | c2
----+----
 11 | B
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 1 | A
 4 | a
 2 | B
 5 | b
 3 | C
 6 | c
(11 rows)

The following query sorts on column c2 using collation icu_collate_ignore_punct , which causes variable characters to be ignored so rows with

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1707

The following query sorts on column c2 using collation icu_collate_ignore_punct , which causes variable characters to be ignored so rows with
id values of 9 , 10 , and 11 sort with the letter B as that is the character immediately following the ignored variable character.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_punct";
 id | c2
-----+----
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 9 | .B
 10 | -B
 6 | c
 3 | C
(11 rows)

The following query sorts on column c2 using collation icu_collate_ignore_white_sp . The AS and T0020 attributes of the collation cause
variable characters with code points less than or equal to hexadecimal 0020 to be ignored while variable characters with code points greater than
hexadecimal 0020 are included in the sort.

The row with id value of 11 , which starts with a space character (hexadecimal 0020) sorts with the letter B . The rows with id values of 9 and 10 ,
which start with visible punctuation marks greater than hexadecimal 0020 , appear at the beginning of the sort list as these particular variable characters
are included in the sort order at the same level when comparing base characters.

edb=# SELECT * FROM collate_tbl ORDER BY c2 COLLATE
"icu_collate_ignore_white_sp";
 id | c2
----+----
 10 | -B
 9 | .B
 7 | 1
 8 | 2
 4 | a
 1 | A
 5 | b
 11 | B
 2 | B
 6 | c
 3 | C
(11 rows)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1708

22.4 EDB Resource Manager

EDB Resource Manager is an Advanced Server feature that provides the capability to control the usage of operating system resources used by Advanced
Server processes.

This capability allows you to protect the system from processes that may uncontrollably overuse and monopolize certain system resources.

The following are some key points about using EDB Resource Manager.

The basic component of EDB Resource Manager is a resource group. A resource group is a named, global group, available to all databases in an
Advanced Server instance, on which various resource usage limits can be defined. Advanced Server processes that are assigned as members of a
given resource group are then controlled by EDB Resource Manager so that the aggregate resource usage of all processes in the group is kept near
the limits defined on the group.
Data definition language commands are used to create, alter, and drop resource groups. These commands can only be used by a database user with
superuser privileges.
The desired, aggregate consumption level of all processes belonging to a resource group is defined by resource type parameters. There are different
resource type parameters for the different types of system resources currently supported by EDB Resource Manager.
Multiple resource groups can be created, each with different settings for its resource type parameters, thus defining different consumption levels for
each resource group.
EDB Resource Manager throttles processes in a resource group to keep resource consumption near the limits defined by the resource type
parameters. If there are multiple resource type parameters with defined settings in a resource group, the actual resource consumption may be
significantly lower for certain resource types than their defined resource type parameter settings. This is because EDB Resource Manager throttles
processes attempting to keep all resources with defined resource type settings within their defined limits.
The definition of available resource groups and their resource type settings are stored in a shared global system catalog. Thus, resource groups can
be utilized by all databases in a given Advanced Server instance.
The edb_max_resource_groups configuration parameter sets the maximum number of resource groups that can be active simultaneously
with running processes. The default setting is 16 resource groups. Changes to this parameter take effect on database server restart.
Use the SET edb_resource_group TO group_name command to assign the current process to a specified resource group. Use the RESET
edb_resource_group command or SET edb_resource_group TO DEFAULT to remove the current process from a resource group.
A default resource group can be assigned to a role using the ALTER ROLE ... SET command, or to a database by the ALTER DATABASE
... SET command. The entire database server instance can be assigned a default resource group by setting the parameter in the
postgresql.conf file.

In order to include resource groups in a backup file of the database server instance, use the pg_dumpall backup utility with default settings
(That is, do not specify any of the --globals-only , --roles-only , or --tablespaces-only options.)

Creating and Managing Resource Groups

The data definition language commands described in this section provide for the creation and management of resource groups.

CREATE RESOURCE GROUP

Use the CREATE RESOURCE GROUP command to create a new resource group.

CREATE RESOURCE GROUP <group_name>;

DescriptionDescription

The CREATE RESOURCE GROUP command creates a resource group with the specified name. Resource limits can then be defined on the group with the
ALTER RESOURCE GROUP command. The resource group is accessible from all databases in the Advanced Server instance.

To use the CREATE RESOURCE GROUP command you must have superuser privileges.

ParametersParameters

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1709

group_name

The name of the resource group.

ExampleExample

The following example results in the creation of three resource groups named resgrp_a , resgrp_b , and resgrp_c .

edb=# CREATE RESOURCE GROUP resgrp_a;
CREATE RESOURCE GROUP
edb=# CREATE RESOURCE GROUP resgrp_b;
CREATE RESOURCE GROUP
edb=# CREATE RESOURCE GROUP resgrp_c;
CREATE RESOURCE GROUP

The following query shows the entries for the resource groups in the edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 resgrp_a | 0 | 0
 resgrp_b | 0 | 0
 resgrp_c | 0 | 0
(3 rows)

ALTER RESOURCE GROUP

Use the ALTER RESOURCE GROUP command to change the attributes of an existing resource group. The command syntax comes in three forms.

The first form renames the resource group:

ALTER RESOURCE GROUP <group_name> RENAME TO <new_name>;

The second form assigns a resource type to the resource group:

ALTER RESOURCE GROUP <group_name> SET
 <resource_type> { TO | = } { <value> | DEFAULT };

The third form resets the assignment of a resource type to its default within the group:

ALTER RESOURCE GROUP <group_name> RESET <resource_type>;

DescriptionDescription

The ALTER RESOURCE GROUP command changes certain attributes of an existing resource group.

The first form with the RENAME TO clause assigns a new name to an existing resource group.

The second form with the SET resource_type TO clause either assigns the specified literal value to a resource type, or resets the resource type when
DEFAULT is specified. Resetting or setting a resource type to DEFAULT means that the resource group has no defined limit on that resource type.

The third form with the RESET resource_type clause resets the resource type for the group as described previously.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1710

To use the ALTER RESOURCE GROUP command, you must have superuser privileges.

ParametersParameters

group_name

The name of the resource group to be altered.

new_name

The new name to be assigned to the resource group.

resource_type

The resource type parameter specifying the type of resource to which a usage value is to be set.

value | DEFAULT

When value is specified, the literal value to be assigned to resource_type . When DEFAULT is specified, the assignment of resource_type is
reset for the resource group.

ExampleExample

The following are examples of the ALTER RESOURCE GROUP command.

edb=# ALTER RESOURCE GROUP resgrp_a RENAME TO newgrp;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit = .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit = 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c RESET cpu_rate_limit;
ALTER RESOURCE GROUP

The following query shows the results of the ALTER RESOURCE GROUP commands to the entries in the edb_resource_group catalog.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 newgrp | 0 | 0
 resgrp_b | 0.5 | 6144
 resgrp_c | 0 | 0
(3 rows)

DROP RESOURCE GROUP

Use the DROP RESOURCE GROUP command to remove a resource group.

DROP RESOURCE GROUP [IF EXISTS] <group_name>;

DescriptionDescription

The DROP RESOURCE GROUP command removes a resource group with the specified name.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1711

To use the DROP RESOURCE GROUP command you must have superuser privileges.

ParametersParameters

group_name

The name of the resource group to be removed.

IF EXISTS

Do not throw an error if the resource group does not exist. A notice is issued in this case.

ExampleExample

The following example removes resource group newgrp .

edb=# DROP RESOURCE GROUP newgrp;
DROP RESOURCE GROUP

Assigning a Process to a Resource Group

Use the SET edb_resource_group TO group_name command to assign the current process to a specified resource group as shown by the
following.

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

The resource type settings of the group immediately take effect on the current process. If the command is used to change the resource group assigned to
the current process, the resource type settings of the newly assigned group immediately take effect.

Processes can be included by default in a resource group by assigning a default resource group to roles, databases, or an entire database server instance.

A default resource group can be assigned to a role using the ALTER ROLE ... SET command. For more information about the ALTER ROLE
command, refer to the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-alterrole.html

A default resource group can be assigned to a database by the ALTER DATABASE ... SET command. For more information about the ALTER
DATABASE command, refer to the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/static/sql-alterdatabase.html

The entire database server instance can be assigned a default resource group by setting the edb_resource_group configuration parameter in the
postgresql.conf file as shown by the following.

- EDB Resource Manager -
#edb_max_resource_groups = 16 # 0-65536 (change requires restart)
edb_resource_group = 'resgrp_b'

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1712

https://www.postgresql.org/docs/current/static/sql-alterrole.html
https://www.postgresql.org/docs/current/static/sql-alterdatabase.html

A change to edb_resource_group in the postgresql.conf file requires a configuration file reload before it takes effect on the database server
instance.

Removing a Process from a Resource Group

Set edb_resource_group to DEFAULT or use RESET edb_resource_group to remove the current process from a resource group as shown by
the following.

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

For removing a default resource group from a role, use the ALTER ROLE ... RESET form of the ALTER ROLE command.

For removing a default resource group from a database, use the ALTER DATABASE ... RESET form of the ALTER DATABASE command.

For removing a default resource group from the database server instance, set the edb_resource_group configuration parameter to an empty string in
the postgresql.conf file and reload the configuration file.

Monitoring Processes in Resource Groups

After resource groups have been created, the number of processes actively using these resource groups can be obtained from the view
edb_all_resource_groups .

The columns in edb_all_resource_groups are the following:

group_name.group_name. Name of the resource group.
active_processes.active_processes. Number of active processes in the resource group.
cpu_rate_limit.cpu_rate_limit. The value of the CPU rate limit resource type assigned to the resource group.
per_process_cpu_rate_limit.per_process_cpu_rate_limit. The CPU rate limit applicable to an individual, active process in the resource group.
dirty_rate_limit.dirty_rate_limit. The value of the dirty rate limit resource type assigned to the resource group.
per_process_dirty_rate_limit.per_process_dirty_rate_limit. The dirty rate limit applicable to an individual, active process in the resource group.

NoteNote

Columns per_process_cpu_rate_limit and per_process_dirty_rate_limit do not show the actual resource consumption
used by the processes, but indicate how EDB Resource Manager sets the resource limit for an individual process based upon the number of
active processes in the resource group.

The following shows edb_all_resource_groups when resource group resgrp_a contains no active processes, resource group resgrp_b
contains two active processes, and resource group resgrp_c contains one active process.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1713

edb=# SELECT * FROM edb_all_resource_groups ORDER BY group_name;
-[RECORD 1]-----------------+------------------
 group_name | resgrp_a
 active_processes | 0
 cpu_rate_limit | 0.5
 per_process_cpu_rate_limit |
 dirty_rate_limit | 12288
 per_process_dirty_rate_limit |
-[RECORD 2]-----------------+------------------
 group_name | resgrp_b
 active_processes | 2
 cpu_rate_limit | 0.4
 per_process_cpu_rate_limit | 0.195694289022895
 dirty_rate_limit | 6144
 per_process_dirty_rate_limit | 3785.92924684337
-[RECORD 3]-----------------+------------------
 group_name | resgrp_c
 active_processes | 1
 cpu_rate_limit | 0.3
 per_process_cpu_rate_limit | 0.292342129631091
 dirty_rate_limit | 3072
 per_process_dirty_rate_limit | 3072

The CPU rate limit and dirty rate limit settings that are assigned to these resource groups are as follows.

edb=# SELECT * FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit | rgrpdirtyratelimit
-----------+------------------+--------------------
 resgrp_a | 0.5 | 12288
 resgrp_b | 0.4 | 6144
 resgrp_c | 0.3 | 3072
(3 rows)

In the edb_all_resource_groups view, note that the per_process_cpu_rate_limit and per_process_dirty_rate_limit values
are roughly the corresponding CPU rate limit and dirty rate limit divided by the number of active processes.

CPU Usage Throttling

CPU usage of a resource group is controlled by setting the cpu_rate_limit resource type parameter.

Set the cpu_rate_limit parameter to the fraction of CPU time over wall-clock time to which the combined, simultaneous CPU usage of all processes in
the group should not exceed. Thus, the value assigned to cpu_rate_limit should typically be less than or equal to 1.

On multicore systems, you can apply the cpu_rate_limit to more than one CPU core by setting it to greater than 1. For example, if
cpu_rate_limit is set to 2.0, you use 100% of two CPUs.

The valid range of the cpu_rate_limit parameter is 0 to 1.67772e+07 . A setting of 0 means no CPU rate limit has been set for the resource
group.

When multiplied by 100 , the cpu_rate_limit can also be interpreted as the CPU usage percentage for a resource group.

EDB Resource Manager utilizes CPU throttling to keep the aggregate CPU usage of all processes in the group within the limit specified by the
cpu_rate_limit parameter. A process in the group may be interrupted and put into sleep mode for a short interval of time to maintain the defined

limit. When and how such interruptions occur is defined by a proprietary algorithm used by EDB Resource Manager.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1714

Setting the CPU Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET cpu_rate_limit clause is used to set the CPU rate limit for a resource group.

In the following example the CPU usage limit is set to 50% for resgrp_a , 40% for resgrp_b and 30% for resgrp_c . This means that the combined
CPU usage of all processes assigned to resgrp_a is maintained at approximately 50%. Similarly, for all processes in resgrp_b , the combined CPU
usage is kept to approximately 40%, etc.

edb=# ALTER RESOURCE GROUP resgrp_a SET cpu_rate_limit TO .5;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET cpu_rate_limit TO .4;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET cpu_rate_limit TO .3;
ALTER RESOURCE GROUP

The following query shows the settings of cpu_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpcpuratelimit FROM edb_resource_group;
 rgrpname | rgrpcpuratelimit
----------+------------------
 resgrp_a | 0.5
 resgrp_b | 0.4
 resgrp_c | 0.3
(3 rows)

Changing the cpu_rate_limit of a resource group not only affects new processes that are assigned to the group, but any currently running processes
that are members of the group are immediately affected by the change. That is, if the cpu_rate_limit is changed from .5 to .3, currently running
processes in the group would be throttled downward so that the aggregate group CPU usage would be near 30% instead of 50%.

To illustrate the effect of setting the CPU rate limit for resource groups, the following examples use a CPU-intensive calculation of 20000 factorial
(multiplication of 20000 * 19999 * 19998, etc.) performed by the query SELECT factorial(20000) ; run in the psql command line utility.

The resource groups with the CPU rate limit settings shown in the previous query are used in these examples.

Example – Single Process in a Single Group

The following shows that the current process is set to use resource group resgrp_b . The factorial calculation is then started.

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)
edb=# SELECT factorial(20000);

In a second session, the Linux top command is used to display the CPU usage as shown under the %CPU column. The following is a snapshot at an
arbitrary point in time as the top command output periodically changes.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1715

$ top
top - 16:37:03 up 4:15, 7 users, load average: 0.49, 0.20, 0.38
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 42.7%us, 2.3%sy, 0.0%ni, 55.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791160k used, 234464k free, 23400k buffers
Swap: 103420k total, 13404k used, 90016k free, 373504k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 S 39.9 0.6 3:36.98 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:43.96 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:41.72 knotify4
 .
 .
 .

The psql session performing the factorial calculation is shown by the row where edb-postgres appears under the COMMAND column. The CPU
usage of the session shown under the %CPU column shows 39.9, which is close to the 40% CPU limit set for resource group resgrp_b .

By contrast, if the psql session is removed from the resource group and the factorial calculation is performed again, the CPU usage is much higher.

edb=# SET edb_resource_group TO DEFAULT;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT factorial(20000);

Under the %CPU column for edb-postgres , the CPU usage is now 93.6, which is significantly higher than the 39.9 when the process was part of the
resource group.

$ top
top - 16:43:03 up 4:21, 7 users, load average: 0.66, 0.33, 0.37
Tasks: 202 total, 5 running, 197 sleeping, 0 stopped, 0 zombie
Cpu(s): 96.7%us, 3.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 791228k used, 234396k free, 23560k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
28915 enterpri 20 0 195m 5900 4212 R 93.6 0.6 5:01.56 edb-postgres
 1033 root 20 0 171m 77m 2960 S 1.0 7.8 3:48.15 Xorg
 2907 user 20 0 98.7m 11m 9100 S 0.3 1.2 0:46.51 vmware-user-lo
 .
 .
 .

Example – Multiple Processes in a Single Group

As stated previously, the CPU rate limit applies to the aggregate of all processes in the resource group. This concept is illustrated in the following example.

The factorial calculation is performed simultaneously in two separate psql sessions, each of which has been added to resource group resgrp_b that
has cpu_rate_limit set to .4 (CPU usage of 40%).

Session 1:Session 1:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1716

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT factorial(20000);

Session 2:Session 2:

edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT factorial(20000);

A third session monitors the CPU usage.

$ top
top - 16:53:03 up 4:31, 7 users, load average: 0.31, 0.19, 0.27
Tasks: 202 total, 1 running, 201 sleeping, 0 stopped, 0 zombie
Cpu(s): 41.2%us, 3.0%sy, 0.0%ni, 55.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 792020k used, 233604k free, 23844k buffers
Swap: 103420k total, 13404k used, 90016k free, 373508k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4708 3312 S 19.9 0.5 0:57.35 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 19.6 0.6 5:35.49 edb-postgres
 3040 user 20 0 278m 22m 14m S 1.0 2.2 3:54.99 knotify4
 1033 root 20 0 171m 78m 2960 S 0.3 7.8 3:55.71 Xorg
 .
 .
 .

There are now two processes named edb-postgres with %CPU values of 19.9 and 19.6, whose sum is close to the 40% CPU usage set for resource
group resgrp_b .

The following command sequence displays the sum of all edb-postgres processes sampled over half second time intervals. This shows how the total
CPU usage of the processes in the resource group changes over time as EDB Resource Manager throttles the processes to keep the total resource group
CPU usage near 40%.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1717

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
37.2
39.1
38.9
38.3
44.7
39.2
42.5
39.1
39.2
39.2
41
42.85
46.1
 .
 .
 .

Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two sessions. The third and fourth sessions perform the same factorial
calculation within resource group resgrp_c with a cpu_rate_limit of .3 (30% CPU usage).

Session 3:Session 3:

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT factorial(20000);

Session 4:Session 4:

edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)
edb=# SELECT factorial(20000);

The top command displays the following output.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1718

$ top
top - 17:45:09 up 5:23, 8 users, load average: 0.47, 0.17, 0.26
Tasks: 203 total, 4 running, 199 sleeping, 0 stopped, 0 zombie
Cpu(s): 70.2%us, 0.0%sy, 0.0%ni, 29.8%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 806140k used, 219484k free, 25296k buffers
Swap: 103420k total, 13404k used, 90016k free, 374092k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29857 enterpri 20 0 195m 4820 3324 S 19.9 0.5 4:25.02 edb-postgres
28915 enterpri 20 0 195m 5900 4212 R 19.6 0.6 9:07.50 edb-postgres
29023 enterpri 20 0 195m 4744 3248 R 16.3 0.5 4:01.73 edb-postgres
11019 enterpri 20 0 195m 4120 2764 R 15.3 0.4 0:04.92 edb-postgres
 2907 user 20 0 98.7m 12m 9112 S 1.3 1.2 0:56.54 vmware-user-lo
 3040 user 20 0 278m 22m 14m S 1.3 2.2 4:38.73 knotify4

The two resource groups in use have CPU usage limits of 40% and 30%. The sum of the %CPU column for the first two edb-postgres processes is 39.5
(approximately 40%, which is the limit for resgrp_b) and the sum of the %CPU column for the third and fourth edb-postgres processes is 31.6
(approximately 30%, which is the limit for resgrp_c).

The sum of the CPU usage limits of the two resource groups to which these processes belong is 70%. The following output shows that the sum of the four
processes borders around 70%.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
61.8
76.4
72.6
69.55
64.55
79.95
68.55
71.25
74.85
62
74.85
76.9
72.4
65.9
74.9
68.25

By contrast, if three sessions are processing where two sessions remain in resgrp_b , but the third session does not belong to any resource group, the
top command shows the following output.

$ top
top - 17:24:55 up 5:03, 7 users, load average: 1.00, 0.41, 0.38
Tasks: 199 total, 3 running, 196 sleeping, 0 stopped, 0 zombie
Cpu(s): 99.7%us, 0.3%sy, 0.0%ni, 0.0%id, 0.0%wa, 0.0%hi, 0.0%si, 0.0
Mem: 1025624k total, 797692k used, 227932k free, 24724k buffers
Swap: 103420k total, 13404k used, 90016k free, 374068k cached

 PID USER PR NI VIRT RES SHR S %CPU %MEM TIME+ COMMAND
29023 enterpri 20 0 195m 4744 3248 R 58.6 0.5 2:53.75 edb-postgres
28915 enterpri 20 0 195m 5900 4212 S 18.9 0.6 7:58.45 edb-postgres
29857 enterpri 20 0 195m 4820 3324 S 18.9 0.5 3:14.85 edb-postgres
 1033 root 20 0 174m 81m 2960 S 1.7 8.2 4:26.50 Xorg
 3040 user 20 0 278m 22m 14m S 1.0 2.2 4:21.20 knotify4

The second and third edb-postgres processes belonging to the resource group where the CPU usage is limited to 40%, have a total CPU usage of 37.8.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1719

The second and third edb-postgres processes belonging to the resource group where the CPU usage is limited to 40%, have a total CPU usage of 37.8.
However, the first edb-postgres process has a 58.6% CPU usage as it is not within a resource group, and basically utilizes the remaining, available
CPU resources on the system.

Likewise, the following output shows the sum of all three sessions is around 95% since one of the sessions has no set limit on its CPU usage.

$ while [[1 -eq 1]]; do top -d0.5 -b -n2 | grep edb-postgres | awk '{ SUM
+= $9} END { print SUM / 2 }'; done
96
90.35
92.55
96.4
94.1
90.7
95.7
95.45
93.65
87.95
96.75
94.25
95.45
97.35
92.9
96.05
96.25
94.95
 .
 .
 .

Dirty Buffer Throttling

Writing to shared buffers is controlled by setting the dirty_rate_limit resource type parameter.

Set the dirty_rate_limit parameter to the number of kilobytes per second for the combined rate at which all the processes in the group should write
to or “dirty” the shared buffers. An example setting would be 3072 kilobytes per seconds.

The valid range of the dirty_rate_limit parameter is 0 to 1.67772e+07 . A setting of 0 means no dirty rate limit has been set for the resource
group.

EDB Resource Manager utilizes dirty buffer throttling to keep the aggregate, shared buffer writing rate of all processes in the group near the limit specified
by the dirty_rate_limit parameter. A process in the group may be interrupted and put into sleep mode for a short interval of time to maintain the
defined limit. When and how such interruptions occur is defined by a proprietary algorithm used by EDB Resource Manager.

Setting the Dirty Rate Limit for a Resource Group

The ALTER RESOURCE GROUP command with the SET dirty_rate_limit clause is used to set the dirty rate limit for a resource group.

In the following example the dirty rate limit is set to 12288 kilobytes per second for resgrp_a , 6144 kilobytes per second for resgrp_b and 3072
kilobytes per second for resgrp_c . This means that the combined writing rate to the shared buffer of all processes assigned to resgrp_a is
maintained at approximately 12288 kilobytes per second. Similarly, for all processes in resgrp_b , the combined writing rate to the shared buffer is kept
to approximately 6144 kilobytes per second, etc.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1720

edb=# ALTER RESOURCE GROUP resgrp_a SET dirty_rate_limit TO 12288;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_b SET dirty_rate_limit TO 6144;
ALTER RESOURCE GROUP
edb=# ALTER RESOURCE GROUP resgrp_c SET dirty_rate_limit TO 3072;
ALTER RESOURCE GROUP

The following query shows the settings of dirty_rate_limit in the catalog.

edb=# SELECT rgrpname, rgrpdirtyratelimit FROM edb_resource_group;
 rgrpname | rgrpdirtyratelimit
-----------+--------------------
 resgrp_a | 12288
 resgrp_b | 6144
 resgrp_c | 3072
(3 rows)

Changing the dirty_rate_limit of a resource group not only affects new processes that are assigned to the group, but any currently running
processes that are members of the group are immediately affected by the change. That is, if the dirty_rate_limit is changed from 12288 to 3072,
currently running processes in the group would be throttled downward so that the aggregate group dirty rate would be near 3072 kilobytes per second
instead of 12288 kilobytes per second.

To illustrate the effect of setting the dirty rate limit for resource groups, the following examples use the following table for intensive I/O operations.

CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);

The FILLFACTOR = 10 clause results in INSERT commands packing rows up to only 10% per page. This results in a larger sampling of dirty shared
blocks for the purpose of these examples.

The pg_stat_statements module is used to display the number of shared buffer blocks that are dirtied by a SQL command and the amount of time the
command took to execute. This provides the information to calculate the actual kilobytes per second writing rate for the SQL command, and thus compare
it to the dirty rate limit set for a resource group.

In order to use the pg_stat_statements module, perform the following steps.

Step 1:Step 1: In the postgresql.conf file, add $libdir/pg_stat_statements to the shared_preload_libraries configuration parameter as
shown by the following.

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/pg_stat_statements'

Step 2:Step 2: Restart the database server.

Step 3:Step 3: Use the CREATE EXTENSION command to complete the creation of the pg_stat_statements module.

edb=# CREATE EXTENSION pg_stat_statements SCHEMA public;
CREATE EXTENSION

The pg_stat_statements_reset() function is used to clear out the pg_stat_statements view for clarity of each example.

The resource groups with the dirty rate limit settings shown in the previous query are used in these examples.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1721

Example – Single Process in a Single Group

The following sequence of commands shows the creation of table t1 . The current process is set to use resource group resgrp_b . The
pg_stat_statements view is cleared out by running the pg_stat_statements_reset() function.

Finally, the INSERT command generates a series of integers from 1 to 10,000 to populate the table, and dirty approximately 10,000 blocks.

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 13496.184
 shared_blks_dirtied | 10003

The actual dirty rate is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 13496.184 ms, which yields 0.74117247 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 741.17247 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 6072 kilobytes
per second.

Note that the actual dirty rate of 6072 kilobytes per second is close to the dirty rate limit for the resource group, which is 6144 kilobytes per second.

By contrast, if the steps are repeated again without the process belonging to any resource group, the dirty buffer rate is much higher.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1722

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SHOW edb_resource_group;
 edb_resource_group

(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

The following shows the results from the INSERT command without the usage of a resource group.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 2432.165
 shared_blks_dirtied | 10003

First, note the total time was only 2432.165 milliseconds as compared to 13496.184 milliseconds when a resource group with a dirty rate limit set to 6144
kilobytes per second was used.

The actual dirty rate without the use of a resource group is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 2432.165 ms, which yields 4.112797 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 4112.797 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 33692
kilobytes per second.

Note that the actual dirty rate of 33692 kilobytes per second is significantly higher than when the resource group with a dirty rate limit of 6144 kilobytes
per second was used.

Example – Multiple Processes in a Single Group

As stated previously, the dirty rate limit applies to the aggregate of all processes in the resource group. This concept is illustrated in the following example.

For this example the inserts are performed simultaneously on two different tables in two separate psql sessions, each of which has been added to
resource group resgrp_b that has a dirty_rate_limit set to 6144 kilobytes per second.

Session 1:Session 1:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1723

edb=# CREATE TABLE t1 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# INSERT INTO t1 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 2:Session 2:

edb=# CREATE TABLE t2 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_b;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_b
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t2 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

NoteNote

The INSERT commands in session 1 and session 2 were started after the SELECT pg_stat_statements_reset() command in session
2 was run.

The following shows the results from the INSERT commands in the two sessions. RECORD 3 shows the results from session 1. RECORD 2 shows the
results from session 2.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.43
 shared_blks_dirtied | 0
-[RECORD 2]--------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 30591.551
 shared_blks_dirtied | 10003
-[RECORD 3]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 33215.334
 shared_blks_dirtied | 10003

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1724

First, note the total time was 33215.334 milliseconds for session 1 and 30591.551 milliseconds for session 2. When only one session was active in the same
resource group as shown in the first example, the time was 13496.184 milliseconds. Thus more active processes in the resource group result in a slower
dirty rate for each active process in the group. This is shown in the following calculations.

The actual dirty rate for session 1 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 33215.334 ms, which yields 0.30115609 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 301.15609 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2467 kilobytes
per second.

The actual dirty rate for session 2 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 30591.551 ms, which yields 0.32698571 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 326.98571 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2679 kilobytes
per second.

The combined dirty rate from session 1 (2467 kilobytes per second) and from session 2 (2679 kilobytes per second) yields 5146 kilobytes per second, which
is below the set dirty rate limit of the resource group (6144 kilobytes per seconds).

Example – Multiple Processes in Multiple Groups

In this example, two additional psql sessions are used along with the previous two sessions. The third and fourth sessions perform the same INSERT
command in resource group resgrp_c with a dirty_rate_limit of 3072 kilobytes per second.

Sessions 1 and 2 are repeated as illustrated in the prior example using resource group resgrp_b with a dirty_rate_limit of 6144 kilobytes per
second.

Session 3:Session 3:

edb=# CREATE TABLE t3 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

resgrp_c
(1 row)

edb=# INSERT INTO t3 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

Session 4:Session 4:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1725

edb=# CREATE TABLE t4 (c1 INTEGER, c2 CHARACTER(500)) WITH (FILLFACTOR = 10);
CREATE TABLE
edb=# SET edb_resource_group TO resgrp_c;
SET
edb=# SHOW edb_resource_group;
 edb_resource_group

 resgrp_c
(1 row)

edb=# SELECT pg_stat_statements_reset();
 pg_stat_statements_reset

(1 row)

edb=# INSERT INTO t4 VALUES (generate_series (1,10000), 'aaa');
INSERT 0 10000

NoteNote

The INSERT commands in all four sessions were started after the SELECT pg_stat_statements_reset() command in session 4 was
run.

The following shows the results from the INSERT commands in the four sessions.

RECORD 3 shows the results from session 1. RECORD 2 shows the results from session 2.

RECORD 4 shows the results from session 3. RECORD 5 shows the results from session 4.

edb=# SELECT query, rows, total_time, shared_blks_dirtied FROM
pg_stat_statements;
-[RECORD 1]--------+--
 query | SELECT pg_stat_statements_reset();
 rows | 1
 total_time | 0.467
 shared_blks_dirtied | 0
-[RECORD 2]--------+--
 query | INSERT INTO t2 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 31343.458
 shared_blks_dirtied | 10003
-[RECORD 3]--------+--
 query | INSERT INTO t1 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 28407.435
 shared_blks_dirtied | 10003
-[RECORD 4]--------+--
 query | INSERT INTO t3 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 52727.846
 shared_blks_dirtied | 10003
-[RECORD 5]--------+--
 query | INSERT INTO t4 VALUES (generate_series (?,?), ?);
 rows | 10000
 total_time | 56063.697
 shared_blks_dirtied | 10003

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1726

First note that the times of session 1 (28407.435) and session 2 (31343.458) are close to each other as they are both in the same resource group with
dirty_rate_limit set to 6144, as compared to the times of session 3 (52727.846) and session 4 (56063.697), which are in the resource group with
dirty_rate_limit set to 3072. The latter group has a slower dirty rate limit so the expected processing time is longer as is the case for sessions 3 and

4.

The actual dirty rate for session 1 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 28407.435 ms, which yields 0.35212612 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 352.12612 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2885 kilobytes
per second.

The actual dirty rate for session 2 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 31343.458 ms, which yields 0.31914156 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 319.14156 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 2614 kilobytes
per second.

The combined dirty rate from session 1 (2885 kilobytes per second) and from session 2 (2614 kilobytes per second) yields 5499 kilobytes per second, which
is near the set dirty rate limit of the resource group (6144 kilobytes per seconds).

The actual dirty rate for session 3 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 52727.846 ms, which yields 0.18971001 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 189.71001 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 1554 kilobytes
per second.

The actual dirty rate for session 4 is calculated as follows.

The number of blocks dirtied per millisecond (ms) is 10003 blocks / 56063.697 ms, which yields 0.17842205 blocks per millisecond.
Multiply the result by 1000 to give the number of shared blocks dirtied per second (1 second = 1000 ms), which yields 178.42205 blocks per second.
Multiply the result by 8.192 to give the number of kilobytes dirtied per second (1 block = 8.192 kilobytes), which yields approximately 1462 kilobytes
per second.

The combined dirty rate from session 3 (1554 kilobytes per second) and from session 4 (1462 kilobytes per second) yields 3016 kilobytes per second, which
is near the set dirty rate limit of the resource group (3072 kilobytes per seconds).

Thus, this demonstrates how EDB Resource Manager keeps the aggregate dirty rate of the active processes in its groups close to the dirty rate limit set for
each group.

System Catalogs

This section describes the system catalogs that store the resource group information used by EDB Resource Manager.

edb_all_resource_groups

The following table lists the information available in the edb_all_resource_groups catalog:

Column Type Description

group_name name The name of the resource group.

active_processes integer Number of currently active processes in the resource group.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1727

cpu_rate_limit float8 Maximum CPU rate limit for the resource group. 0 means no limit.

per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active process in the resource group.

dirty_rate_limit float8 Maximum dirty rate limit for a resource group. 0 means no limit.

per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active process in the resource
group.

Column Type Description

edb_resource_group

The following table lists the information available in the edb_resource_group catalog:

Column Type Description

rgrpname name The name of the resource group.

rgrpcpuratelimit float8 Maximum CPU rate limit for a resource group. 0 means no limit.

rgrpdirtyratelimit float8 Maximum dirty rate limit for a resource group. 0 means no
limit.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1728

22.5 libpq C Library

libpq is the C application programmer’s interface to Advanced Server. libpq is a set of library functions that allow client programs to pass queries to the
Advanced Server and to receive the results of these queries.

libpq is also the underlying engine for several other EDB application interfaces including those written for C++, Perl, Python, Tcl and ECPG. So some
aspects of libpq’s behavior will be important to the user if one of those packages is used.

Client programs that use libpq must include the header file libpq-fe.h and must link with the libpq library.

Using libpq with EDB SPL

The EDB SPL language can be used with the libpq interface library, providing support for:

Procedures, functions, packages
Prepared statements
REFCURSORs

Static cursors
structs and typedefs

Arrays
DML and DDL operations
IN / OUT / IN OUT parameters

REFCURSOR Support

In earlier releases, Advanced Server provided support for REFCURSORs through the following libpq functions; these functions should now be considered
deprecated:

PQCursorResult()
PQgetCursorResult()
PQnCursor()

You may now use PQexec() and PQgetvalue() to retrieve a REFCURSOR returned by an SPL (or PL/pgSQL) function. A REFCURSOR is returned
in the form of a null-terminated string indicating the name of the cursor. Once you have the name of the cursor, you can execute one or more FETCH
statements to retrieve the values exposed through the cursor.

Please note that the samples that follow do not include error-handling code that would be required in a real-world client application.

Returning a Single REFCURSORReturning a Single REFCURSOR

The following example shows an SPL function that returns a value of type REFCURSOR :

CREATE OR REPLACE FUNCTION getEmployees(p_deptno NUMERIC)
RETURN REFCURSOR AS
 result REFCURSOR;
BEGIN
 OPEN result FOR SELECT * FROM emp WHERE deptno = p_deptno;

 RETURN result;
END;

This function expects a single parameter, p_deptno , and returns a REFCURSOR that holds the result set for the SELECT query shown in the OPEN

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1729

This function expects a single parameter, p_deptno , and returns a REFCURSOR that holds the result set for the SELECT query shown in the OPEN
statement. The OPEN statement executes the query and stores the result set in a cursor. The server constructs a name for that cursor and stores the name
in a variable (named result). The function then returns the name of the cursor to the caller.

To call this function from a C client using libpq, you can use PQexec() and PQgetvalue() :

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)
 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmployees(10)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;

 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1730

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";
 }

 printf("\n");
 }

 PQclear(result);
 free(commandText);
}

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

The code sample contains a line of code that calls the getEmployees() function, and returns a result set that contains all of the employees in
department 10 :

result = PQexec(conn, "SELECT * FROM getEmployees(10)");

The PQexec() function returns a result set handle to the C program. The result set will contain exactly one value; that value is the name of the cursor as
returned by getEmployees() .

Once you have the name of the cursor, you can use the SQL FETCH statement to retrieve the rows in that cursor. The function fetchAllRows() builds
a FETCH ALL statement, executes that statement, and then prints the result set of the FETCH ALL statement.

The output of this program is shown below:

-- employees --
 7782,CLARK,MANAGER,7839,09-JUN-81 00:00:00,2450.00,,10
 7839,KING,PRESIDENT,,17-NOV-81 00:00:00,5000.00,,10
 7934,MILLER,CLERK,7782,23-JAN-82 00:00:00,1300.00,,10

Returning Multiple REFCURSORsReturning Multiple REFCURSORs

The next example returns two REFCURSORs :

The first REFCURSOR contains the name of a cursor (employees) that contains all employees who work in a department within the range

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1731

The first REFCURSOR contains the name of a cursor (employees) that contains all employees who work in a department within the range
specified by the caller.
The second REFCURSOR contains the name of a cursor (departments) that contains all of the departments in the range specified by the
caller.

In this example, instead of returning a single REFCURSOR , the function returns a SETOF REFCURSOR (which means 0 or more REFCURSORS). One
other important difference is that the libpq program should not expect a single REFCURSOR in the result set, but should expect two rows, each of which
will contain a single value (the first row contains the name of the employees cursor, and the second row contains the name of the departments
cursor).

CREATE OR REPLACE FUNCTION getEmpsAndDepts(p_min NUMERIC,
 p_max NUMERIC)
RETURN SETOF REFCURSOR AS
 employees REFCURSOR;
 departments REFCURSOR;
BEGIN
 OPEN employees FOR
 SELECT * FROM emp WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT employees;

 OPEN departments FOR
 SELECT * FROM dept WHERE deptno BETWEEN p_min AND p_max;
 RETURN NEXT departments;
END;

As in the previous example, you can use PQexec() and PQgetvalue() to call the SPL function:

#include <stdio.h>
#include <stdlib.h>
#include "libpq-fe.h"

static void fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description);
static void fail(PGconn *conn, const char *msg);

int
main(int argc, char *argv[])
{
 PGconn *conn = PQconnectdb(argv[1]);
 PGresult *result;

 if (PQstatus(conn) != CONNECTION_OK)
 fail(conn, PQerrorMessage(conn));

 result = PQexec(conn, "BEGIN TRANSACTION");

 if (PQresultStatus(result) != PGRES_COMMAND_OK)
 fail(conn, PQerrorMessage(conn));

 PQclear(result);

 result = PQexec(conn, "SELECT * FROM getEmpsAndDepts(20, 30)");

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 fetchAllRows(conn, PQgetvalue(result, 0, 0), "employees");
 fetchAllRows(conn, PQgetvalue(result, 1, 0), "departments");

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1732

 PQclear(result);

 PQexec(conn, "COMMIT");

 PQfinish(conn);

 exit(0);
}

static void
fetchAllRows(PGconn *conn,
 const char *cursorName,
 const char *description)
{
 size_t commandLength = strlen("FETCH ALL FROM ") +
 strlen(cursorName) + 3;
 char *commandText = malloc(commandLength);
 PGresult *result;
 int row;

 sprintf(commandText, "FETCH ALL FROM \"%s\"", cursorName);

 result = PQexec(conn, commandText);

 if (PQresultStatus(result) != PGRES_TUPLES_OK)
 fail(conn, PQerrorMessage(conn));

 printf("-- %s --\n", description);

 for (row = 0; row < PQntuples(result); row++)
 {
 const char *delimiter = "\t";
 int col;

 for (col = 0; col < PQnfields(result); col++)
 {
 printf("%s%s", delimiter, PQgetvalue(result, row, col));
 delimiter = ",";
 }

 printf("\n");
 }

 PQclear(result);
 free(commandText);
}

static void
fail(PGconn *conn, const char *msg)
{
 fprintf(stderr, "%s\n", msg);

 if (conn != NULL)
 PQfinish(conn);

 exit(-1);
}

If you call getEmpsAndDepts(20, 30) , the server will return a cursor that contains all employees who work in department 20 or 30 , and a second
cursor containing the description of departments 20 and 30 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1733

-- employees --
 7369,SMITH,CLERK,7902,17-DEC-80 00:00:00,800.00,,20
 7499,ALLEN,SALESMAN,7698,20-FEB-81 00:00:00,1600.00,300.00,30
 7521,WARD,SALESMAN,7698,22-FEB-81 00:00:00,1250.00,500.00,30
 7566,JONES,MANAGER,7839,02-APR-81 00:00:00,2975.00,,20
 7654,MARTIN,SALESMAN,7698,28-SEP-81 00:00:00,1250.00,1400.00,30
 7698,BLAKE,MANAGER,7839,01-MAY-81 00:00:00,2850.00,,30
 7788,SCOTT,ANALYST,7566,19-APR-87 00:00:00,3000.00,,20
 7844,TURNER,SALESMAN,7698,08-SEP-81 00:00:00,1500.00,0.00,30
 7876,ADAMS,CLERK,7788,23-MAY-87 00:00:00,1100.00,,20
 7900,JAMES,CLERK,7698,03-DEC-81 00:00:00,950.00,,30
 7902,FORD,ANALYST,7566,03-DEC-81 00:00:00,3000.00,,20
-- departments --
 20,RESEARCH,DALLAS
 30,SALES,CHICAGO

Array Binding

Advanced Server's array binding functionality allows you to send an array of data across the network in a single round-trip. When the back end receives the
bulk data, it can use the data to perform insert or update operations.

Perform bulk operations with a prepared statement; use the following function to prepare the statement:

PGresult *PQprepare(PGconn *conn,
 const char *stmtName,
 const char *query,
 int nParams,
 const Oid *paramTypes);

Details of PQprepare() can be found in the prepared statement section.

The following functions can be used to perform bulk operations:

PQBulkStart
PQexecBulk
PQBulkFinish
PQexecBulkPrepared

PQBulkStart

PQBulkStart() initializes bulk operations on the server. You must call this function before sending bulk data to the server. PQBulkStart()
initializes the prepared statement specified in stmtName to receive data in a format specified by paramFmts .

API DefinitionAPI Definition

PGresult *PQBulkStart(PGconn *conn,
 const char *Stmt_Name,
 unsigned int nCol,
 const int *paramFmts);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1734

PQexecBulk

PQexecBulk() is used to supply data (paramValues) for a statement that was previously initialized for bulk operation using PQBulkStart() .

This function can be used more than once after PQBulkStart() to send multiple blocks of data. See the example for more details.

API DefinitionAPI Definition

PGresult *PQexecBulk(PGconn *conn,
 unsigned int nRows,
 const char *const * paramValues,
 const int *paramLengths);

PQBulkFinish

This function completes the current bulk operation. You can use the prepared statement again without re-preparing it.

API DefinitionAPI Definition

PGresult *PQBulkFinish(PGconn *conn);

PQexecBulkPrepared

Alternatively, you can use the PQexecBulkPrepared() function to perform a bulk operation with a single function call. PQexecBulkPrepared()
sends a request to execute a prepared statement with the given parameters, and waits for the result. This function combines the functionality of
PQbulkStart() , PQexecBulk() , and PQBulkFinish() . When using this function, you are not required to initialize or terminate the bulk

operation; this function starts the bulk operation, passes the data to the server, and terminates the bulk operation.

Specify a previously prepared statement in the place of stmtName. Commands that will be used repeatedly will be parsed and planned just once, rather
than each time they are executed.

API DefinitionAPI Definition

PGresult *PQexecBulkPrepared(PGconn *conn,
 const char *stmtName,
 unsigned int nCols,
 unsigned int nRows,
 const char *const *paramValues,
 const int *paramLengths,
 const int *paramFormats);

Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish)

The following example uses PGBulkStart , PQexecBulk , and PQBulkFinish .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1735

void InsertDataUsingBulkStyle(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3",
"Test_4", "Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_1", "INSERT INTO testtable1 values($1, $2
)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

 res = PQBulkStart(conn, "stmt_1", 2, paramFmts);
 PQclear(res);
 printf("< -- PQBulkStart -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const
 int*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQexecBulk(conn, 5, (const char *const *)paramVals, (const
 int*)paramLens);
 PQclear(res);
 printf("< -- PQexecBulk -- >\n");

 res = PQBulkFinish(conn);
 PQclear(res);
 printf("< -- PQBulkFinish -- >\n");
}

Example Code (Using PQexecBulkPrepared)

The following example uses PQexecBulkPrepared .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1736

void InsertDataUsingBulkStyleCombinedVersion(PGconn *conn)
{
 PGresult *res;
 Oid paramTypes[2];
 char *paramVals[5][2];
 int paramLens[5][2];
 int paramFmts[2];
 int i;

 int a[5] = { 10, 20, 30, 40, 50 };
 char b[5][10] = { "Test_1", "Test_2", "Test_3",
"Test_4", "Test_5" };

 paramTypes[0] = 23;
 paramTypes[1] = 1043;
 res = PQprepare(conn, "stmt_2", "INSERT INTO testtable1 values(
 $1, $2)", 2, paramTypes);
 PQclear(res);

 paramFmts[0] = 1; /* Binary format */
 paramFmts[1] = 0;

 for(i = 0; i < 5; i++)
 {
 a[i] = htonl(a[i]);
 paramVals[i][0] = &(a[i]);
 paramVals[i][1] = b[i];

 paramLens[i][0] = 4;
 paramLens[i][1] = strlen(b[i]);
 }

res = PQexecBulkPrepared(conn, "stmt_2", 2, 5, (const char *const
*)paramVals,(const int *)paramLens, (const int *)paramFmts);
 PQclear(res);
}

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1737

22.6 Debugger

The Debugger gives developers and DBAs the ability to test and debug server-side programs using a graphical, dynamic environment. The types of programs
that can be debugged are SPL stored procedures, functions, triggers, and packages as well as PL/pgSQL functions and triggers.

The Debugger is integrated with pgAdmin 4 and EDB Postgres Enterprise Manager. If you have installed Advanced Server on a Windows host, pgAdmin 4 is
automatically installed; you will find the pgAdmin 4 icon in the Windows Start menu. If your Advanced Server host is on a CentOS or Linux system, you
can use yum to install pgAdmin4. Open a command line, assume superuser privileges, and enter:

yum install edb-pgadmin4*

On Linux, the edb-asxx-server-pldebugger RPM package where xx is the Advanced Server version number, must be installed as well.
Information about pgAdmin 4 is available at:

https://www.pgadmin.org/

The RPM installation will add the pgAdmin4 icon to your Applications menu.

There are two basic ways the Debugger can be used to test programs:

Standalone Debugging.Standalone Debugging. The Debugger is used to start the program to be tested. You supply any input parameter values required by the program and
you can immediately observe and step through the code of the program. Standalone debugging is the typical method used for new programs and for
initial problem investigation.
In-Context Debugging.In-Context Debugging. The program to be tested is initiated by an application other than the Debugger. You first set a global breakpoint on the
program to be tested. The application that makes the first call to the program encounters the global breakpoint. The application suspends execution
at which point the Debugger takes control of the called program. You can then observe and step through the code of the called program as it runs
within the context of the calling application. After you have completely stepped through the code of the called program in the Debugger, the
suspended application resumes execution. In-context debugging is useful if it is difficult to reproduce a problem using standalone debugging due to
complex interaction with the calling application.

The debugging tools and operations are the same whether using standalone or in-context debugging. The difference is in how the program to be debugged
is invoked.

The following sections discuss the features and functionality of the Debugger using the standalone debugging method. The directions for starting the
Debugger for in-context debugging are discussed in the Setting Global Breakpoint for In-Context Debugging.

Configuring the Debugger

Before using the Debugger, edit the postgresql.conf file (located in the data subdirectory of your Advanced Server home directory), adding
$libdir/plugin_debugger to the libraries listed in the shared_preload_libraries configuration parameter:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/edb_gen,$libdir/plugin_debugger'

On Linux, the postgresql.conf file is located in: /var/lib/edb/asxx/data
On Windows, the postgresql.conf file is located in: C:\Program Files\edb\asxx\data

Where xx is the version of Advanced Server.

After modifying the shared_preload_libraries parameter, you must restart the database server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1738

https://www.pgadmin.org/

Starting the Debugger

Use pgAdmin 4 to access the Debugger for standalone debugging. To open the Debugger, highlight the name of the stored procedure or function you wish
to debug in the pgAdmin 4 Browser panel. Then, navigate through the Object menu to the Debugging menu and select Debug from the
submenu.

Fig. 1: Starting the Debugger from the Object menu

You can also right-click on the name of the stored procedure or function in the pgAdmin 4 Browser , and select Debugging , and the Debug from the
context menu.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1739

Fig. 2: Starting the Debugger from the Object's context menu

Note that triggers cannot be debugged using standalone debugging. Triggers must be debugged using in-context debugging. See the Setting Global
Breakpoint for In-Context Debugging for information on setting a global breakpoint for in-context debugging.

To debug a package, highlight the specific procedure or function under the package node of the package you wish to debug and follow the same directions
as for stored procedures and functions.

The Debugger Window

You can use the Debugger window to pass parameter values when you are standalone-debugging a program that expects parameters. When you start
the debugger, the Debugger window opens automatically to display any IN or IN OUT parameters expected by the program. If the program declares
no IN or IN OUT parameters, the Debugger window does not open.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1740

Fig. 3: The Debugger window

Use the fields on the Debugger window to provide a value for each parameter:

The Name field contains the formal parameter name.
The Type field contains the parameter data type.
Check the Null? checkbox to indicate that the parameter is a NULL value.
Check the Expression? checkbox if the Value field contains an expression.
The Value field contains the parameter value that will be passed to the program.
Check the Use Default? checkbox to indicate that the program should use the value in the Default Value field.
The Default Value field contains the default value of the parameter.

Press the Tab key to select the next parameter in the list for data entry, or click on a Value field to select the parameter for data entry.

If you are debugging a procedure or function that is a member of a package that has an initialization section, check the Debug Package
Initializer check box to instruct the Debugger to step into the package initialization section, allowing you to debug the initialization section code
before debugging the procedure or function. If you do not select the check box, the Debugger executes the package initialization section without allowing
you to see or step through the individual lines of code as they are executed.

After entering the desired parameter values, click the Debug button to start the debugging process. Click the Cancel button to terminate the
Debugger.

NoteNote

The Debugger window does not open during in-context debugging. Instead, the application calling the program to be debugged must supply
any required input parameter values.

When you have completed a full debugging cycle by stepping through the program code, the Debugger window re-opens, allowing you to enter new
parameter values and repeat the debugging cycle, or end the debugging session.

Main Debugger Window

The Main Debugger window contains two panels:

The top Program Body panel displays the program source code.
The bottom Tabs panel provides a set of tabs for different information.

Use the Tool Bar icons located at the top panel to access debugging functions.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1741

Fig. 4: The Main Debugger window

The two panels are described in the following sections.

The Program Body Panel

The Program Body panel displays the source code of the program that is being debugged.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1742

Fig. 5: The Program Body

The figure shows that the Debugger is about to execute the SELECT statement. The blue indicator in the program body highlights the next statement to
execute.

The Tabs Panel

You can use the bottom Tabs panel to view or modify parameter values or local variables, or to view messages generated by RAISE INFO and function
results.

The following is the information displayed by the tabs in the panel:

The Parameters tab displays the current parameter values.
The Local variables tab displays the value of any variables declared within the program.
The Messages tab displays any results returned by the program as it executes.
The Results tab displays program results (if applicable) such as the value from the RETURN statement of a function.
The Stack tab displays the call stack.

The following figures show the results from the various tabs.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1743

Fig. 6: The Parameters tab

Fig. 7: The Local variables tab

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1744

Fig. 8: The Messages tab

Fig. 9: The Results tab

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1745

The Stack Tab

The Stack tab displays a list of programs that are currently on the call stack (programs that have been invoked, but which have not yet completed). When
a program is called, the name of the program is added to the top of the list displayed in the Stack tab. When the program ends, its name is removed from
the list.

The Stack tab also displays information about program calls. The information includes:

The location of the call within the program
The call arguments
The name of the program being called

Reviewing the call stack can help you trace the course of execution through a series of nested programs.

Fig. 10: A debugged program calling a subprogram

The above figure shows that emp_query_caller is about to call a subprogram named emp_query . emp_query_caller is currently at the top of
the call stack.

After the call to emp_query executes, emp_query is displayed at the top of the Stack tab, and its code is displayed in the Program Body panel.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1746

Fig. 11: Debugging the called subprogram

Upon completion of execution of the subprogram, control returns to the calling program (emp_query_caller) , now displayed at the top of the
Stack tab.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1747

Fig. 12: Control returns from debugged subprogram

Debugging a Program

You can perform the following operations to debug a program:

Step through the program one line at a time
Execute the program until you reach a breakpoint
View and change local variable values within the program

Stepping Through the Code

Use the tool bar icons to step through a program with the Debugger:

Fig. 13: The Tool bar icons

The icons serve the following purposes:

Step into.Step into. Click the Step into icon to execute the currently highlighted line of code.
Step over.Step over. Click the Step over icon to execute a line of code, stepping over any sub-functions invoked by the code. The sub-function executes,
but is not debugged unless it contains a breakpoint.
Continue/Start.Continue/Start. Click the Continue/Start icon to execute the highlighted code, and continue until the program encounters a breakpoint or
completes.
Stop.Stop. Click the Stop icon to halt the execution of a program.

Using Breakpoints

As the Debugger executes a program, it pauses whenever it reaches a breakpoint. When the Debugger pauses, you can observe or change local variables, or
navigate to an entry in the call stack to observe variables or set other breakpoints. The next step into, step over, or continue operation forces the debugger
to resume execution with the next line of code following the breakpoint. There are two types of breakpoints:

Local Breakpoint -Local Breakpoint - A local breakpoint can be set at any executable line of code within a program. The Debugger pauses execution when it reaches a line
where a local breakpoint has been set.

Global Breakpoint -Global Breakpoint - A global breakpoint will trigger when any session reaches that breakpoint. Set a global breakpoint if you want to perform in-context
debugging of a program. When a global breakpoint is set on a program, the debugging session that set the global breakpoint waits until that program is
invoked in another session. A global breakpoint can only be set by a superuser.

To create a local breakpoint, left-click within the grey shaded margin to the left of the line of code where you want the local breakpoint set. Where you click
in the grey shaded margin should be close to the right side of the margin as in the spot where the breakpoint dot is shown on source code line 12.

When created, the Debugger displays a dark dot in the margin, indicating a breakpoint has been set at the selected line of code.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1748

Fig. 14: Set a breakpoint by clicking in left-hand margin

You can set as many local breakpoints as desired. Local breakpoints remain in effect for the duration of a debugging session until they are removed.

Removing a Local BreakpointRemoving a Local Breakpoint

To remove a local breakpoint, left-click the mouse on the breakpoint dot in the grey shaded margin of the Program Body panel. The dot disappears,
indicating that the breakpoint has been removed.

You can remove all of the breakpoints from the program that currently appears in the Program Body frame by clicking the Clear all
breakpoints icon.

Fig. 15: Clear all breakpoints icon

NoteNote

When you perform any of the preceding actions, only the breakpoints in the program that currently appears in the Program Body panel are
removed. Breakpoints in called subprograms or breakpoints in programs that call the program currently appearing in the Program Body panel
are not removed.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1749

Setting a Global Breakpoint for In-Context Debugging

To set a global breakpoint for in-context debugging, highlight the stored procedure, function, or trigger on which you wish to set the breakpoint in the
Browser panel. Navigate through the Object menu to select Debugging , and then Set Breakpoint .

Fig. 16: Setting a global breakpoint from the Object menu

Alternatively, you can right-click on the name of the stored procedure, function, or trigger on which you wish to set a global breakpoint and select
Debugging , then Set Breakpoint from the context menu as shown by the following.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1750

Fig. 17: Setting a global breakpoint from the Object's context menu

To set a global breakpoint on a trigger, expand the table node that contains the trigger, highlight the specific trigger you wish to debug, and follow the same
directions as for stored procedures and functions.

To set a global breakpoint in a package, highlight the specific procedure or function under the package node of the package you wish to debug and follow
the same directions as for stored procedures and functions.

After you choose Set Breakpoint , the Debugger window opens and waits for an application to call the program to be debugged.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1751

Fig. 18: Waiting for invocation of program to be debugged

The PSQL client invokes the select_emp function (on which a global breakpoint has been set).

$ psql edb enterprisedb
psql.bin (13.0.0, server 13.0.0)
Type "help" for help.

edb=# SELECT select_emp(7900);

The select_emp function does not complete until you step through the program in the Debugger.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1752

Fig. 19: Program on which a global breakpoint has been set

You can now debug the program using any of the previously discussed operations such as step into, step over, and continue, or set local breakpoints. When
you have stepped through execution of the program, the calling application (PSQL) regains control and the select_emp function completes execution
and its output is displayed.

$ psql edb enterprisedb
psql.bin (13.0.0, server 13.0.0)
Type "help" for help.

edb=# SELECT select_emp(7900);
INFO: Number : 7900
INFO: Name : JAMES
INFO: Hire Date : 12/03/1981
INFO: Salary : 950.00
INFO: Commission: 0.00
INFO: Department: SALES
 select_emp

(1 row)

At this point, you can end the Debugger session. If you do not end the Debugger session, the next application that invokes the program will encounter the
global breakpoint and the debugging cycle will begin again.

Exiting the Debugger

To end a Debugger session and exit the Debugger, click on the close icon (x) located in the upper-right corner to close the tab.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1753

Fig. 20: Exiting from the Debugger

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1754

22.7 Performance Analysis and Tuning

Advanced Server provides various tools for performance analysis and tuning. These features are described in this section.

Dynatune

Advanced Server supports dynamic tuning of the database server to make the optimal usage of the system resources available on the host machine on
which it is installed. The two parameters that control this functionality are located in the postgresql.conf file. These parameters are:

edb_dynatune
edb_dynatune_profile

edb_dynatune

edb_dynatune determines how much of the host system's resources are to be used by the database server based upon the host machine's total
available resources and the intended usage of the host machine.

When Advanced Server is initially installed, the edb_dynatune parameter is set in accordance with the selected usage of the host machine on which it
was installed - i.e., development machine, mixed use machine, or dedicated server. For most purposes, there is no need for the database administrator to
adjust the various configuration parameters in the postgresql.conf file in order to improve performance.

You can change the value of the edb_dynatune parameter after the initial installation of Advanced Server by editing the postgresql.conf file. The
postmaster must be restarted in order for the new configuration to take effect.

The edb_dynatune parameter can be set to any integer value between 0 and 100 , inclusive. A value of 0 , turns off the dynamic tuning feature
thereby leaving the database server resource usage totally under the control of the other configuration parameters in the postgresql.conf file.

A low non-zero, value (e.g., 1 - 33) dedicates the least amount of the host machine's resources to the database server. This setting would be used for a
development machine where many other applications are being used.

A value in the range of 34 - 66 dedicates a moderate amount of resources to the database server. This setting might be used for a dedicated application
server that may have a fixed number of other applications running on the same machine as Advanced Server.

The highest values (e.g., 67 - 100) dedicate most of the server's resources to the database server. This setting would be used for a host machine that is
totally dedicated to running Advanced Server.

Once a value of edb_dynatune is selected, database server performance can be further fine-tuned by adjusting the other configuration parameters in
the postgresql.conf file. Any adjusted setting overrides the corresponding value chosen by edb_dynatune . You can change the value of a
parameter by un-commenting the configuration parameter, specifying the desired value, and restarting the database server.

edb_dynatune_profile

The edb_dynatune_profile parameter is used to control tuning aspects based upon the expected workload profile on the database server. This
parameter takes effect upon startup of the database server.

The possible values for edb_dynatune_profile are:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1755

Value Usage

oltp Recommended when the database server is processing heavy online transaction processing workloads.

reporting Recommended for database servers used for heavy data reporting.

mixed Recommended for servers that provide a mix of transaction processing and data reporting.

EDB Wait States

The EDB wait states contrib module contains two main components.

EDB Wait States Background Worker (EWSBW)EDB Wait States Background Worker (EWSBW)

When the wait states background worker is registered as one of the shared preload libraries, EWSBW probes each of the running sessions at regular
intervals.

For every session it collects information such as the database to which it is connected, the logged in user of the session, the query running in that session,
and the wait events on which it is waiting.

This information is saved in a set of files in a user-configurable path and directory folder given by the edb_wait_states.directory parameter to be
added to the postgresql.conf file. The specified path must be a full, absolute path and not a relative path.

The following describes the installation process on a Linux system.The following describes the installation process on a Linux system.

Step 1:Step 1: EDB wait states is installed with the edb-asxx-server-edb_wait_states RPM package where xx is the Advanced Server version number.

Step 2:Step 2: To launch the worker, it must be registered in the postgresql.conf file using the shared_preload_libraries parameter, for example:

shared_preload_libraries = '$libdir/edb_wait_states'

Step 3:Step 3: Restart the database server. After a successful restart, the background worker begins collecting data.

Step 4:Step 4: To review the data, create the following extension:

CREATE EXTENSION edb_wait_states;

Step 5:Step 5: To terminate the EDB wait states worker, remove $libdir/edb_wait_states from the shared_preload_libraries parameter and
restart the database server.

The following describes the installation process on a Windows system.The following describes the installation process on a Windows system.

Step 1:Step 1: EDB wait states module is installed with the EDB Modules installer by invoking StackBuilder Plus utility. Follow the onscreen instructions to
complete the installation of the EDB Modules .

Step 2:Step 2: To register the worker, modify the postgresql.conf file to include the wait states library in the shared_preload_libraries
configuration parameter. The parameter value must include:

shared_preload_libraries = '$libdir/edb_wait_states.dll'

The EDB wait states installation places the edb_wait_states.dll library file in the following path:

C:\Program Files\edb\as13\lib\

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1756

Step 3:Step 3: Restart the database server for the changes to take effect. After a successful restart, the background worker gets started and starts collecting the
data.

Step 4:Step 4: To view the data, create the following extension:

CREATE EXTENSION edb_wait_states;

The installer places the edb_wait_states.control file in the following path:

C:\Program Files\edb\as13\share\extension

Terminating the Wait States WorkerTerminating the Wait States Worker

To terminate the EDB wait states worker, use the DROP EXTENSION command to drop the edb_wait_states extension; then modify the
postgresql.conf file, removing $libdir/edb_wait_states.dll from the shared_preload_libraries parameter. Restart the

database server after modifying the postgresql.conf file to apply your changes.

The Wait States InterfaceThe Wait States Interface

The interface includes the functions listed in the following sections. Each of these functions has common input and output parameters. Those parameters
are as follows:

start_ts and end_ts (IN).start_ts and end_ts (IN). Together these specify the time interval and the data within which is to be read. If only start_ts is specified, the data
starting from start_ts is output. If only end_ts is provided, data up to end_ts is output. If none of those are provided, all the data is output.
Every function outputs different data. The output of each function will be explained below.
query_id (OUT).query_id (OUT). Identifies a normalized query. It is internal hash code computed from the query.
session_id (OUT).session_id (OUT). Identifies a session.
ref_start_ts and ref_end_ts (OUT).ref_start_ts and ref_end_ts (OUT). Provide the timestamps of a file containing a particular data point. A data point may be a wait event sample
record or a query record or a session record.

The syntax of each function is given in the following sections.

NoteNote

The examples shown in the following sections are based on the following three queries executed on four different sessions connected to different
databases using different users, simultaneously:

SELECT schemaname FROM pg_tables, pg_sleep(15) WHERE schemaname <>
'pg_catalog'; /* ran on 2 sessions */
SELECT tablename FROM pg_tables, pg_sleep(10) WHERE schemaname <>
'pg_catalog';
SELECT tablename, schemaname FROM pg_tables, pg_sleep(10) WHERE schemaname
<> 'pg_catalog';

edb_wait_states_data

This function is used to read the data collected by EWSBW.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1757

edb_wait_states_data(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT session_id int4,
 OUT <dbname> text,
 OUT <username> text,
 OUT <query> text,
 OUT <query_start_time> timestamptz,
 OUT <sample_time> timestamptz,
 OUT <wait_event_type> text,
 OUT <wait_event> text
)

This function can be used to find out the following:

The queries running in the given duration (defined by start_ts and end_ts) in all the sessions, and the wait events, if any, they were waiting on. For
example:

SELECT query, session_id, wait_event_type, wait_event
 FROM edb_wait_states_data(start_ts, end_ts);

The progress of a session within a given duration (that is, the queries run in a session (session_id = 100000) and the wait events the queries waited on). For
example:

SELECT query, wait_event_type, wait_event
 FROM edb_wait_states_data(start_ts, end_ts)
 WHERE session_id = 100000;

The duration for which the samples are available. For example:

SELECT min(sample_time), max(sample_time)
 FROM edb_wait_states_data();

ParametersParameters

In addition to the common parameters described previously, each row of the output gives the following:

dbname

The session's database

username

The session's logged in user

query

The query running in the session

query_start_time

The time when .the query started

sample_time

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1758

The time when wait event data was collected

wait_event_type

The type of wait event the session (backend) is waiting on

wait_event

The wait event the session (backend) is waiting on

ExampleExample

The following is a sample output from the edb_wait_states_data() function.

edb=# SELECT * FROM edb_wait_states_data();
-[RECORD 1]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:19.700236 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 2]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:18.699938 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 3]----+---
session_id | 4398
dbname | edb
username | enterprisedb
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
query_start_time | 17-AUG-18 11:56:05.271962 -04:00
sample_time | 17-AUG-18 11:56:17.700253 -04:00
wait_event_type | Timeout
wait_event | PgSleep
 .
 .
 .

edb_wait_states_queries

This function gives information about the queries sampled by EWSBW.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1759

edb_wait_states_queries(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT query_id int8,
 OUT <query> text,
 OUT ref_start_ts timestamptz
 OUT ref_end_ts timestamptz
)

A new queries file is created periodically and thus, there can be multiple query files generated corresponding to specific intervals.

This function returns all the queries in query files that overlap with the given time interval. A query as shown below, gives all the queries in query files that
contained queries sampled between start_ts and end_ts .

In other words, the function may output queries that did not run in the given interval. To exactly know that the user should use
edb_wait_states_data() .

SELECT query FROM edb_wait_states_queries(start_ts, end_ts);

ParametersParameters

In addition to the common parameters described previously, each row of the output gives the following:

query

Normalized query text

ExampleExample

The following is a sample output from the edb_wait_states_queries() function.

edb=# SELECT * FROM edb_wait_states_queries();
-[RECORD 1]+---
query_id | 4292540138852956818
query | SELECT schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 2]+---
query_id | 3754591102365859187
query | SELECT tablename FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 3]+---
query_id | 349089096300352897
query | SELECT tablename, schemaname FROM pg_tables, pg_sleep($1) WHERE schemaname <> $2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

edb_wait_states_sessions

This function gives information about the sessions sampled by EWSBW.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1760

edb_wait_states_sessions(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT session_id int4,
 OUT <dbname> text,
 OUT <username> text,
 OUT ref_start_ts timestamptz
 OUT ref_end_ts timestamptz
)

This function can be used to identify the databases that were connected and/or which users started those sessions. For example:

SELECT dbname, username, session_id
 FROM edb_wait_states_sessions();

Similar to edb_wait_states_queries() , this function outputs all the sessions logged in session files that contain sessions sampled within the given
interval and not necessarily only the sessions sampled within the given interval. To identify that one should use edb_wait_states_data() .

ParametersParameters

In addition to the common parameters described previously, each row of the output gives the following:

dbname

The database to which the session is connected

username

Login user of the session

ExampleExample

The following is a sample output from the edb_wait_states_sessions() function.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1761

edb=# SELECT * FROM edb_wait_states_sessions();
-[RECORD 1]+---------------------------------
session_id | 4340
dbname | edb
username | enterprisedb
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 2]+---------------------------------
session_id | 4398
dbname | edb
username | enterprisedb
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 3]+---------------------------------
session_id | 4410
dbname | db1
username | user1
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00
-[RECORD 4]+---------------------------------
session_id | 4422
dbname | db2
username | user2
ref_start_ts | 17-AUG-18 11:52:38.698793 -04:00
ref_end_ts | 18-AUG-18 11:52:38.698793 -04:00

edb_wait_states_samples

This function gives information about wait events sampled by EWSBW.

edb_wait_states_samples(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz,
 OUT query_id int8,
 OUT session_id int4,
 OUT <query_start_time> timestamptz,
 OUT <sample_time> timestamptz,
 OUT <wait_event_type> text,
 OUT <wait_event> text
)

Usually, a user would not be required to call this function directly.

ParametersParameters

In addition to the common parameters described previously, each row of the output gives the following:

query_start_time

The time when the query started in this session

sample_time

The time when wait event data was collected

wait_event_type

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1762

The type of wait event on which the session is waiting

wait_event

The wait event on which the session (backend) is waiting

ExampleExample

The following is a sample output from the edb_wait_states_samples() function.

edb=# SELECT * FROM edb_wait_states_samples();
-[RECORD 1]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:00.699934 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 2]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:01.699003 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 3]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:02.70001 -04:00
wait_event_type | Timeout
wait_event | PgSleep
-[RECORD 4]----+---------------------------------
query_id | 4292540138852956818
session_id | 4340
query_start_time | 17-AUG-18 11:56:00.39421 -04:00
sample_time | 17-AUG-18 11:56:03.700081 -04:00
wait_event_type | Timeout
wait_event | PgSleep
 .
 .
 .

edb_wait_states_purge

The function deletes all the sampled data files (queries, sessions and wait event samples) that were created after start_ts and aged (rotated) before
end_ts .

edb_wait_states_purge(
 IN start_ts timestamptz default '-infinity'::timestamptz,
 IN end_ts timestamptz default 'infinity'::timestamptz
)

Usually a user does not need to run this function. The backend should purge those according to the retention age, but in case, that doesn't happen for some
reason, this function may be used.

In order to know the duration for which the samples have been retained, use edb_wait_states_data() as explained in the previous examples of that

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1763

In order to know the duration for which the samples have been retained, use edb_wait_states_data() as explained in the previous examples of that
function.

ExampleExample

The $PGDATA/edb_wait_states directory before running edb_wait_states_purge() :

[root@localhost data]# pwd
/var/lib/edb/as13/data
[root@localhost data]# ls -l edb_wait_states
total 12
-rw------- 1 enterprisedb ... 253 Aug 17 11:56 edb_ws_queries_587836358698793_587922758698793
-rw------- 1 enterprisedb ... 1600 Aug 17 11:56 edb_ws_samples_587836358698793_587839958698793
-rw------- 1 enterprisedb ... 94 Aug 17 11:56 edb_ws_sessions_587836358698793_587922758698793

The $PGDATA/edb_wait_states directory after running edb_wait_states_purge() :

edb=# SELECT * FROM edb_wait_states_purge();
 edb_wait_states_purge

(1 row)

[root@localhost data]# pwd
/var/lib/edb/as13/data
[root@localhost data]# ls -l edb_wait_states
total 0

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1764

22.8 EDB Clone Schema

EDB Clone Schema is an extension module for Advanced Server that allows you to copy a schema and its database objects from a local or remote database
(the source database) to a receiving database (the target database).

The source and target databases can be the same physical database, or different databases within the same database cluster, or separate databases
running under different database clusters on separate database server hosts.

Use the following functions with EDB Clone Schema:

localcopyschema.localcopyschema. This function makes a copy of a schema and its database objects from a source database back into the same database (the target),
but with a different schema name than the original. Use this function when the original source schema and the resulting copy are to reside within
the same database. See localcopyschema for information on the localcopyschema function.
localcopyschema_nb.localcopyschema_nb. This function performs the same purpose as localcopyschema , but as a background job, thus freeing up the terminal
from which the function was initiated. This is referred to as a non-blocking function. See localcopyschema_nb for information on the
localcopyschema_nb function.

remotecopyschema.remotecopyschema. This function makes a copy of a schema and its database objects from a source database to a different target database. Use this
function when the original source schema and the resulting copy are to reside in two, separate databases. The separate databases can reside in the
same, or in different Advanced Server database clusters. See remotecopyschema for information on the remotecopyschema function.
remotecopyschema_nb.remotecopyschema_nb. This function performs the same purpose as remotecopyschema , but as a background job, thus freeing up the terminal
from which the function was initiated. This is referred to as a non-blocking function. See remotecopyschema_nb for information on the
remotecopyschema_nb function.

process_status_from_log.process_status_from_log. This function displays the status of the cloning functions. The information is obtained from a log file that must be
specified when a cloning function is invoked. See process_status_from_log for information on the process_status_from_log function.
remove_log_file_and_job.remove_log_file_and_job. This function deletes the log file created by a cloning function. This function can also be used to delete a job created by
the non-blocking form of the function. See remove_log_file_and_job for information on the remove_log_file_and_job function.

The database objects that can be cloned from one schema to another are the following:

Data types
Tables including partitioned tables, excluding foreign tables
Indexes
Constraints
Sequences
View definitions
Materialized views
Private synonyms
Table triggers, but excluding event triggers
Rules
Functions
Procedures
Packages
Comments for all supported object types
Access control lists (ACLs) for all supported object types

The following database objects cannot be cloned:

Large objects (Postgres LOBs and BFILEs)
Logical replication attributes for a table
Database links
Foreign data wrappers
Foreign tables
Event triggers
Extensions (For cloning objects that rely on extensions, see the third bullet point in the following limitations list.)
Row level security
Policies
Operator class

In addition, the following limitations apply:

EDB Clone Schema is supported on Advanced Server only when a dialect of Compatible with Oracle is specified on the Advanced Server

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1765

EDB Clone Schema is supported on Advanced Server only when a dialect of Compatible with Oracle is specified on the Advanced Server
Dialect dialog during installation, or when the --redwood-like keywords are included during a text mode installation or cluster

initialization.
The source code within functions, procedures, triggers, packages, etc., are not modified after being copied to the target schema. If such programs
contain coded references to objects with schema names, the programs may fail upon invocation in the target schema if such schema names are no
longer consistent within the target schema.
Cross schema object dependencies are not resolved. If an object in the target schema depends upon an object in another schema, this dependency is
not resolved by the cloning functions.
For remote cloning, if an object in the source schema is dependent upon an extension, then this extension must be created in the public schema of
the remote database before invoking the remote cloning function.
At most, 16 copy jobs can run in parallel to clone schemas, whereas each job can have at most 16 worker processes to copy table data in parallel.
Queries being run by background workers cannot be cancelled.

The following section describes how to set up EDB Clone Schema on the databases.

Setup Process

Several extensions along with the PL/Perl language must be installed on any database to be used as the source or target database by an EDB Clone Schema
function.

In addition, some configuration parameters in the postgresql.conf file of the database servers may benefit from some modification.

The following is the setup instructions for these requirements.

Installing Extensions and PL/Perl

The following describes the steps to install the required extensions and the PL/Perl language.

These steps must be performed on any database to be used as the source or target database by an EDB Clone Schema function.These steps must be performed on any database to be used as the source or target database by an EDB Clone Schema function.

Step 1:Step 1: The following extensions must be installed on the database:

postgres_fdw
dblink
adminpack
pgagent

Ensure that pgAgent is installed before creating the pgagent extension. On Linux, you can use the edb-asxx-pgagent RPM package where xx is
the Advanced Server version number to install pgAgent. On Windows, use StackBuilder Plus to download and install pgAgent.

The previously listed extensions can be installed by the following commands if they do not already exist:

CREATE EXTENSION postgres_fdw SCHEMA public;
CREATE EXTENSION dblink SCHEMA public;
CREATE EXTENSION adminpack;
CREATE EXTENSION pgagent;

For more information about using the CREATE EXTENSION command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-createextension.html

Step 2:Step 2: Modify the postgresql.conf file.

Modify the postgresql.conf file by adding $libdir/parallel_clone to the shared_preload_libraries configuration parameter as

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1766

https://www.postgresql.org/docs/current/static/sql-createextension.html

Modify the postgresql.conf file by adding $libdir/parallel_clone to the shared_preload_libraries configuration parameter as
shown by the following example:

shared_preload_libraries = '$libdir/dbms_pipe,$libdir/dbms_aq,$libdir/parallel_clone'

Step 3:Step 3: The Perl Procedural Language (PL/Perl) must be installed on the database and the CREATE TRUSTED LANGUAGE plperl command must be
run. For Linux, install PL/Perl using the edb-asxx-server-plperl RPM package where xx is the Advanced Server version number. For Windows,
use the EDB Postgres Language Pack. For information on EDB Language Pack, see the EDB Postgres Language Pack Guide available at:

https://www.enterprisedb.com/docs

Step 4:Step 4: Connect to the database as a superuser and run the following command:

CREATE TRUSTED LANGUAGE plperl;

For more information about using the CREATE LANGUAGE command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-createlanguage.html

Setting Configuration Parameters

The following sections describe configuration parameters that may need to be altered in the postgresql.conf file.

Performance Configuration Parameters

You may need to tune the system for copying a large schema as part of one transaction.

Tuning of configuration parameters is for the source database server referenced in a cloning function.

The configuration parameters in the postgresql.conf file that may need to be tuned include the following:

work_mem.work_mem. Specifies the amount of memory to be used by internal sort operations and hash tables before writing to temporary disk files.
maintenance_work_mem.maintenance_work_mem. Specifies the maximum amount of memory to be used by maintenance operations, such as VACUUM , CREATE INDEX ,
and ALTER TABLE ADD FOREIGN KEY .
max_worker_processes.max_worker_processes. Sets the maximum number of background processes that the system can support.
checkpoint_timeout.checkpoint_timeout. Maximum time between automatic WAL checkpoints, in seconds.
checkpoint_completion_target.checkpoint_completion_target. Specifies the target of checkpoint completion, as a fraction of total time between checkpoints.
checkpoint_flush_after.checkpoint_flush_after. Whenever more than checkpoint_flush_after bytes have been written while performing a checkpoint, attempt to
force the OS to issue these writes to the underlying storage.
max_wal_size.max_wal_size. Maximum size to let the WAL grow to between automatic WAL checkpoints.
max_locks_per_transaction.max_locks_per_transaction. This parameter controls the average number of object locks allocated for each transaction; individual transactions can
lock more objects as long as the locks of all transactions fit in the lock table.

For information about the configuration parameters, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/runtime-config.html

Status Logging

Status logging by the cloning functions creates log files in the directory specified by the log_directory parameter in the postgresql.conf file
for the database server to which you are connected when invoking the cloning function.

The default location is PGDATA/log as shown by the following:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1767

https://www.enterprisedb.com/docs
https://www.postgresql.org/docs/current/static/sql-createlanguage.html
https://www.postgresql.org/docs/current/static/runtime-config.html

The default location is PGDATA/log as shown by the following:

#log_directory = 'log' # directory where log files are written,
 # can be absolute or relative to PGDATA

This directory must exist prior to running a cloning function.

The name of the log file is determined by what you specify in the parameter list when invoking the cloning function.

To display the status from a log file, use the process_status_from_log function.

To delete a log file, use the remove_log_file_and_job function, or simply navigate to the log directory and delete it manually.

Installing EDB Clone Schema

The following are the directions for installing EDB Clone Schema.

These steps must be performed on any database to be used as the source or target database by an EDB Clone Schema function.These steps must be performed on any database to be used as the source or target database by an EDB Clone Schema function.

Step 1:Step 1: If you had previously installed an older version of the edb_cloneschema extension, then you must run the following command:

DROP EXTENSION parallel_clone CASCADE;

This command also drops the edb_cloneschema extension.

Step 2:Step 2: Install the extensions using the following commands:

CREATE EXTENSION parallel_clone SCHEMA public;

CREATE EXTENSION edb_cloneschema;

Make sure you create the parallel_clone extension before creating the edb_cloneschema extension.

Creating the Foreign Servers and User Mappings

When using one of the local cloning functions, localcopyschema or localcopyschema_nb , one of the required parameters includes a single,
foreign server for identifying the database server along with its database that is the source and the receiver of the cloned schema.

When using one of the remote cloning functions, remotecopyschema or remotecopyschema_nb , two of the required parameters include two
foreign servers. The foreign server specified as the first parameter identifies the source database server along with its database that is the provider of the
cloned schema. The foreign server specified as the second parameter identifies the target database server along with its database that is the receiver of the
cloned schema.

For each foreign server, a user mapping must be created. When a selected database superuser invokes a cloning function, that database superuser who
invokes the function must have been mapped to a database user name and password that has access to the foreign server that is specified as a parameter in
the cloning function.

For general information about foreign data, foreign servers, and user mappings, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/ddl-foreign-data.html

The following two sections describe how these foreign servers and user mappings are defined.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1768

https://www.postgresql.org/docs/current/static/ddl-foreign-data.html

Foreign Server and User Mapping for Local Cloning Functions

For the localcopyschema and localcopyschema_nb functions, the source and target schemas are both within the same database of the same
database server. Thus, only one foreign server must be defined and specified for these functions. This foreign server is also referred to as the local server.

This server is referred to as the local server because this server is the one to which you must be connected when invoking the localcopyschema or
localcopyschema_nb function.

The user mapping defines the connection and authentication information for the foreign server.

This foreign server and user mapping must be created within the database of the local server in which the cloning is to occur.This foreign server and user mapping must be created within the database of the local server in which the cloning is to occur.

The database user for whom the user mapping is defined must be a superuser and the user connected to the local server when invoking an EDB CloneThe database user for whom the user mapping is defined must be a superuser and the user connected to the local server when invoking an EDB Clone
Schema function.Schema function.

The following example creates the foreign server for the database containing the schema to be cloned, and to receive the cloned schema as well.

CREATE SERVER local_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host 'localhost',
 port '5444',
 dbname 'edb'
);

For more information about using the CREATE SERVER command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-createserver.html

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER local_server
 OPTIONS (
 user 'enterprisedb',
 password 'password'
);

For more information about using the CREATE USER MAPPING command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/sql-createusermapping.html

The following psql commands show the foreign server and user mapping:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1769

https://www.postgresql.org/docs/current/static/sql-createserver.html
https://www.postgresql.org/docs/current/sql-createusermapping.html

edb=# \des+
List of foreign servers
-[RECORD 1]--------+--
Name | local_server
Owner | enterprisedb
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host 'localhost', port '5444', dbname 'edb')
Description |

edb=# \deu+
 List of user mappings
 Server | User name | FDW options
--------------+--------------+--
 local_server | enterprisedb | ("user" 'enterprisedb', password 'password')
(1 row)

When database superuser enterprisedb invokes a cloning function, the database user enterprisedb with its password is used to connect to
local_server on the localhost with port 5444 to database edb .

In this case, the mapped database user, enterprisedb , and the database user, enterprisedb , used to connect to the local edb database happen
to be the same, identical database user, but that is not an absolute requirement.

For specific usage of these foreign server and user mapping examples, see the example given in localcopyschema .

Foreign Server and User Mapping for Remote Cloning Functions

For the remotecopyschema and remotecopyschema_nb functions, the source and target schemas are in different databases of either the same or
different database servers. Thus, two foreign servers must be defined and specified for these functions.

The foreign server defining the originating database server and its database containing the source schema to be cloned is referred to as the source server or
the remote server.

The foreign server defining the database server and its database to receive the schema to be cloned is referred to as the target server or the local server.

The target server is also referred to as the local server because this server is the one to which you must be connected when invoking the
remotecopyschema or remotecopyschema_nb function.

The user mappings define the connection and authentication information for the foreign servers.

All of these foreign servers and user mappings must be created within the target database of the target/local server.All of these foreign servers and user mappings must be created within the target database of the target/local server.

The database user for whom the user mappings are defined must be a superuser and the user connected to the local server when invoking an EDB CloneThe database user for whom the user mappings are defined must be a superuser and the user connected to the local server when invoking an EDB Clone
Schema function.Schema function.

The following example creates the foreign server for the local, target database that is to receive the cloned schema.

CREATE SERVER tgt_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host 'localhost',
 port '5444',
 dbname 'tgtdb'
);

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1770

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER tgt_server
 OPTIONS (
 user 'tgtuser',
 password 'tgtpassword'
);

The following example creates the foreign server for the remote, source database that is to be the source for the cloned schema.

CREATE SERVER src_server FOREIGN DATA WRAPPER postgres_fdw
 OPTIONS(
 host '192.168.2.28',
 port '5444',
 dbname 'srcdb'
);

The user mapping for this server is the following:

CREATE USER MAPPING FOR enterprisedb SERVER src_server
 OPTIONS (
 user 'srcuser',
 password 'srcpassword'
);

The following psql commands show the foreign servers and user mappings:

tgtdb=# \des+
List of foreign servers
-[RECORD 1]--------+---
Name | src_server
Owner | tgtuser
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host '192.168.2.28', port '5444', dbname 'srcdb')
Description |
-[RECORD 2]--------+---
Name | tgt_server
Owner | tgtuser
Foreign-data wrapper | postgres_fdw
Access privileges |
Type |
Version |
FDW options | (host 'localhost', port '5444', dbname 'tgtdb')
Description |

tgtdb=# \deu+
 List of user mappings
 Server | User name | FDW options
------------+--------------+--
 src_server | enterprisedb | ("user" 'srcuser', password 'srcpassword')
 tgt_server | enterprisedb | ("user" 'tgtuser', password 'tgtpassword')
(2 rows)

When database superuser enterprisedb invokes a cloning function, the database user tgtuser with password tgtpassword is used to connect
to tgt_server on the localhost with port 5444 to database tgtdb .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1771

In addition, database user srcuser with password srcpassword connects to src_server on host 192.168.2.28 with port 5444 to
database srcdb .

NoteNote

Be sure the pg_hba.conf file of the database server running the source database srcdb has an appropriate entry permitting connection
from the target server location (address 192.168.2.27 in the following example) connecting with the database user srcuser that was
included in the user mapping for the foreign server src_server defining the source server and database.

TYPE DATABASE USER ADDRESS METHOD

"local" is for Unix domain socket connections only
local all all md5
IPv4 local connections:
host srcdb srcuser 192.168.2.27/32 md5

For specific usage of these foreign server and user mapping examples, see the example given remotecopyschema .

EDB Clone Schema Functions

The EDB Clone Schema functions are created in the edb_util schema when the parallel_clone and edb_cloneschema extensions are
installed.

Verify the following conditions before using an EDB Clone Schema function:

You are connected to the target or local database as the database superuser defined in the CREATE USER MAPPING command for the foreign
server of the target or local database.
The edb_util schema is in the search path, or the cloning function is to be invoked with the edb_util prefix.
The target schema does not exist in the target database.
When using the remote copy functions, if the on_tblspace parameter is to be set to true , then the target database cluster contains all
tablespaces that are referenced by objects in the source schema, otherwise creation of the DDL statements for those database objects will fail in the
target schema. This causes a failure of the cloning process.
When using the remote copy functions, if the copy_acls parameter is to be set to true , then all roles that have GRANT privileges on objects
in the source schema exist in the target database cluster, otherwise granting of privileges to those roles will fail in the target schema. This causes a
failure of the cloning process.
pgAgent is running against the target database if the non-blocking form of the function is to be used.

For information about pgAgent, see the pgAdmin documentation available at:

https://www.pgadmin.org/docs/pgadmin4/dev/pgagent.html

Note that pgAgent is provided as a component with Advanced Server.

localcopyschema

The localcopyschema function copies a schema and its database objects within a local database specified within the source_fdw foreign server
from the source schema to the specified target schema within the same database.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1772

https://www.pgadmin.org/docs/pgadmin4/dev/pgagent.html

localcopyschema(
 <source_fdw> TEXT,
 <source_schema> TEXT,
 <target_schema> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

A BOOLEAN value is returned by the function. If the function succeeds, then true is returned. If the function fails, then false is returned.

The source_fdw, source_schema, target_schema , and log_filename are required parameters while all other parameters are optional.

ParametersParameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which database objects are to be cloned.

source_schema

Name of the schema from which database objects are to be cloned.

target_schema

Name of the schema into which database objects are to be cloned from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory
configuration parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within their tablespaces. If false is specified, then the TABLESPACE
clause is not included in the applicable CREATE DDL statement when added to the target schema. If true is specified, then the TABLESPACE clause is
included in the CREATE DDL statement when added to the target schema. If the on_tblspace parameter is omitted, the default value is false .

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in log_filename when creating objects in the target schema. If false is
specified, then DDLs are not printed. If true is specified, then DDLs are printed. If omitted, the default value is false .

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be included while creating objects in the target schema. The access control list
is the set of GRANT privilege statements. If false is specified, then the access control list is not included for the target schema. If true is specified,
then the access control list is included for the target schema. If the copy_acls parameter is omitted, the default value is false .

worker_count

Number of background workers to perform the clone in parallel. If omitted, the default value is 1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1773

ExampleExample

The following example shows the cloning of schema edb containing a set of database objects to target schema edbcopy , both within database edb as
defined by local_server .

The example is for the following environment:

Host on which the database server is running: localhost
Port of the database server: 5444
Database source/target of the clone: edb
Foreign server (local_server) and user mapping with the information of the preceding bullet points
Source schema: edb
Target schema: edbcopy
Database superuser to invoke localcopyschema: enterprisedb

Before invoking the function, the connection is made by database user enterprisedb to database edb .

edb=# SET search_path TO "$user",public,edb_util;
SET
edb=# SHOW search_path;
 search_path

 "$user", public, edb_util
(1 row)

edb=# SELECT localcopyschema ('local_server','edb','edbcopy','clone_edb_edbcopy');
 localcopyschema

 t
(1 row)

The following displays the logging status using the process_status_from_log function:

edb=# SELECT process_status_from_log('clone_edb_edbcopy');
 process_status_from_log
--
 (FINISH,"2017-06-29 11:07:36.830783-04",3855,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

After the clone has completed, the following shows some of the database objects copied to the edbcopy schema:

edb=# SET search_path TO edbcopy;
SET
edb=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
---------+---------+-------+--------------+------------+-------------
 edbcopy | dept | table | enterprisedb | 8192 bytes |
 edbcopy | emp | table | enterprisedb | 8192 bytes |
 edbcopy | jobhist | table | enterprisedb | 8192 bytes |
(3 rows)

edb=# \dv
 List of relations
 Schema | Name | Type | Owner
---------+----------+------+--------------
 edbcopy | salesemp | view | enterprisedb
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1774

edb=# \di
 List of relations
 Schema | Name | Type | Owner | Table
---------+---------------+-------+--------------+---------
 edbcopy | dept_dname_uq | index | enterprisedb | dept
 edbcopy | dept_pk | index | enterprisedb | dept
 edbcopy | emp_pk | index | enterprisedb | emp
 edbcopy | jobhist_pk | index | enterprisedb | jobhist
(4 rows)

edb=# \ds
 List of relations
 Schema | Name | Type | Owner
---------+------------+----------+--------------
 edbcopy | next_empno | sequence | enterprisedb
(1 row)

edb=# SELECT DISTINCT schema_name, name, type FROM user_source WHERE
schema_name = 'EDBCOPY' ORDER BY type, name;
 schema_name | name | type
-------------+--------------------------------+--------------
 EDBCOPY | EMP_COMP | FUNCTION
 EDBCOPY | HIRE_CLERK | FUNCTION
 EDBCOPY | HIRE_SALESMAN | FUNCTION
 EDBCOPY | NEW_EMPNO | FUNCTION
 EDBCOPY | EMP_ADMIN | PACKAGE
 EDBCOPY | EMP_ADMIN | PACKAGE BODY
 EDBCOPY | EMP_QUERY | PROCEDURE
 EDBCOPY | EMP_QUERY_CALLER | PROCEDURE
 EDBCOPY | LIST_EMP | PROCEDURE
 EDBCOPY | SELECT_EMP | PROCEDURE
 EDBCOPY | EMP_SAL_TRIG | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19991" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19992" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_19999" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20000" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20004" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_a_20005" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_19993" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_19994" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20001" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20002" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20006" | TRIGGER
 EDBCOPY | "RI_ConstraintTrigger_c_20007" | TRIGGER
 EDBCOPY | USER_AUDIT_TRIG | TRIGGER
(24 rows)

localcopyschema_nb

The localcopyschema_nb function copies a schema and its database objects within a local database specified within the source_fdw foreign
server from the source schema to the specified target schema within the same database, but in a non-blocking manner as a job submitted to pgAgent.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1775

localcopyschema_nb(
 <source_fdw> TEXT,
 <source> TEXT,
 <target> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

An INTEGER value job ID is returned by the function for the job submitted to pgAgent. If the function fails, then null is returned.

The source_fdw, source, target , and log_filename are required parameters while all other parameters are optional.

After completion of the pgAgent job, remove the job with the remove_log_file_and_job function.

ParametersParameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which database objects are to be cloned.

source

Name of the schema from which database objects are to be cloned.

target

Name of the schema into which database objects are to be cloned from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory
configuration parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within their tablespaces. If false is specified, then the TABLESPACE
clause is not included in the applicable CREATE DDL statement when added to the target schema. If true is specified, then the TABLESPACE clause
is included in the CREATE DDL statement when added to the target schema. If the on_tblspace parameter is omitted, the default value is false .

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in log_filename when creating objects in the target schema. If false is
specified, then DDLs are not printed. If true is specified, then DDLs are printed. If omitted, the default value is false .

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be included while creating objects in the target schema. The access control list
is the set of GRANT privilege statements. If false is specified, then the access control list is not included for the target schema. If true is specified,
then the access control list is included for the target schema. If the copy_acls parameter is omitted, the default value is false .

worker_count

Number of background workers to perform the clone in parallel. If omitted, the default value is 1 .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1776

Number of background workers to perform the clone in parallel. If omitted, the default value is 1 .

ExampleExample

The same cloning operation is performed as the example in localcopyschema , but using the non-blocking function localcopyschema_nb .

The following command can be used to observe if pgAgent is running on the appropriate local database:

[root@localhost ~]# ps -ef | grep pgagent
root 4518 1 0 11:35 pts/1 00:00:00 pgagent -s /tmp/pgagent_edb_log
hostaddr=127.0.0.1 port=5444 dbname=edb user=enterprisedb password=password
root 4525 4399 0 11:35 pts/1 00:00:00 grep --color=auto pgagent

If pgAgent is not running, it can be started as shown by the following. The pgagent program file is located in the bin subdirectory of the Advanced
Server installation directory.

[root@localhost bin]# ./pgagent -l 2 -s /tmp/pgagent_edb_log hostaddr=127.0.0.1 port=5444
dbname=edb user=enterprisedb password=password

NoteNote

The pgagent -l 2 option starts pgAgent in DEBUG mode, which logs continuous debugging information into the log file specified with the
-s option. Use a lower value for the -l option, or omit it entirely to record less information.

The localcopyschema_nb function returns the job ID shown as 4 in the example.

edb=# SELECT edb_util.localcopyschema_nb ('local_server','edb','edbcopy','clone_edb_edbcopy');
 localcopyschema_nb

 4
(1 row)

The following displays the job status:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');
 process_status_from_log

 (FINISH,"29-JUN-17 11:39:11.620093 -04:00",4618,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

The following removes the pgAgent job:

edb=# SELECT edb_util.remove_log_file_and_job (4);
 remove_log_file_and_job

 t
(1 row)

remotecopyschema

The remotecopyschema function copies a schema and its database objects from a source schema in the remote source database specified within the
source_fdw foreign server to a target schema in the local target database specified within the target_fdw foreign server.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1777

remotecopyschema(
 <source_fdw> TEXT,
 <target_fdw> TEXT,
 <source_schema> TEXT,
 <target_schema> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

A BOOLEAN value is returned by the function. If the function succeeds, then true is returned. If the function fails, then false is returned.

The source_fdw, target_fdw, source_schema, target_schema , and log_filename are required parameters while all other
parameters are optional.

ParametersParameters

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which database objects are to be cloned.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper to which database objects are to be cloned.

source_schema

Name of the schema from which database objects are to be cloned.

target_schema

Name of the schema into which database objects are to be cloned from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory
configuration parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within their tablespaces. If false is specified, then the TABLESPACE
clause is not included in the applicable CREATE DDL statement when added to the target schema. If true is specified, then the TABLESPACE clause
is included in the CREATE DDL statement when added to the target schema. If the on_tblspace parameter is omitted, the default value is false .

NoteNote

If true is specified and a database object has a TABLESPACE clause, but that tablespace does not exist in the target database cluster, then
the cloning function fails.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in log_filename when creating objects in the target schema. If false is
specified, then DDLs are not printed. If true is specified, then DDLs are printed. If omitted, the default value is false .

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1778

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be included while creating objects in the target schema. The access control list
is the set of GRANT privilege statements. If false is specified, then the access control list is not included for the target schema. If true is specified,
then the access control list is included for the target schema. If the copy_acls parameter is omitted, the default value is false .

NoteNote

If true is specified and a role with GRANT privilege does not exist in the target database cluster, then the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the default value is 1 .

ExampleExample

The following example shows the cloning of schema srcschema within database srcdb as defined by src_server to target schema tgtschema
within database tgtdb as defined by tgt_server .

The source server environment:

Host on which the source database server is running: 192.168.2.28
Port of the source database server: 5444
Database source of the clone: srcdb
Foreign server (src_server) and user mapping with the information of the preceding bullet points
Source schema: srcschema

The target server environment:

Host on which the target database server is running: localhost
Port of the target database server: 5444
Database target of the clone: tgtdb
Foreign server (tgt_server) and user mapping with the information of the preceding bullet points
Target schema: tgtschema
Database superuser to invoke remotecopyschema: enterprisedb

Before invoking the function, the connection is made by database user enterprisedb to database tgtdb . A worker_count of 4 is specified for
this function.

tgtdb=# SELECT edb_util.remotecopyschema
('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);
 remotecopyschema

 t
(1 row)

The following displays the status from the log file during various points in the cloning process:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1779

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:05.299953 -04:00",4021,INFO,"STAGE: DATA-COPY","[0][0] successfully
copied data in [tgtschema.pgbench_tellers]
")
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:06.634364 -04:00",4022,INFO,"STAGE: DATA-COPY","[0][1] successfully
 copied data in [tgtschema.pgbench_history]
")
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log

--

 (RUNNING,"28-JUN-17 13:18:10.550393 -04:00",4039,INFO,"STAGE: POST-DATA","CREATE PRIMARY KEY
 CONSTRAINT pgbench_tellers_pkey successful"
)
 (1 row)

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log
--

 (FINISH,"28-JUN-17 13:18:12.019627 -04:00",4039,INFO,"STAGE: FINAL","successfully clone
 schema into tgtschema")
 (1 row)

The following shows the cloned tables:

tgtdb=# \dt+
 List of relations
 Schema | Name | Type | Owner | Size | Description
-----------+------------------+-------+--------------+------------+-------------
 tgtschema | pgbench_accounts | table | enterprisedb | 256 MB |
 tgtschema | pgbench_branches | table | enterprisedb | 8192 bytes |
 tgtschema | pgbench_history | table | enterprisedb | 25 MB |
 tgtschema | pgbench_tellers | table | enterprisedb | 16 kB |
(4 rows)

When the remotecopyschema function was invoked, four background workers were specified.

The following portion of the log file clone_rmt_src_tgt shows the status of the parallel data copying operation using four background workers:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1780

Wed Jun 28 13:18:05.232949 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] table count [4]
Wed Jun 28 13:18:05.233321 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][0] worker started to
copy data
Wed Jun 28 13:18:05.233640 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][1] worker started to
copy data
Wed Jun 28 13:18:05.233919 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][2] worker started to
copy data
Wed Jun 28 13:18:05.234231 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0][3] worker started to
copy data
Wed Jun 28 13:18:05.298174 2017 EDT: [4024] INFO: [STAGE: DATA-COPY] [0][3] successfully
copied data in [tgtschema.pgbench_branches]
Wed Jun 28 13:18:05.299913 2017 EDT: [4021] INFO: [STAGE: DATA-COPY] [0][0] successfully
copied data in [tgtschema.pgbench_tellers]
Wed Jun 28 13:18:06.634310 2017 EDT: [4022] INFO: [STAGE: DATA-COPY] [0][1] successfully
copied data in [tgtschema.pgbench_history]
Wed Jun 28 13:18:10.477333 2017 EDT: [4023] INFO: [STAGE: DATA-COPY] [0][2] successfully
copied data in [tgtschema.pgbench_accounts]
Wed Jun 28 13:18:10.477609 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] all workers finished
[4]
Wed Jun 28 13:18:10.477654 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] [0] copy done [4] tables
Wed Jun 28 13:18:10.493938 2017 EDT: [4019] INFO: [STAGE: DATA-COPY] successfully copied data
into tgtschema

Note that the DATA-COPY log message includes two, square bracket numbers (for example, [0][3]).

The first number is the job index whereas the second number is the worker index. The worker index values range from 0 to 3 for the four background
workers.

In case two clone schema jobs are running in parallel, the first log file will have 0 as the job index whereas the second will have 1 as the job index.

remotecopyschema_nb

The remotecopyschema_nb function copies a schema and its database objects from a source schema in the remote source database specified within
the source_fdw foreign server to a target schema in the local target database specified within the target_fdw foreign server, but in a non-blocking
manner as a job submitted to pgAgent.

remotecopyschema_nb(
 <source_fdw> TEXT,
 <target_fdw> TEXT,
 <source> TEXT,
 <target> TEXT,
 <log_filename> TEXT
 [, <on_tblspace> BOOLEAN
 [, <verbose_on> BOOLEAN
 [, <copy_acls> BOOLEAN
 [, <worker_count> INTEGER]]]]
)

An INTEGER value job ID is returned by the function for the job submitted to pgAgent. If the function fails, then null is returned.

The source_fdw, target_fdw, source, target , and log_filename are required parameters while all other parameters are optional.

After completion of the pgAgent job, remove the job with the remove_log_file_and_job function.

ParametersParameters

source_fdw

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1781

source_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper from which database objects are to be cloned.

target_fdw

Name of the foreign server managed by the postgres_fdw foreign data wrapper to which database objects are to be cloned.

source

Name of the schema from which database objects are to be cloned.

target

Name of the schema into which database objects are to be cloned from the source schema.

log_filename

Name of the log file in which information from the function is recorded. The log file is created under the directory specified by the log_directory
configuration parameter in the postgresql.conf file.

on_tblspace

BOOLEAN value to specify whether or not database objects are to be created within their tablespaces. If false is specified, then the TABLESPACE
clause is not included in the applicable CREATE DDL statement when added to the target schema. If true is specified, then the TABLESPACE clause
is included in the CREATE DDL statement when added to the target schema. If the on_tblspace parameter is omitted, the default value is false .

NoteNote

If true is specified and a database object has a TABLESPACE clause, but that tablespace does not exist in the target database cluster, then
the cloning function fails.

verbose_on

BOOLEAN value to specify whether or not the DDLs are to be printed in log_filename when creating objects in the target schema. If false is
specified, then DDLs are not printed. If true is specified, then DDLs are printed. If omitted, the default value is false .

copy_acls

BOOLEAN value to specify whether or not the access control list (ACL) is to be included while creating objects in the target schema. The access control list
is the set of GRANT privilege statements. If false is specified, then the access control list is not included for the target schema. If true is specified,
then the access control list is included for the target schema. If the copy_acls parameter is omitted, the default value is false . Note:Note: If true is
specified and a role with GRANT privilege does not exist in the target database cluster, then the cloning function fails.

worker_count

Number of background workers to perform the clone in parallel. If omitted, the default value is 1 .

ExampleExample

The same cloning operation is performed as the example in remotecopyschema , but using the non-blocking function remotecopyschema_nb .

The following command starts pgAgent on the target database tgtdb . The pgagent program file is located in the bin subdirectory of the Advanced
Server installation directory.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1782

[root@localhost bin]# ./pgagent -l 1 -s /tmp/pgagent_tgtdb_log hostaddr=127.0.0.1 port=5444
user=enterprisedb dbname=tgtdb password=password

The remotecopyschema_nb function returns the job ID shown as 2 in the example.

tgtdb=# SELECT edb_util.remotecopyschema_nb
('src_server','tgt_server','srcschema','tgtschema','clone_rmt_src_tgt',worker_count => 4);
 remotecopyschema_nb

 2
(1 row)

The completed status of the job is shown by the following:

tgtdb=# SELECT edb_util.process_status_from_log('clone_rmt_src_tgt');
 process_status_from_log
--

 (FINISH,"29-JUN-17 current:16:00.100284 -04:00",3849,INFO,"STAGE: FINAL","successfully clone schema into
tgtschema")
(1 row)

The following removes the log file and the pgAgent job:

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);
 remove_log_file_and_job

 t
(1 row)

process_status_from_log

The process_status_from_log function provides the status of a cloning function from its log file.

process_status_from_log (
 <log_file> TEXT
)

The function returns the following fields from the log file:

Field Name Description

status Displays either STARTING , RUNNING , FINISH , or FAILED .

execution_time When the command was executed. Displayed in timestamp format.

pid Session process ID in which clone schema is getting called.

level Displays either INFO , ERROR , or SUCCESSFUL .

stage Displays either STARTUP , INITIAL , DDL-COLLECTION , PRE-DATA , DATA-COPY , POST-DATA , or FINAL .

message Information respective to each command or failure.

ParametersParameters

log_file

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1783

log_file

Name of the log file recording the cloning of a schema as specified when the cloning function was invoked.

ExampleExample

The following shows usage of the process_status_from_log function:

edb=# SELECT edb_util.process_status_from_log('clone_edb_edbcopy');
 process_status_from_log

 (FINISH,"26-JUN-17 11:57:03.214458 -04:00",3691,INFO,"STAGE: FINAL","successfully cloned schema")
(1 row)

remove_log_file_and_job

The remove_log_file_and_job function performs cleanup tasks by removing the log files created by the schema cloning functions and the jobs
created by the non-blocking functions.

remove_log_file_and_job (
 { <log_file> TEXT |
 <job_id> INTEGER |
 <log_file> TEXT, <job_id> INTEGER
 }
)

Values for any or both of the two parameters may be specified when invoking the remove_log_file_and_job function:

If only log_file is specified, then the function will only remove the log file.
If only job_id is specified, then the function will only remove the job.
If both are specified, then the function will remove the log file and the job.

ParametersParameters

log_file

Name of the log file to be removed.

job_id

Job ID of the job to be removed.

ExampleExample

The following examples removes only the log file, given the log filename.

edb=# SELECT edb_util.remove_log_file_and_job ('clone_edb_edbcopy');
 remove_log_file_and_job

 t
(1 row)

The following example removes only the job, given the job ID.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1784

edb=# SELECT edb_util.remove_log_file_and_job (3);
 remove_log_file_and_job

 t
(1 row)

The following example removes the log file and the job, given both values:

tgtdb=# SELECT edb_util.remove_log_file_and_job ('clone_rmt_src_tgt',2);
 remove_log_file_and_job

 t
(1 row)

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1785

22.9 Enhanced SQL and Other Miscellaneous Features

Advanced Server includes enhanced SQL functionality and various other features that provide additional flexibility and convenience. This chapter discusses
some of these additions.

COMMENT

In addition to commenting on objects supported by the PostgreSQL COMMENT command, Advanced Server supports comments on additional object types.
The complete supported syntax is:

COMMENT ON
{
 AGGREGATE <aggregate_name> (<aggregate_signature>) |
 CAST (<source_type> AS <target_type>) |
 COLLATION <object_name> |
 COLUMN <relation_name>.<column_name> |
 CONSTRAINT <constraint_name> ON <table_name> |
 CONSTRAINT <constraint_name> ON DOMAIN <domain_name> |
 CONVERSION <object_name> |
 DATABASE <object_name> |
 DOMAIN <object_name> |
 EXTENSION <object_name> |
 EVENT TRIGGER <object_name> |
 FOREIGN DATA WRAPPER <object_name> |
 FOREIGN TABLE <object_name> |
 FUNCTION <func_name> ([[<argmode>] [<argname>] <argtype> [,...]])|
 INDEX <object_name> |
 LARGE OBJECT <large_object_oid> |
 MATERIALIZED VIEW <object_name> |
 OPERATOR <operator_name> (left_type, right_type) |
 OPERATOR CLASS <object_name> USING <index_method> |
 OPERATOR FAMILY <object_name> USING <index_method> |
 PACKAGE <object_name>
 POLICY <policy_name> ON <table_name> |
 [PROCEDURAL] LANGUAGE <object_name> |
 PROCEDURE <proc_name> [([[<argmode>] [<argname>] <argtype> [, ...]])]
 PUBLIC SYNONYM <object_name>
 ROLE <object_name> |
 RULE <rule_name> ON <table_name> |
 SCHEMA <object_name> |
 SEQUENCE <object_name> |
 SERVER <object_name> |
 TABLE <object_name> |
 TABLESPACE <object_name> |
 TEXT SEARCH CONFIGURATION <object_name> |
 TEXT SEARCH DICTIONARY <object_name> |
 TEXT SEARCH PARSER <object_name> |
 TEXT SEARCH TEMPLATE <object_name> |
 TRANSFORM FOR <type_name> LANGUAGE <lang_name> |
 TRIGGER <trigger_name> ON <table_name> |
 TYPE <object_name> |
 VIEW <object_name>
} IS <'text'>

where aggregate_signature is:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1786

* |
[<argmode>] [<argname>] <argtype> [, ...] |
[[<argmode>] [<argname>] <argtype> [, ...]]
ORDER BY [<argmode>] [<argname>] <argtype> [, ...]

ParametersParameters

object_name

The name of the object on which you are commenting.

AGGREGATE aggregate_name (aggregate_signature)

Include the AGGREGATE clause to create a comment about an aggregate. aggregate_name specifies the name of an aggregate, and
aggregate_signature specifies the associated signature in one of the following forms:

* |
[<argmode>] [<argname>] <argtype> [, ...] |
[[<argmode>] [<argname>] <argtype> [, ...]]
ORDER BY [<argmode>] [<argname>] <argtype> [, ...]

Where argmode is the mode of a function, procedure, or aggregate argument, argmode may be IN , OUT , INOUT , or VARIADIC . If omitted, the
default is IN .

argname is the name of an aggregate argument.

argtype is the data type of an aggregate argument.

CAST (source_type AS target_type)

Include the CAST clause to create a comment about a cast. When creating a comment about a cast, source_type specifies the source data type of the
cast, and target_type specifies the target data type of the cast.

COLUMN relation_name.column_name

Include the COLUMN clause to create a comment about a column. column_name specifies name of the column to which the comment applies.
relation_name is the table, view, composite type, or foreign table in which a column resides.

CONSTRAINT constraint_name ON table_name

CONSTRAINT constraint_name ON DOMAIN domain_name

Include the CONSTRAINT clause to add a comment about a constraint. When creating a comment about a constraint, constraint_name specifies the
name of the constraint. table_name or domain_name specifies the name of the table or domain on which the constraint is defined.

FUNCTION func_name ([[argmode] [argname] argtype [, ...]])

Include the FUNCTION clause to add a comment about a function. func_name specifies the name of the function. argmode specifies the mode of the
function. argmode may be IN , OUT , INOUT , or VARIADIC . If omitted, the default is IN .

argname specifies the name of a function, procedure, or aggregate argument. argtype specifies the data type of a function, procedure, or aggregate
argument.

large_object_oid

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1787

large_object_oid is the system-assigned OID of the large object about which you are commenting.

OPERATOR operator_name (left_type, right_type)

Include the OPERATOR clause to add a comment about an operator. operator_name specifies the (optionally schema-qualified) name of an operator
on which you are commenting. left_type and right_type are the (optionally schema-qualified) data type(s) of the operator's arguments.

OPERATOR CLASS object_name USING index_method

Include the OPERATOR CLASS clause to add a comment about an operator class. object_name specifies the (optionally schema-qualified) name of
an operator on which you are commenting. index_method specifies the associated index method of the operator class.

OPERATOR FAMILY object_name USING index_method

Include the OPERATOR FAMILY clause to add a comment about an operator family. object_name specifies the (optionally schema-qualified) name of
an operator family on which you are commenting. index_method specifies the associated index method of the operator family.

POLICY policy_name ON table_name

Include the POLICY clause to add a comment about a policy. policy_name specifies the name of the policy, and table_name specifies the table
that the policy is associated with.

PROCEDURE proc_name [([[argmode] [argname] argtype [, ...]])]

Include the PROCEDURE clause to add a comment about a procedure. proc_name specifies the name of the procedure. argmode specifies the mode
of the procedure. argmode may be IN , OUT , INOUT , or VARIADIC . If omitted, the default is IN .

argname specifies the name of a function, procedure, or aggregate argument. argtype specifies the data type of a function, procedure, or aggregate
argument.

RULE rule_name ON table_name

Include the RULE clause to specify a COMMENT on a rule. rule_name specifies the name of the rule, and table_name specifies the name of the
table on which the rule is defined.

TRANSFORM FOR type_name LANGUAGE lang_name

Include the TRANSFORM FOR clause to specify a COMMENT on a TRANSFORM .

type_name specifies the name of the data type of the transform and lang_name specifies the name of the language of the transform.

TRIGGER trigger_name ON table_name

Include the TRIGGER clause to specify a COMMENT on a trigger. trigger_name specifies the name of the trigger, and table_name specifies the
name of the table on which the trigger is defined.

text

The comment, written as a string literal or NULL to drop the comment.

Notes:Notes:

Names of tables, aggregates, collations, conversions, domains, foreign tables, functions, indexes, operators, operator classes, operator families, packages,
procedures, sequences, text search objects, types, and views can be schema-qualified.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1788

Example:Example:

The following example adds a comment to a table named new_emp :

COMMENT ON TABLE new_emp IS 'This table contains information about new
employees.';

For more information about using the COMMENT command, see the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-comment.html

Output of Function version()

The text string output of the version() function displays the name of the product, its version, and the host system on which it has been installed.

For Advanced Server, the version() output is in a format similar to the PostgreSQL community version in that the first text word is PostgreSQL instead
of EnterpriseDB as in Advanced Server version 10 and earlier.

The general format of the version() output is the following:

PostgreSQL $PG_VERSION_EXT (EnterpriseDB Advanced Server $PG_VERSION) on $host

So for the current Advanced Server the version string appears as follows:

edb@45032=#select version();
version
--

PostgreSQL 13.0 (EnterpriseDB Advanced Server 13.0.0) on x86_64-pc-linux-gnu, compiled by gcc
(GCC) 4.8.5 20150623 (Red Hat 4.8.5-11), 64-bit
(1 row)

In contrast, for Advanced Server 10, the version string was the following:

edb=# select version();
 version
--

EnterpriseDB 10.4.9 on x86_64-pc-linux-gnu, compiled by gcc (GCC) 4.4.7 20120313 (Red Hat
4.4.7-18), 64-bit
(1 row)

Logical Decoding on Standby

Logical decoding on a standby server allows you to create a logical replication slot on a standby server that can respond to API operations such as get,
peek, advance , etc..

For more information about the LOGICAL DECODING , please refer to the PostgreSQL core documentation available at:

https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1789

https://www.postgresql.org/docs/current/static/sql-comment.html
https://www.postgresql.org/docs/current/logicaldecoding-explanation.html

For a logical slot on a standby server to work, the hot_standby_feedback parameter must be set to ON on the standby. The
hot_standby_feedback parameter prevents VACCUM from removing recently-dead rows that are required by an existing logical replication slot on

the standby server. If a slot conflict occurs on the standby, the slots will be dropped.

For logical decoding on a standby to work, wal_level must be set to logical on both the primary and standby server. If wal_level is set to a
value other than logical , then slots are not created. If you set wal_level to a value other than logical on primary and if there are existing
logical slots on standby, such slots are dropped and new slots cannot be created.

When transactions are written to the primary server, the activity will trigger the creation of a logical slot on the standby server. If a primary server is idle,
creating a logical slot on a standby server may take noticeable time.

For more information about functions that support replication and logical decoding example, see to the PostgreSQL documentation available at:

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-REPLICATION

https://www.postgresql.org/docs/current/logicaldecoding-example.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1790

https://www.postgresql.org/docs/current/functions-admin.html#FUNCTIONS-REPLICATION
https://www.postgresql.org/docs/current/logicaldecoding-example.html

22.10 System Catalog Tables

The following system catalog tables contain definitions of database objects. The layout of the system tables is subject to change, if you are writing an
application that depends on information stored in the system tables, it would be prudent to use an existing catalog view, or create a catalog view to isolate
the application from changes to the system table.

edb_dir

The edb_dir table contains one row for each alias that points to a directory created with the CREATE DIRECTORY command. A directory is an alias
for a pathname that allows a user limited access to the host file system.

You can use a directory to fence a user into a specific directory tree within the file system. For example, the UTL_FILE package offers functions that
permit a user to read and write files and directories in the host file system, but only allows access to paths that the database administrator has granted
access to via a CREATE DIRECTORY command.

Column Type Modifiers Description

dirname "name" not null The name of the alias.

dirowner oid not null The OID of the user that owns the alias.

dirpath text The directory name to which access is granted.

diracl aclitem[] The access control list that determines which users may access the
alias.

edb_all_resource_groups

The edb_all_resource_groups table contains one row for each resource group created with the CREATE RESOURCE GROUP command and
displays the number of active processes in each resource group.

Column Type Modifiers Description

group_name "name" The name of the resource group.

active_processes integer Number of currently active processes in the resource group.

cpu_rate_limit float8 Maximum CPU rate limit for the resource group. 0 means no limit.

per_process_cpu_rate_limit float8 Maximum CPU rate limit per currently active process in the resource group.

dirty_rate_limit float8 Maximum dirty rate limit for a resource group. 0 means no limit.

per_process_dirty_rate_limit float8 Maximum dirty rate limit per currently active process in the resource
group.

edb_policy

The edb_policy table contains one row for each policy.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1791

Column Type Modifiers Description

policyname name not
null

The policy name.

policygroup oid not
null

Currently unused.

policyobject oid not
null

The OID of the table secured by this policy (the object_schema plus the
object_name).

policykind char
not
null

The kind of object secured by this policy:

'r' for a table

'v' for a view

= for a synonym

Currently always 'r'.

policyproc oid not
null

The OID of the policy function (function_schema plus policy_function).

policyinsert boolean not
null

True if the policy is enforced by INSERT statements.

policyselect boolean not
null

True if the policy is enforced by SELECT statements.

policydelete boolean not
null

True if the policy is enforced by DELETE statements.

policyupdate boolean not
null

True if the policy is enforced by UPDATE statements.

policyindex boolean not
null

Currently unused.

policyenabled boolean not
null

True if the policy is enabled.

policyupdatechec
k

boolean not
null

True if rows updated by an UPDATE statement must satisfy the policy.

policystatic boolean not
null

Currently unused.

policytype integer not
null

Currently unused.

policyopts integer not
null

Currently unused.

policyseccols int2vecto
r

not
null

The column numbers for columns listed in sec_relevant_cols .

edb_profile

The edb_profile table stores information about the available profiles. edb_profiles is shared across all databases within a cluster.

Column Type Reference
s

Description

oid oi
d

Row identifier (hidden attribute, must be explicitly selected).

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1792

prfname na
me

The name of the profile.

prffailedlo
ginattempts

in
teg
er

The number of failed login attempts allowed by the profile. -1 indicates that the value from the default profile
should be used. -2 indicates no limit on failed login attempts.

prfpassword
locktime

in
teg
er

The password lock time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the account should be locked permanently.

prfpassword
lifetime

in
teg
er

The password life time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the password never expires.

prfpassword
gracetime

in
teg
er

The password grace time associated with the profile (in seconds). -1 indicates that the value from the default
profile should be used. -2 indicates that the password never expires.

prfpassword
reusetime

in
teg
er

The number of seconds that a user must wait before reusing a password. -1 indicates that the value from the
default profile should be used. -2 indicates that the old passwords can never be reused.

prfpassword
reusemax

in
teg
er

The number of password changes that have to occur before a password can be reused. -1 indicates that the
value from the default profile should be used. -2 indicates that the old passwords can never be reused.

prfpassword
verifyfuncd
b

oi
d

pg_dat
abase.o
id

The OID of the database in which the password verify function exists.

prfpassword
verifyfunc

oi
d

pg_pro
c.oid

The OID of the password verify function associated with the profile.

Column Type Reference
s

Description

edb_redaction_column

The catalog edb_redaction_column stores information of data redaction policy attached to the columns of the table.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly selected).

rdpolicyid oid edb_redaction_policy.oid The data redaction policy applies to the described column.

rdrelid oid pg_class.oid The table that the described column belongs to.

rdattnum int2 pg_attribute.attnum The number of the described column.

rdscope int2 The redaction scope: 1 = query, 2 = top_tlist, 4 =
top_tlist_or_error

rdexception int2 The redaction exception: 8 = none, 16 = equal, 32 = leakproof

rdfuncexpr pg_node_tree Data redaction function expression

NoteNote

The described column will be redacted if the redaction policy edb_redaction_column.rdpolicyid on the table is enabled and the
redaction policy expression edb_redaction_policy.rdexpr evaluates to true.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1793

edb_redaction_policy

The catalog edb_redaction_policy stores information of the redaction policies for tables.

Column Type References Description

oid oid Row identifier (hidden attribute, must be explicitly
selected).

rdname name The name of the data redaction policy

rdrelid oid pg_class.oid The table to which the data redaction policy applies.

rdenable boolean Is the data redaction policy enabled?

rdexpr pg_node_tree The data redaction policy expression.

NoteNote

The data redaction policy applies for the table if it is enabled and the expression ever evaluated true.

edb_resource_group

The edb_resource_group table contains one row for each resource group created with the CREATE RESOURCE GROUP command.

Column Type Modifiers Description

rgrpname "name" not null The name of the resource group.

rgrpcpuratelimit float8 not null Maximum CPU rate limit for a resource group. 0 means no limit.

rgrpdirtyratelimit float8 not null Maximum dirty rate limit for a resource group. 0 means no
limit.

edb_variable

The edb_variable table contains one row for each package level variable (each variable declared within a package).

Column Type Modifiers Description

varname "name" not
null

The name of the variable.

varpackag
e

oid not
null

The OID of the pg_namespace row that stores the package.

vartype oid not
null

The OID of the pg_type row that defines the type of the variable.

varaccess "char" not
null

+ if the variable is visible outside of the package.

- if the variable is only visible within the package.

Note: Public variables are declared within the package header, private variables are declared within the
package body.

varsrc text Contains the source of the variable declaration, including any default value expressions for the variable.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1794

varseq smallin
t

not
null

The order in which the variable was declared in the package.

Column Type Modifiers Description

pg_synonym

The pg_synonym table contains one row for each synonym created with the CREATE SYNONYM command or CREATE PUBLIC SYNONYM
command.

Column Type Modifiers Description

synname "name" not null The name of the synonym.

synnamespace oid not null Replaces synowner . Contains the OID of the pg_namespace row where the synonym is
stored

synowner oid not null The OID of the user that owns the synonym.

synobjschema "name" not null The schema in which the referenced object is defined.

synobjname "name" not null The name of the referenced object.

synlink text The (optional) name of the database link in which the referenced object is defined.

product_component_version

The product_component_version table contains information about feature compatibility, an application can query this table at installation or run
time to verify that features used by the application are available with this deployment.

Column Type Description

product character varying (74) The name of the product.

version character varying (74) The version number of the product.

status character varying (74) The status of the release.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1795

22.11 Advanced Server Exceptions

The following table lists the pre-defined exceptions, the SQLstate values, associated redwood error code, and description of the exceptions.

Exception NameException Name SQLStateSQLState RedwoodRedwood
Error CodeError Code

DescriptionDescription

value_error 22000 -6502 The exception occurs when the conversion of a character string to a number fails.

invalid_number 22000 -6502 The exception is raised in PL statement, when the conversion of a character string to number
fails.

datetime_value_o
ut_of_range

22008 -1863 The exception occurs while writing a field in date format, which is outside the valid range.

divide_by_zero 22012 -1476 The exception occurs when a program attempts to divide a number by zero.

zero_divide 22012 -1476 The exception occurs when a program attempts to divide a number by zero.

dup_val_on_index 23505 -1 The exception occurs when a program attempts to store duplicate values in a column that is
constrained by a unique index.

invalid_cursor 34000 -1001 The exception occurs when a program attempts a cursor operation on an invalid cursor, such as
closing an unopened cursor.

cursor_already_o
pen

42P03 -6511 The exception occurs when a program attempts to open an already open cursor.

collection_is_nu
ll

P1403 -6531 The exception occurs when a program attempts to assign values to the elements of nested table
or varray that are uninitialized.

subscript_beyond
_count

P1404 -6533 The exception occurs when a program attempts to reference a nested table or varray using an
index number larger than the number of elements in the collection.

subscript_outsid
e_limit

P1405 -6532 The exception occurs when a program attempts to reference a nested table or varray element
using an index number that is outside the range.

Redwood Built-in Package ExceptionsRedwood Built-in Package Exceptions

DBMS_CRYPTO PackageDBMS_CRYPTO Package

ciphersuiteinvalid 00009 -
28827

The exception occurs when the cipher suite is not defined.

ciphersuitenull 00009 -
28829

The exception occurs when no value is specified for the cipher suite or contains a NULL
value.

keybadsize 00009 0 The exception occurs when the specified key size is bad.

keynull 00009 -
28239

The exception occurs when the key is not specified.

UTL_FILE PackageUTL_FILE Package

invalid_filehandle P0001
00009

-
29282

The exception occurs when file handle is invalid.

invalid_maxlinesize P0001
00009

-
29287

The exception occurs when the max line size is invalid or the max line size value is not within
the range.

invalid_mode P0001
00009

-
29281

The exception occurs when the open_mode parameter in FOPEN is invalid.

invalid_operation P0001
00009

-
29283

The exception occurs when the file could not be opened or used upon request.

invalid_path P0001
00009

-
29280

The exception occurs when the file location or filename is invalid.

read_error P0001
00009

-
29284

The exception occurs when the operating system error occurred during the read operation.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1796

write_error P0001
00009

-
29285

The exception occurs when the operating system error occurred during the write operation.

UTL_HTTP PackageUTL_HTTP Package

end_of_body P0001
00009

-
29266

The exception occurs when the end of HTTP response body is reached.

UTL_URL PackageUTL_URL Package

bad_fixed_width_chars
et

00009 -
29274

The exception occurs when the fixed-width multibyte character is not allowed as a URL
character set.

bad_url P0001
00009

-
29262

The exception occurs when the URL includes badly formed escape code sequences.

DBMS_CRYPTO PackageDBMS_CRYPTO Package

Advanced Server Keywords

A keyword is a word that is recognized by the Advanced Server parser as having a special meaning or association. You can use the pg_get_keywords()
function to retrieve an up-to-date list of the Advanced Server keywords:

acctg=#
acctg=# SELECT * FROM pg_get_keywords();
 word | catcode | catdesc
---------------------+---------+---------------------------------
 abort | U | unreserved
 absolute | U | unreserved
 access | U | unreserved
...

pg_get_keywords returns a table containing the keywords recognized by Advanced Server:

The word column displays the keyword.
The catcode column displays a category code.
The catdesc column displays a brief description of the category to which the keyword belongs.

Note that any character can be used in an identifier if the name is enclosed in double quotes. You can selectively query the pg_get_keywords()
function to retrieve an up-to-date list of the Advanced Server keywords that belong to a specific category:

SELECT * FROM pg_get_keywords() WHERE catcode = 'code';

Where code is:

R - The word is reserved. Reserved keywords may never be used as an identifier, they are reserved for use by the server.

U - The word is unreserved. Unreserved words are used internally in some contexts, but may be used as a name for a database object.

T - The word is used internally, but may be used as a name for a function or type.

C - The word is used internally, and may not be used as a name for a function or type.

For more information about Advanced Server identifiers and keywords, see to the PostgreSQL core documentation at:

https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1797

https://www.postgresql.org/docs/current/static/sql-syntax-lexical.html

23 EDB pgAdmin4 Quickstart Linux Guide

pgAdmin 4 is the leading Open Source management tool for Postgres databases. EDB pgAdmin 4 is distributed by EDB along with EDB Postgres Advanced
Server databases. It is designed to meet the needs of both novice and experienced Postgres users alike, providing a powerful graphical interface that
simplifies the creation, maintenance and use of database objects.

You can install EDB pgAdmin 4 for your Advanced Server databases using yum package manager for 8.x platforms.

Installing EDB pgAdmin 4 on a Linux HostInstalling EDB pgAdmin 4 on a Linux Host

You can use the following steps to use the yum package manager to install EDB pgAdmin4:

Create a Repository Configuration FileCreate a Repository Configuration File

To create a repository configuration file, you must have the credentials that allow access to the EDB repository. For information about requesting
credentials, visit:

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf .

To create the repository configuration file, assume superuser privileges and invoke the following command:

yum -y install https://yum.enterprisedb.com/edb-repo-rpms/edb-repo-latest.noarch.rpm

The repository configuration file is named edb.repo . The file resides in /etc/yum.repos.d. After creating the edb.repo file, use the following
command to replace the USERNAME and PASSWORD placeholders in the baseurl specification with the username and password of a registered EDB user:

sed -i "s@<username>:<password>@USERNAME:PASSWORD@" /etc/yum.repos.d/edb.repo

NoteNote

If you have edb.repo already configured then you can skip this step and go to the next step.

Install EPEL RepositoryInstall EPEL Repository

For CentOS 7.x use the following command:

yum -y install https://dl.fedoraproject.org/pub/epel/epel-release-latest-7.noarch.rpm

NoteNote

To install EPEL repository on CentOS/RHEL 7.x and 8.x see the platform specific steps at EDB Website.

Install EDB pgAdmin 4Install EDB pgAdmin 4

After creating the repository configuration file and adding a username and password to the edb.repo file, you can install edb-pgadmin4 . To install
edb-pgadmin4 , assume superuser privileges and invoke the following command:

yum install edb-pgadmin4*

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1798

https://info.enterprisedb.com/rs/069-ALB-339/images/Repository%20Access%2004-09-2019.pdf
https://repos.enterprisedb.com/

NoteNote

This command will install following packages:

edb-pgadmin4

edb-pgadmin4-desktop-common

edb-pgadmin4-desktop-gnome

edb-pgadmin4-docs

edb-pgadmin4-web

Starting pgAdmin 4 in Desktop ModeStarting pgAdmin 4 in Desktop Mode

You can use the following command to start pgAdmin 4 in desktop mode:

/usr/edb/pgadmin4/bin/pgAdmin4

You can also use the link on the Applications menu to start pgAdmin 4 in desktop mode:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1799

Registering and Connecting to Advanced Server with pgAdmin 4Registering and Connecting to Advanced Server with pgAdmin 4

Before managing an Advanced Server cluster, you must register the server. To register the server, use the fields on the Server dialog to specify the
connection properties. To open the Server dialog, right-click on the Servers node of the tree control, and select Server from the Create menu.

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1800

For detailed information about registering your server, visit:

https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html.

Then, to connect to your Advanced Server instance, right click on the server name and select Connect Server ; provide your password when the
Connect to Server dialog opens:

Once you are connected to the server, you can see the Dashboard tab as shown below:

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1801

https://www.pgadmin.org/docs/pgadmin4/latest/server_dialog.html

EDB Postgres Advanced Server

Copyright © 2009 - 2024 EnterpriseDB Corporation. All rights reserved. 1802

	1 EDB Postgres Advanced Server
	2 EDB Postgres Advanced Server Release Notes
	2.1 EDB Postgres Advanced Server 13.18.00 release notes
	2.2 EDB Postgres Advanced Server 13.16.22 release notes
	2.3 EDB Postgres Advanced Server 13.15.21 release notes
	2.4 EDB Postgres Advanced Server 13.14.20 release notes
	2.5 EDB Postgres Advanced Server 13.13.19 release notes
	2.6 EDB Postgres Advanced Server 13.12.18 release notes
	2.7 Version 13.12.17
	2.8 Version 13.11.15
	2.9 Version 13.10.14
	2.10 Version 13.9.13
	2.11 Version 13.8.12
	2.12 Version 13.7.11
	2.13 Version 13.6.10
	2.14 Version 13.5.9
	2.15 Version 13.4.8
	2.16 Version 13.3.7
	2.17 Version 13.3.6
	2.18 Version 13.2.5
	2.19 Version 13.1.4
	Component Certification

	3 Supported Platforms
	4 Limitations
	5 Installing EDB Postgres Advanced Server
	Linux x86-64 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)

	Windows

	5.1 Installing EDB Postgres Advanced Server on Linux x86 (amd64)
	Red Hat Enterprise Linux (RHEL) and derivatives
	SUSE Linux Enterprise (SLES)
	Debian and derivatives

	5.1.1 Installing EDB Postgres Advanced Server on RHEL 9 or OL 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.2 Installing EDB Postgres Advanced Server on RHEL 8 or OL 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.3 Installing EDB Postgres Advanced Server on AlmaLinux 9 or Rocky Linux 9 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.4 Installing EDB Postgres Advanced Server on AlmaLinux 8 or Rocky Linux 8 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.5 Installing EDB Postgres Advanced Server on SLES 15 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.6 Installing EDB Postgres Advanced Server on Ubuntu 22.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.7 Installing EDB Postgres Advanced Server on Ubuntu 20.04 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.1.8 Installing EDB Postgres Advanced Server on Debian 11 x86_64
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.2 Installing EDB Postgres Advanced Server on Linux IBM Power (ppc64le)
	Red Hat Enterprise Linux (RHEL)
	SUSE Linux Enterprise (SLES)

	5.2.1 Installing EDB Postgres Advanced Server on RHEL 9 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.2.2 Installing EDB Postgres Advanced Server on RHEL 8 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.2.3 Installing EDB Postgres Advanced Server on SLES 15 ppc64le
	Prerequisites
	Install the package
	Initial configuration
	Experiment

	5.3 Installing EDB Postgres Advanced Server on Windows
	5.3.1 Requirements overview
	Windows installation prerequisites

	5.3.2 Installing Advanced Server with the interactive installer
	5.3.2.1 Performing a graphical installation on Windows
	5.3.2.2 Invoking the graphical installer from the command line
	5.3.2.2.1 Performing an unattended installation
	5.3.2.2.2 Performing an installation with limited privileges
	5.3.2.2.3 Reference - Command line options
	5.3.2.3 Using StackBuilder Plus
	5.4 Linux installation details
	5.4.1 Default component locations
	RHEL/Rocky Linux/AlmaLinux/SLES locations
	Debian/Ubuntu locations

	5.4.2 Available native packages
	RHEL/Rocky Linux/AlmaLinux/SLES Packages
	EDB Postgres Advanced Server RPM Packages

	Debian/Ubuntu Packages
	EDB Postgres Advanced Server Debian packages

	5.4.3 Managing an Advanced Server installation
	Starting and stopping Advanced Server and supporting components
	Controlling a service on RHEL/Rocky Linux/AlmaLinux 8.x
	Controlling a service on Ubuntu 20.04
	Using pg_ctl to control Advanced Server
	Configuring component services to AutoStart at System Reboot

	Connecting to Advanced Server with edb-psql
	Configuring a package installation
	Creating a database cluster and starting the service
	On RHEL/Rocky Linux/AlmaLinux 8.x
	On Debian 10.x | 11 or Ubuntu 18.04 | 20.04

	Specifying Cluster Options with INITDBOPTS
	Initializing the Cluster in Oracle Mode
	Initializing the Cluster in Postgres Mode

	Modifying the Data Directory Location
	on RHEL or Rocky Linux 8.x
	Configuring SELinux Policy to Change the Data Directory Location on RHEL/Rocky Linux/AlmaLinux 8.x

	Enabling Core Dumps
	Enabling Core Dumps on a RHEL/Rocky Linux/AlmaLinux 8 Host
	Enabling Core Dumps on a Debian or Ubuntu Host

	Starting Multiple Postmasters with Different Clusters
	On RHEL/Rocky Linux/AlmaLinux 8.x

	Creating an Advanced Server Repository on an Isolated Network

	5.5 Windows installation details
	5.5.1 Connecting to Advanced Server with the pgAdmin 4 client
	5.5.2 Managing an Advanced Server installation
	Starting and Stopping Advanced Server and Supporting Components

	5.5.2.1 Using the Windows Services applet
	5.5.2.2 Using pg_ctl to control Advanced Server
	5.5.2.3 Controlling server startup behavior on Windows
	5.5.3 Configuring Advanced Server
	5.5.3.1 Setting Advanced Server environment variables
	5.5.3.2 Connecting to Advanced Server with edb-psql
	6 Upgrading EDB Postgres Advanced Server
	6.1 Upgrade considerations
	6.2 Upgrading an installation with pg_upgrade
	6.2.1 Performing an upgrade
	6.2.1.1 Linking versus copying
	6.2.2 Invoking pg_upgrade
	6.2.2.1 Command line options - Reference
	6.2.3 Upgrading to Advanced Server 13
	6.2.4 Upgrading a pgAgent installation
	6.2.5 pg_upgrade troubleshooting
	Upgrade Error - There seems to be a postmaster servicing the cluster
	Upgrade Error - fe_sendauth: no password supplied
	Upgrade Error - New cluster is not empty; exiting
	Upgrade Error - Failed to load library

	6.2.6 Reverting to the old cluster
	6.3 Performing a minor version update of an RPM installation
	6.4 Using StackBuilder Plus to perform a minor version update
	6.5 Migration to Version 13
	7 Uninstalling EDB Postgres Advanced Server
	7.1 Uninstalling Advanced Server on Linux
	Uninstalling on RHEL/AlmaLinux/Rocky Linux
	Uninstalling on Debian or Ubuntu

	7.2 Uninstalling Advanced Server on Windows
	Using Advanced Server Uninstallers at the Command Line

	8 Troubleshooting an installation
	8.1 Linux installation troubleshooting
	8.2 Windows installation troubleshooting
	9 Quick Start Guide for RHEL/Rocky Linux/AlmaLinux 8
	10 Quick Start Guide for Windows
	11 Database Compatibility for Oracle Developers Guide
	11.1 Configuration Parameters Compatible with Oracle Databases
	11.1.1 edb_redwood_date
	11.1.2 edb_redwood_raw_names
	11.1.3 edb_redwood_strings
	11.1.4 edb_stmt_level_tx
	11.1.5 oracle_home
	11.2 About the Examples Used in this Guide
	11.3 SQL Tutorial
	11.3.1 Sample Database
	11.3.1.1 Sample Database Installation
	11.3.1.2 Sample Database Description
	11.3.2 Creating a New Table
	11.3.3 Populating a Table With Rows
	11.3.4 Querying a Table
	11.3.5 Joins Between Tables
	11.3.6 Aggregate Functions
	11.3.7 Updates
	11.3.8 Deletions
	11.3.9 The SQL Language
	11.4 Advanced Concepts
	11.4.1 Views
	11.4.2 Foreign Keys
	11.4.3 The ROWNUM Pseudo-Column
	11.4.4 Synonyms
	11.4.5 Hierarchical Queries
	11.4.5.1 Defining the Parent/Child Relationship
	11.4.5.2 Selecting the Root Nodes
	11.4.5.3 Organization Tree in the Sample Application
	11.4.5.4 Node Level
	11.4.5.5 Ordering the Siblings
	11.4.5.6 Retrieving the Root Node with CONNECT_BY_ROOT
	11.4.5.7 Retrieving a Path with SYS_CONNECT_BY_PATH
	11.4.6 Multidimensional Analysis
	11.4.6.1 ROLLUP Extension
	11.4.6.2 CUBE Extension
	11.4.6.3 GROUPING SETS Extension
	11.4.6.4 GROUPING Function
	11.4.6.5 GROUPING_ID Function
	11.5 Profile Management
	11.5.1 Creating a New Profile
	11.5.1.1 Creating a Password Function
	11.5.2 Altering a Profile
	11.5.3 Dropping a Profile
	11.5.4 Associating a Profile with an Existing Role
	11.5.5 Unlocking a Locked Account
	11.5.6 Creating a New Role Associated with a Profile
	11.5.7 Backing up Profile Management Functions
	11.6 Optimizer Hints
	11.6.1 Default Optimization Modes
	11.6.2 Access Method Hints
	11.6.3 Specifying a Join Order
	11.6.4 Joining Relations Hints
	11.6.5 Global Hints
	11.6.6 Using the APPEND Optimizer Hint
	11.6.7 Parallelism Hints
	11.6.8 Conflicting Hints
	11.7 dblink_ora
	11.7.1 dblink_ora Functions and Procedures
	11.7.1.1 dblink_ora_connect()
	11.7.1.2 dblink_ora_status()
	11.7.1.3 dblink_ora_disconnect()
	11.7.1.4 dblink_ora_record()
	11.7.1.5 dblink_ora_call()
	11.7.1.6 dblink_ora_exec()
	11.7.1.7 dblink_ora_copy()
	11.7.2 Calling dblink_ora Functions
	11.8 Open Client Library
	11.9 Oracle Catalog Views
	11.10 Tools and Utilities
	11.11 ECPGPlus
	11.12 System Catalog Tables
	12 Database Compatibility for Oracle Developers Reference Guide
	12.1 The SQL Language
	12.1.1 SQL Syntax
	12.1.1.1 Lexical Structure
	12.1.1.2 Identifiers and Key Words
	12.1.1.3 Constants
	String Constants
	Numeric Constants
	Constants of Other Types

	12.1.1.4 Comments
	12.1.2 Data Types
	12.1.2.1 Numeric Types
	Integer Types
	Arbitrary Precision Numbers
	Floating-Point Types

	12.1.2.2 Character Types
	12.1.2.3 Binary Data
	12.1.2.4 Date/Time Types
	INTERVAL Types
	Date/Time Input
	Dates
	Times
	Time Stamps

	Date/Time Output
	Internals

	12.1.2.5 Boolean Types
	12.1.2.6 XML Type
	12.1.3 Functions and Operators
	12.1.3.1 Logical Operators
	12.1.3.2 Comparison Operators
	12.1.3.3 Mathematical Functions and Operators
	12.1.3.4 String Functions and Operators
	Truncation of String Text Resulting from Concatenation with NULL
	SYS_GUID

	12.1.3.5 Pattern Matching String Functions
	REGEXP_COUNT
	REGEXP_INSTR
	REGEXP_SUBSTR

	12.1.3.6 Pattern Matching Using the LIKE Operator
	12.1.3.7 Data Type Formatting Functions
	TO_CHAR, TO_DATE, TO_TIMESTAMP, and TO_TIMESTAMP_TZ
	Date and Time Modifiers

	IMMUTABLE TO_CHAR(TIMESTAMP, format) Function
	TO_NUMBER
	Numeric Modifiers

	12.1.3.8 Date/Time Functions and Operators
	ADD_MONTHS
	CURRENT DATE/TIME
	EXTRACT
	MONTHS_BETWEEN
	NEXT_DAY
	NEW_TIME
	NUMTODSINTERVAL
	NUMTOYMINTERVAL
	ROUND
	SYSDATE
	TRUNC

	12.1.3.9 Sequence Manipulation Functions
	12.1.3.10 Conditional Expressions
	CASE
	COALESCE
	NULLIF
	NVL
	NVL2
	GREATEST and LEAST

	12.1.3.11 Aggregate Functions
	LISTAGG
	MEDIAN
	STATS_MODE

	12.1.3.12 Subquery Expressions
	EXISTS
	IN
	NOT IN
	ANY/SOME
	ALL

	12.2 System Catalog Tables
	dual
	edb_dir
	edb_password_history
	edb_policy
	edb_profile
	edb_variable
	pg_synonym
	product_component_version

	13 Database Compatibility for Oracle Developers Built-in Package Guide
	13.1 Packages
	13.1.1 Package Components
	Package Specification Syntax
	Package Body Syntax

	13.1.2 Creating Packages
	Creating the Package Specification
	Creating the Package Body

	13.1.3 Referencing a Package
	13.1.4 Using Packages With User Defined Types
	13.1.5 Dropping a Package
	13.2 Built-In Packages
	13.2.1 DBMS_ALERT
	REGISTER
	REMOVE
	REMOVEALL
	SIGNAL
	WAITANY
	WAITONE
	Comprehensive Example

	13.2.2 DBMS_AQ
	13.2.2.1 ENQUEUE
	13.2.2.2 DEQUEUE
	13.2.2.3 REGISTER
	13.2.2.4 UNREGISTER
	13.2.3 DBMS_AQADM
	13.2.3.1 ALTER_QUEUE
	13.2.3.2 ALTER_QUEUE_TABLE
	13.2.3.3 CREATE_QUEUE
	13.2.3.4 CREATE_QUEUE_TABLE
	13.2.3.5 DROP_QUEUE
	13.2.3.6 DROP_QUEUE_TABLE
	13.2.3.7 PURGE_QUEUE_TABLE
	13.2.3.8 START_QUEUE
	13.2.3.9 STOP_QUEUE
	13.2.4 DBMS_CRYPTO
	13.2.4.1 DECRYPT
	13.2.4.2 ENCRYPT
	13.2.4.3 HASH
	13.2.4.4 MAC
	13.2.4.5 RANDOMBYTES
	13.2.4.6 RANDOMINTEGER
	13.2.4.7 RANDOMNUMBER
	13.2.5 DBMS_JOB
	13.2.5.1 BROKEN
	13.2.5.2 CHANGE
	13.2.5.3 INTERVAL
	13.2.5.4 NEXT_DATE
	13.2.5.5 REMOVE
	13.2.5.6 RUN
	13.2.5.7 SUBMIT
	13.2.5.8 WHAT
	13.2.6 DBMS_LOB
	13.2.6.1 APPEND
	13.2.6.2 COMPARE
	13.2.6.3 CONVERTTOBLOB
	13.2.6.4 CONVERTTOCLOB
	13.2.6.5 COPY
	13.2.6.6 ERASE
	13.2.6.7 GET_STORAGE_LIMIT
	13.2.6.8 GETLENGTH
	13.2.6.9 INSTR
	13.2.6.10 READ
	13.2.6.11 SUBSTR
	13.2.6.12 TRIM
	13.2.6.13 WRITE
	13.2.6.14 WRITEAPPEND
	13.2.7 DBMS_LOCK
	SLEEP

	13.2.8 DBMS_MVIEW
	13.2.8.1 GET_MV_DEPENDENCIES
	13.2.8.2 REFRESH
	13.2.8.3 REFRESH_ALL_MVIEWS
	13.2.8.4 REFRESH_DEPENDENT
	13.2.9 DBMS_OUTPUT
	CHARARR
	DISABLE
	ENABLE
	GET_LINE
	GET_LINES
	NEW_LINE
	PUT
	PUT_LINE
	SERVEROUTPUT

	13.2.10 DBMS_PIPE
	13.2.10.1 CREATE_PIPE
	13.2.10.2 NEXT_ITEM_TYPE
	13.2.10.3 PACK_MESSAGE
	13.2.10.4 PURGE
	13.2.10.5 RECEIVE_MESSAGE
	13.2.10.6 REMOVE_PIPE
	13.2.10.7 RESET_BUFFER
	13.2.10.8 SEND_MESSAGE
	13.2.10.9 UNIQUE_SESSION_NAME
	13.2.10.10 UNPACK_MESSAGE
	13.2.10.11 Comprehensive Example
	13.2.11 DBMS_PROFILER
	FLUSH_DATA
	GET_VERSION
	INTERNAL_VERSION_CHECK
	PAUSE_PROFILER
	RESUME_PROFILER
	START_PROFILER
	STOP_PROFILER
	Using DBMS_PROFILER
	Querying the DBMS_PROFILER Tables and View
	DBMS_PROFILER - Reference
	PLSQL_PROFILER_RUNS
	PLSQL_PROFILER_UNITS
	PLSQL_PROFILER_DATA
	PLSQL_PROFILER_RAWDATA

	13.2.12 DBMS_RANDOM
	INITIALIZE
	NORMAL
	RANDOM
	SEED
	SEED
	STRING
	TERMINATE
	VALUE
	VALUE

	13.2.13 DBMS_REDACT
	Using DBMS_REDACT Constants and Function Parameters
	ADD_POLICY
	ALTER_POLICY
	DISABLE_POLICY
	ENABLE_POLICY
	DROP_POLICY
	UPDATE_FULL_REDACTION_VALUES

	13.2.14 DBMS_RLS
	ADD_POLICY
	DROP_POLICY
	ENABLE_POLICY

	13.2.15 DBMS_SCHEDULER
	13.2.15.1 Using Calendar Syntax to Specify a Repeating Interval
	13.2.15.2 CREATE_JOB
	13.2.15.3 CREATE_PROGRAM
	13.2.15.4 CREATE_SCHEDULE
	13.2.15.5 DEFINE_PROGRAM_ARGUMENT
	13.2.15.6 DISABLE
	13.2.15.7 DROP_JOB
	13.2.15.8 DROP_PROGRAM
	13.2.15.9 DROP_PROGRAM_ARGUMENT
	13.2.15.10 DROP_SCHEDULE
	13.2.15.11 ENABLE
	13.2.15.12 EVALUATE_CALENDAR_STRING
	13.2.15.13 RUN_JOB
	13.2.15.14 SET_JOB_ARGUMENT_VALUE
	13.2.16 DBMS_SESSION
	SET_ROLE

	13.2.17 DBMS_SQL
	13.2.17.1 BIND_VARIABLE
	13.2.17.2 BIND_VARIABLE_CHAR
	13.2.17.3 BIND_VARIABLE_RAW
	13.2.17.4 CLOSE_CURSOR
	13.2.17.5 COLUMN_VALUE
	13.2.17.6 COLUMN_VALUE_CHAR
	13.2.17.7 COLUMN_VALUE_RAW
	COLUMN_VALUE_LONG

	13.2.17.8 DEFINE_COLUMN
	13.2.17.9 DEFINE_COLUMN_CHAR
	13.2.17.10 DEFINE_COLUMN_RAW
	DEFINE_COLUMN_LONG

	13.2.17.11 DESCRIBE_COLUMNS
	13.2.17.12 EXECUTE
	13.2.17.13 EXECUTE_AND_FETCH
	13.2.17.14 FETCH_ROWS
	13.2.17.15 IS_OPEN
	13.2.17.16 LAST_ROW_COUNT
	LAST_ERROR_POSITION

	13.2.17.17 OPEN_CURSOR
	13.2.17.18 PARSE
	13.2.18 DBMS_UTILITY
	LNAME_ARRAY
	UNCL_ARRAY
	ANALYZE_DATABASE, ANALYZE SCHEMA and ANALYZE PART_OBJECT
	CANONICALIZE
	COMMA_TO_TABLE
	DB_VERSION
	EXEC_DDL_STATEMENT
	FORMAT_CALL_STACK
	GET_CPU_TIME
	GET_DEPENDENCY
	GET_HASH_VALUE
	GET_PARAMETER_VALUE
	GET_TIME
	NAME_TOKENIZE
	TABLE_TO_COMMA

	13.2.19 UTL_ENCODE
	13.2.19.1 BASE64_DECODE
	13.2.19.2 BASE64_ENCODE
	13.2.19.3 MIMEHEADER_DECODE
	13.2.19.4 MIMEHEADER_ENCODE
	13.2.19.5 QUOTED_PRINTABLE_DECODE
	13.2.19.6 QUOTED_PRINTABLE_ENCODE
	13.2.19.7 TEXT_DECODE
	13.2.19.8 TEXT_ENCODE
	13.2.19.9 UUDECODE
	13.2.19.10 UUENCODE
	13.2.20 UTL_FILE
	Setting File Permissions with utl_file.umask
	FCLOSE
	FCLOSE_ALL
	FCOPY
	FFLUSH
	FOPEN
	FREMOVE
	FRENAME
	GET_LINE
	IS_OPEN
	NEW_LINE
	PUT
	PUT_LINE
	PUTF

	13.2.21 UTL_HTTP
	HTML_PIECES
	REQ
	RESP
	BEGIN_REQUEST
	END_REQUEST
	END_RESPONSE
	GET_BODY_CHARSET
	GET_FOLLOW_REDIRECT
	GET_HEADER
	GET_HEADER_BY_NAME
	GET_HEADER_COUNT
	GET_RESPONSE
	GET_RESPONSE_ERROR_CHECK
	GET_TRANSFER_TIMEOUT
	READ_LINE
	READ_RAW
	READ_TEXT
	REQUEST
	REQUEST_PIECES
	SET_BODY_CHARSET
	SET_FOLLOW_REDIRECT
	SET_HEADER
	SET_RESPONSE_ERROR_CHECK
	SET_TRANSFER_TIMEOUT
	WRITE_LINE
	WRITE_RAW
	WRITE_TEXT
	END_OF_BODY

	13.2.22 UTL_MAIL
	SEND
	SEND_ATTACH_RAW
	SEND_ATTACH_VARCHAR2

	13.2.23 UTL_RAW
	CAST_TO_RAW
	CAST_TO_VARCHAR2
	CONCAT
	CONVERT
	LENGTH
	SUBSTR

	13.2.24 UTL_SMTP
	CONNECTION
	REPLY/REPLIES
	CLOSE_DATA
	COMMAND
	COMMAND_REPLIES
	DATA
	EHLO
	HELO
	HELP
	MAIL
	NOOP
	OPEN_CONNECTION
	OPEN_DATA
	QUIT
	RCPT
	RSET
	VRFY
	WRITE_DATA
	Comprehensive Example

	13.2.25 UTL_URL
	ESCAPE
	UNESCAPE

	14 Database Compatibility for Oracle Developers Tools and Utilities Guide
	14.1 EDB*Loader
	Data Loading Methods
	General Usage
	Building the EDB*Loader Control File
	EDB Loader Control File Examples

	Invoking EDB*Loader
	Exit Codes

	Direct Path Load
	Parallel Direct Path Load
	Remote Loading
	Updating a Table with a Conventional Path Load

	14.2 EDB*Wrap
	Using EDB*Wrap to Obfuscate Source Code

	14.3 Dynamic Runtime Instrumentation Tools Architecture (DRITA)
	Configuring and Using DRITA
	DRITA Functions
	get_snaps()
	sys_rpt()
	sess_rpt()
	sessid_rpt()
	sesshist_rpt()
	purgesnap()
	truncsnap()

	Simulating Statspack AWR Reports
	edbreport()
	stat_db_rpt()
	stat_tables_rpt()
	statio_tables_rpt()
	stat_indexes_rpt()
	statio_indexes_rpt()

	Performance Tuning Recommendations
	Event Descriptions

	15 Database Compatibility for Oracle Developers Catalog Views Guide
	15.1 ALL_ALL_TABLES
	15.2 ALL_CONS_COLUMNS
	15.3 ALL_CONSTRAINTS
	15.4 ALL_COL_PRIVS
	15.5 ALL_DB_LINKS
	15.6 ALL_DEPENDENCIES
	15.7 ALL_DIRECTORIES
	15.8 ALL_IND_COLUMNS
	15.9 ALL_INDEXES
	15.10 ALL_JOBS
	15.11 ALL_OBJECTS
	15.12 ALL_PART_KEY_COLUMNS
	15.13 ALL_PART_TABLES
	15.14 ALL_POLICIES
	15.15 ALL_QUEUES
	15.16 ALL_QUEUE_TABLES
	15.17 ALL_SEQUENCES
	15.18 ALL_SOURCE
	15.19 ALL_SUBPART_KEY_COLUMNS
	15.20 ALL_SYNONYMS
	15.21 ALL_TAB_COLUMNS
	15.22 ALL_TAB_PARTITIONS
	15.23 ALL_TAB_SUBPARTITIONS
	15.24 ALL_TAB_PRIVS
	15.25 ALL_TABLES
	15.26 ALL_TRIGGERS
	15.27 ALL_TYPES
	15.28 ALL_USERS
	15.29 ALL_VIEW_COLUMNS
	15.30 ALL_VIEWS
	15.31 DBA_ALL_TABLES
	15.32 DBA_CONS_COLUMNS
	15.33 DBA_CONSTRAINTS
	15.34 DBA_COL_PRIVS
	15.35 DBA_DB_LINKS
	15.36 DBA_DIRECTORIES
	15.37 DBA_DEPENDENCIES
	15.38 DBA_IND_COLUMNS
	15.39 DBA_INDEXES
	15.40 DBA_JOBS
	15.41 DBA_OBJECTS
	15.42 DBA_PART_KEY_COLUMNS
	15.43 DBA_PART_TABLES
	15.44 DBA_POLICIES
	15.45 DBA_PROFILES
	15.46 DBA_QUEUES
	15.47 DBA_QUEUE_TABLES
	15.48 DBA_ROLE_PRIVS
	15.49 DBA_ROLES
	15.50 DBA_SEQUENCES
	15.51 DBA_SOURCE
	15.52 DBA_SUBPART_KEY_COLUMNS
	15.53 DBA_SYNONYMS
	15.54 DBA_TAB_COLUMNS
	15.55 DBA_TAB_PARTITIONS
	15.56 DBA_TAB_SUBPARTITIONS
	15.57 DBA_TAB_PRIVS
	15.58 DBA_TABLES
	15.59 DBA_TRIGGERS
	15.60 DBA_TYPES
	15.61 DBA_USERS
	15.62 DBA_VIEW_COLUMNS
	15.63 DBA_VIEWS
	15.64 USER_ALL_TABLES
	15.65 USER_CONS_COLUMNS
	15.66 USER_CONSTRAINTS
	15.67 USER_COL_PRIVS
	15.68 USER_DB_LINKS
	15.69 USER_DEPENDENCIES
	15.70 USER_INDEXES
	15.71 USER_JOBS
	15.72 USER_OBJECTS
	15.73 USER_PART_TABLES
	15.74 USER_POLICIES
	15.75 USER_QUEUES
	15.76 USER_QUEUE_TABLES
	15.77 USER_ROLE_PRIVS
	15.78 USER_SEQUENCES
	15.79 USER_SOURCE
	15.80 USER_SUBPART_KEY_COLUMNS
	15.81 USER_SYNONYMS
	15.82 USER_TAB_COLUMNS
	15.83 USER_TAB_PARTITIONS
	15.84 USER_TAB_SUBPARTITIONS
	15.85 USER_TAB_PRIVS
	15.86 USER_TABLES
	15.87 USER_TRIGGERS
	15.88 USER_TYPES
	15.89 USER_USERS
	15.90 USER_VIEW_COLUMNS
	15.91 USER_VIEWS
	15.92 V$VERSION
	15.93 PRODUCT_COMPONENT_VERSION
	16 Database Compatibility Stored Procedural Language Guide
	16.1 Basic SPL Elements
	16.1.1 Case Sensitivity
	16.1.2 Identifiers
	16.1.3 Qualifiers
	16.1.4 Constants
	16.1.5 User-Defined PL/SQL Subtypes
	16.1.6 Character Set
	16.2 SPL Programs
	16.2.1 SPL Block Structure
	16.2.2 Anonymous Blocks
	16.2.3 Procedures Overview
	16.2.3.1 Creating a Procedure
	16.2.3.2 Calling a Procedure
	16.2.3.3 Deleting a Procedure
	16.2.4 Functions Overview
	16.2.4.1 Creating a Function
	16.2.4.2 Calling a Function
	16.2.4.3 Deleting a Function
	16.2.5 Procedure and Function Parameters
	16.2.5.1 Positional vs. Named Parameter Notation
	16.2.5.2 Parameter Modes
	16.2.5.3 Using Default Values in Parameters
	16.2.6 Subprograms – Subprocedures and Subfunctions
	16.2.6.1 Creating a Subprocedure
	16.2.6.2 Creating a Subfunction
	16.2.6.3 Block Relationships
	16.2.6.4 Invoking Subprograms
	16.2.6.5 Using Forward Declarations
	16.2.6.6 Overloading Subprograms
	16.2.6.7 Accessing Subprogram Variables
	16.2.7 Compilation Errors in Procedures and Functions
	16.2.8 Program Security
	16.2.8.1 EXECUTE Privilege
	16.2.8.2 Database Object Name Resolution
	16.2.8.3 Database Object Privileges
	16.2.8.4 Definer’s vs. Invokers Rights
	16.2.8.5 Security Example
	16.3 Variable Declarations
	16.3.1 Declaring a Variable
	16.3.2 Using %TYPE in Variable Declarations
	16.3.3 Using %ROWTYPE in Record Declarations
	16.3.4 User-Defined Record Types and Record Variables
	16.4 Basic Statements
	16.4.1 Assignment
	16.4.2 DELETE
	16.4.3 INSERT
	16.4.4 NULL
	16.4.5 Using the RETURNING INTO Clause
	16.4.6 SELECT INTO
	16.4.7 UPDATE
	16.4.8 Obtaining the Result Status
	16.5 Control Structures
	16.5.1 IF Statement
	16.5.1.1 IF-THEN
	16.5.1.2 IF-THEN-ELSE
	16.5.1.3 IF-THEN-ELSE IF
	16.5.1.4 IF-THEN-ELSIF-ELSE
	16.5.2 RETURN Statement
	16.5.3 GOTO Statement
	16.5.4 CASE Expression
	16.5.4.1 Selector CASE Expression
	16.5.4.2 Searched CASE Expression
	16.5.5 CASE Statement
	16.5.5.1 Selector CASE Statement
	16.5.5.2 Searched CASE Statement
	16.5.6 Loops
	16.5.6.1 LOOP
	16.5.6.2 EXIT
	16.5.6.3 CONTINUE
	16.5.6.4 WHILE
	16.5.6.5 FOR (integer variant)
	16.5.7 Exception Handling
	16.5.8 User-defined Exceptions
	16.5.9 PRAGMA EXCEPTION_INIT
	16.5.10 RAISE_APPLICATION_ERROR
	16.6 Transaction Control
	16.6.1 COMMIT
	16.6.2 ROLLBACK
	16.6.3 PRAGMA AUTONOMOUS_TRANSACTION
	16.7 Dynamic SQL
	16.8 Static Cursors
	16.8.1 Declaring a Cursor
	16.8.2 Opening a Cursor
	16.8.3 Fetching Rows From a Cursor
	16.8.4 Closing a Cursor
	16.8.5 Using %ROWTYPE With Cursors
	16.8.6 Cursor Attributes
	16.8.6.1 %ISOPEN
	16.8.6.2 %FOUND
	16.8.6.3 %NOTFOUND
	16.8.6.4 %ROWCOUNT
	16.8.6.5 Summary of Cursor States and Attributes
	16.8.7 Cursor FOR Loop
	16.8.8 Parameterized Cursors
	16.9 REF CURSORs and Cursor Variables
	16.9.1 REF CURSOR Overview
	16.9.2 Declaring a Cursor Variable
	16.9.2.1 Declaring a SYS_REFCURSOR Cursor Variable
	16.9.2.2 Declaring a User Defined REF CURSOR Type Variable
	16.9.3 Opening a Cursor Variable
	16.9.4 Fetching Rows From a Cursor Variable
	16.9.5 Closing a Cursor Variable
	16.9.6 Usage Restrictions
	16.9.7 Examples
	16.9.7.1 Returning a REF CURSOR From a Function
	16.9.7.2 Modularizing Cursor Operations
	16.9.8 Dynamic Queries With REF CURSORs
	16.10 Collections
	16.10.1 Associative Arrays
	16.10.2 Nested Tables
	16.10.3 Varrays
	16.11 Collection Methods
	16.11.1 COUNT
	16.11.2 DELETE
	16.11.3 EXISTS
	16.11.4 EXTEND
	16.11.5 FIRST
	16.11.6 LAST
	16.11.7 LIMIT
	16.11.8 NEXT
	16.11.9 PRIOR
	16.11.10 TRIM
	16.12 Working with Collections
	16.12.1 TABLE()
	16.12.2 Using the MULTISET UNION Operator
	16.12.3 Using the FORALL Statement
	16.12.4 Using the BULK COLLECT Clause
	16.12.4.1 SELECT BULK COLLECT
	16.12.4.2 FETCH BULK COLLECT
	16.12.4.3 EXECUTE IMMEDIATE BULK COLLECT
	16.12.4.4 RETURNING BULK COLLECT
	16.12.5 Errors and Messages
	16.13 Triggers
	16.13.1 Overview
	16.13.2 Types of Triggers
	16.13.3 Creating Triggers
	16.13.4 Trigger Variables
	16.13.5 Transactions and Exceptions
	16.13.6 Compound Triggers
	16.13.7 Trigger Examples
	16.13.7.1 Before Statement-Level Trigger
	16.13.7.2 After Statement-Level Trigger
	16.13.7.3 Before Row-Level Trigger
	16.13.7.4 After Row-Level Trigger
	16.13.7.5 INSTEAD OF Trigger
	16.13.7.6 Compound Triggers
	16.14 Packages
	16.15 Object Types and Objects
	16.15.1 Basic Object Concepts
	16.15.1.1 Attributes
	16.15.1.2 Methods
	16.15.1.3 Overloading Methods
	16.15.2 Object Type Components
	16.15.2.1 Object Type Specification Syntax
	16.15.2.2 Object Type Body Syntax
	16.15.3 Creating Object Types
	16.15.3.1 Member Methods
	16.15.3.2 Static Methods
	16.15.3.3 Constructor Methods
	16.15.4 Creating Object Instances
	16.15.5 Referencing an Object
	16.15.6 Dropping an Object Type
	17 Database Compatibility for Oracle Developers SQL Guide
	17.1 ALTER DIRECTORY
	17.2 ALTER INDEX
	17.3 ALTER PROCEDURE
	17.4 ALTER PROFILE
	17.5 ALTER QUEUE
	17.6 ALTER QUEUE TABLE
	17.7 ALTER ROLE… IDENTIFIED BY
	17.8 ALTER ROLE - Managing Database Link and DBMS_RLS Privileges
	17.9 ALTER SEQUENCE
	17.10 ALTER SESSION
	17.11 ALTER SYNONYM
	Name
	Synopsis
	Description
	Examples

	17.12 ALTER TABLE
	17.13 ALTER TRIGGER
	17.14 ALTER TABLESPACE
	17.15 ALTER USER… IDENTIFIED BY
	17.16 ALTER USER|ROLE… PROFILE MANAGEMENT CLAUSES
	17.17 CALL
	17.18 COMMENT
	17.19 COMMIT
	17.20 CREATE DATABASE
	17.21 CREATE PUBLIC DATABASE LINK
	Name
	Synopsis
	Description
	Parameters
	Setting up an Oracle Instant Client for oci-dblink
	Oracle Instant Client for Linux
	Oracle Instant Client for Windows

	Examples
	Creating an oci-dblink Database Link
	Creating a postgres_fdw Database Link

	Using a Database Link
	Pushdown for an oci Database Link
	Creating a Foreign Table from a Database Link

	17.22 CREATE DIRECTORY
	17.23 CREATE FUNCTION
	17.24 CREATE INDEX
	17.25 CREATE MATERIALIZED VIEW
	17.26 CREATE PACKAGE
	17.27 CREATE PACKAGE BODY
	17.28 CREATE PROCEDURE
	17.29 CREATE PROFILE
	17.30 CREATE QUEUE
	17.31 CREATE QUEUE TABLE
	17.32 CREATE ROLE
	17.33 CREATE SCHEMA
	17.34 CREATE SEQUENCE
	17.35 CREATE SYNONYM
	17.36 CREATE TABLE
	17.37 CREATE TABLE AS
	17.38 CREATE TRIGGER
	17.39 CREATE TYPE
	17.40 CREATE TYPE BODY
	17.41 CREATE USER
	17.42 CREATE USER|ROLE… PROFILE MANAGEMENT CLAUSES
	17.43 CREATE VIEW
	17.44 DELETE
	17.45 DROP DATABASE LINK
	17.46 DROP DIRECTORY
	17.47 DROP FUNCTION
	17.48 DROP INDEX
	17.49 DROP PACKAGE
	17.50 DROP PROCEDURE
	17.51 DROP PROFILE
	17.52 DROP QUEUE
	17.53 DROP QUEUE TABLE
	17.54 DROP SYNONYM
	17.55 DROP ROLE
	17.56 DROP SEQUENCE
	17.57 DROP TABLE
	17.58 DROP TABLESPACE
	17.59 DROP TRIGGER
	17.60 DROP TYPE
	17.61 DROP USER
	17.62 DROP VIEW
	17.63 EXEC
	17.64 GRANT
	GRANT on Database Objects
	GRANT on Roles
	GRANT on System Privileges

	17.65 INSERT
	17.66 LOCK
	17.67 REVOKE
	17.68 ROLLBACK
	17.69 ROLLBACK TO SAVEPOINT
	17.70 SAVEPOINT
	17.71 SELECT
	FROM Clause
	WHERE Clause
	GROUP BY Clause
	HAVING Clause
	SELECT List
	UNION Clause
	INTERSECT Clause
	MINUS Clause
	CONNECT BY Clause
	ORDER BY Clause
	DISTINCT | UNIQUE Clause
	FOR UPDATE Clause

	17.72 SET CONSTRAINTS
	17.73 SET ROLE
	17.74 SET TRANSACTION
	17.75 TRUNCATE
	17.76 UPDATE
	18 Database Compatibility Table Partitioning Guide
	18.1 Selecting a Partition Type
	18.1.1 Interval Range Partitioning
	18.1.2 Automatic List Partitioning
	18.2 Using Partition Pruning
	18.2.1 Example - Partition Pruning
	18.3 Partitioning Commands Compatible with Oracle Databases
	18.3.1 CREATE TABLE...PARTITION BY
	18.3.1.1 Example - PARTITION BY LIST
	18.3.1.2 Example - AUTOMATIC LIST PARTITION
	18.3.1.3 Example - PARTITION BY RANGE
	18.3.1.4 Example - INTERVAL RANGE PARTITION
	18.3.1.5 Example - PARTITION BY HASH
	18.3.1.6 Example - PARTITION BY HASH...PARTITIONS num...
	Example - PARTITION BY HASH...PARTITIONS num...STORE IN
	Example - HASH/RANGE PARTITIONS num...
	Example - LIST/HASH SUBPARTITIONS num...
	Example - HASH/HASH PARTITIONS num... SUBPARTITIONS num...
	Example - HASH/HASH SUBPARTITIONS num... STORE IN
	Example - HASH/HASH PARTITIONS num ...STORE IN SUBPARTITIONS num... STORE IN
	Example - RANGE/HASH SUBPARTITIONS num...
	Example - RANGE/HASH SUBPARTITIONS num... IN PARTITION DESCRIPTION
	Example - LIST/HASH SUBPARTITIONS num STORE IN... IN PARTITION DESCRIPTION
	Example - LIST/HASH STORE IN...TABLESPACES

	18.3.1.7 Example - PARTITION BY RANGE, SUBPARTITION BY LIST
	18.3.2 ALTER TABLE...ADD PARTITION
	18.3.2.1 Example - Adding a Partition to a LIST Partitioned Table
	18.3.2.2 Example - Adding a Partition to a RANGE Partitioned Table
	18.3.2.3 Example - Adding a Partition with SUBPARTITIONS num...IN PARTITION DESCRIPTION
	Example - Adding a Partition with SUBPARTITIONS num...
	Example - Adding a Partition with SUBPARTITIONS num... STORE IN

	18.3.3 ALTER TABLE...ADD SUBPARTITION
	18.3.3.1 Example - Adding a Subpartition to a LIST/RANGE Partitioned Table
	18.3.3.2 Example - Adding a Subpartition to a RANGE/LIST Partitioned Table
	18.3.4 ALTER TABLE...SPLIT PARTITION
	18.3.4.1 Example - Splitting a LIST Partition
	18.3.4.2 Example - Splitting a RANGE Partition
	18.3.4.3 Example - Splitting a RANGE/LIST Partition
	Example - Splitting a Partition with SUBPARTITIONS num...
	Example - Splitting a Partition with SUBPARTITIONS num...STORE IN

	18.3.5 ALTER TABLE...SPLIT SUBPARTITION
	18.3.5.1 Example - Splitting a LIST Subpartition
	18.3.5.2 Example - Splitting a RANGE Subpartition
	18.3.6 ALTER TABLE...EXCHANGE PARTITION
	18.3.6.1 Example - Exchanging a Table for a Partition
	18.3.7 ALTER TABLE...MOVE PARTITION
	18.3.7.1 Example - Moving a Partition to a Different Tablespace
	18.3.8 ALTER TABLE...RENAME PARTITION
	18.3.8.1 Example - Renaming a Partition
	18.3.9 ALTER TABLE...SET INTERVAL
	18.3.9.1 Example - Setting an Interval Range Partition
	18.3.10 ALTER TABLE...SET [PARTITIONING] AUTOMATIC
	18.3.10.1 Example - Setting an AUTOMATIC List Partition
	18.3.11 ALTER TABLE...SET SUBPARTITION TEMPLATE
	18.3.11.1 Example - Setting a SUBPARTITION TEMPLATE
	Example - Resetting a SUBPARTITION TEMPLATE

	18.3.12 DROP TABLE
	18.3.13 ALTER TABLE...DROP PARTITION
	18.3.13.1 Example - Deleting a Partition
	18.3.14 ALTER TABLE...DROP SUBPARTITION
	18.3.14.1 Example - Deleting a Subpartition
	18.3.15 TRUNCATE TABLE
	18.3.15.1 Example - Emptying a Table
	18.3.16 ALTER TABLE...TRUNCATE PARTITION
	18.3.16.1 Example - Emptying a Partition
	18.3.17 ALTER TABLE...TRUNCATE SUBPARTITION
	18.3.17.1 Example - Emptying a Subpartition
	18.4 Handling Stray Values in a LIST or RANGE Partitioned Table
	18.5 Specifying Multiple Partitioning Keys in a RANGE Partitioned Table
	18.6 Retrieving Information about a Partitioned Table
	18.6.1 Table Partitioning Views - Reference
	18.6.1.1 ALL_PART_TABLES
	18.6.1.2 ALL_TAB_PARTITIONS
	18.6.1.3 ALL_TAB_SUBPARTITIONS
	18.6.1.4 ALL_PART_KEY_COLUMNS
	18.6.1.5 ALL_SUBPART_KEY_COLUMNS
	19 ECPGPlus Guide
	19.1 ECPGPlus - Overview
	Installation and Configuration
	Constructing a Makefile
	ECPGPlus Command Line Options

	19.2 Using Embedded SQL
	Example - A Simple Query
	Using Indicator Variables
	Declaring Host Variables

	Example - Using a Cursor to Process a Result Set

	19.3 Using Descriptors
	Example - Using a Descriptor to Return Data

	19.4 Building and Executing Dynamic SQL Statements
	Example - Executing a Non-query Statement Without Parameters
	Example - Executing a Non-query Statement with a Specified Number of Placeholders
	Example - Executing a Query With a Known Number of Placeholders
	Example - Executing a Query With an Unknown Number of Variables

	19.5 Error Handling
	Error Handling with sqlca
	EXEC SQL WHENEVER

	19.6 Reference
	C-preprocessor Directives
	Supported C Data Types
	Type Codes
	The SQLDA Structure
	ECPGPlus Statements
	ALLOCATE DESCRIPTOR
	CALL
	CLOSE
	COMMIT
	CONNECT
	DEALLOCATE DESCRIPTOR
	DECLARE CURSOR
	DECLARE DATABASE
	DECLARE STATEMENT
	DELETE
	DESCRIBE
	DESCRIBE DESCRIPTOR
	DISCONNECT
	EXECUTE
	EXECUTE DESCRIPTOR
	EXECUTE...END EXEC
	EXECUTE IMMEDIATE
	FETCH
	FETCH DESCRIPTOR
	GET DESCRIPTOR
	INSERT
	OPEN
	OPEN DESCRIPTOR
	PREPARE
	ROLLBACK
	SAVEPOINT
	SELECT
	SET CONNECTION
	SET DESCRIPTOR
	UPDATE
	WHENEVER

	19.7 Supported Platforms
	Limitations

	20 EDB Postgres Language Pack Guide
	20.1 Supported Database Server Versions
	20.2 Installing and Configuring Language Pack
	Installing Language Pack
	Invoking the Graphical Installer
	Installing Language Pack with Stack Builder

	Configuring Language Pack
	Configuring Language Pack on an Advanced Server Host
	Configuring Language Pack on a PostgreSQL Host

	20.3 Using the Procedural Languages
	PL/Perl
	PL/Python
	PL/Tcl

	20.4 Uninstalling Language Pack
	21 EDB Postgres Advanced Server Security Features Guide
	21.1 Protecting Against SQL Injection Attacks
	21.1.1 SQL/Protect Overview
	Types of SQL Injection Attacks
	Monitoring SQL Injection Attacks
	Protected Roles
	Attack Attempt Statistics
	Attack Attempt Queries

	21.1.2 Configuring SQL/Protect
	Selecting Roles to Protect
	Setting the Protected Roles List
	Setting the Protection Level

	Monitoring Protected Roles
	Learn Mode
	Passive Mode
	Active Mode

	21.1.3 Common Maintenance Operations
	Adding a Role to the Protected Roles List
	Removing a Role From the Protected Roles List
	Setting the Types of Protection for a Role
	Removing a Relation From the Protected Relations List
	Deleting Statistics
	Deleting Offending Queries
	Disabling and Enabling Monitoring

	21.1.4 Backing Up and Restoring a SQL/Protect Database
	Object Identification Numbers in SQL/Protect Tables
	Backing Up the Database
	Restoring From the Backup Files

	21.2 Virtual Private Database
	21.3 sslutils
	openssl_rsa_generate_key
	openssl_rsa_key_to_csr
	openssl_csr_to_crt
	openssl_rsa_generate_crl

	21.4 Data Redaction
	CREATE REDACTION POLICY
	ALTER REDACTION POLICY
	DROP REDACTION POLICY
	System Catalogs
	edb_redaction_column
	edb_redaction_policy

	22 EDB Postgres Advanced Server Guide
	22.1 Introduction
	Hard Limits

	22.1.1 Conventions Used in this Guide
	22.1.2 About the Examples Used in this Guide
	Sample Database Description

	22.2 Enhanced Compatibility Features
	Enabling Compatibility Features
	Stored Procedural Language
	Optimizer Hints
	Data Dictionary Views
	dblink_ora
	Profile Management
	Built-In Packages
	Open Client Library
	Utilities
	ECPGPlus
	Table Partitioning

	22.3 Database Administration
	22.3.1 Configuration Parameters
	22.3.1.1 Setting Configuration Parameters
	Modifying the postgresql.conf File
	Modifying the pg_hba.conf File

	22.3.1.2 Summary of Configuration Parameters
	22.3.1.3 Configuration Parameters by Functionality
	22.3.1.3.1 Top Performance Related Parameters
	22.3.1.3.1.1 shared_buffers
	22.3.1.3.1.2 work_mem
	22.3.1.3.1.3 maintenance_work_mem
	22.3.1.3.1.4 wal_buffers
	22.3.1.3.1.5 checkpoint_segments
	22.3.1.3.1.6 checkpoint_completion_target
	22.3.1.3.1.7 checkpoint_timeout
	22.3.1.3.1.8 max_wal_size
	22.3.1.3.1.9 min_wal_size
	22.3.1.3.1.10 bgwriter_delay
	22.3.1.3.1.11 seq_page_cost
	22.3.1.3.1.12 random_page_cost
	22.3.1.3.1.13 effective_cache_size
	22.3.1.3.1.14 synchronous_commit
	22.3.1.3.1.15 edb_max_spins_per_delay
	22.3.1.3.1.16 pg_prewarm.autoprewarm
	22.3.1.3.1.17 pg_prewarm.autoprewarm_interval
	22.3.1.3.2 Resource Usage / Memory
	edb_dynatune
	edb_dynatune_profile

	22.3.1.3.3 Resource Usage / EDB Resource Manager
	edb_max_resource_groups
	edb_resource_group

	22.3.1.3.4 Query Tuning
	enable_hints

	22.3.1.3.5 Query Tuning / Planner Method Configuration
	edb_enable_pruning

	22.3.1.3.6 Reporting and Logging / What to Log
	trace_hints
	edb_log_every_bulk_value

	22.3.1.3.7 Auditing Settings
	22.3.1.3.7.1 edb_audit
	22.3.1.3.7.2 edb_audit_directory
	22.3.1.3.7.3 edb_audit_filename
	22.3.1.3.7.4 edb_audit_rotation_day
	22.3.1.3.7.5 edb_audit_rotation_size
	22.3.1.3.7.6 edb_audit_rotation_seconds
	22.3.1.3.7.7 edb_audit_connect
	22.3.1.3.7.8 edb_audit_disconnect
	22.3.1.3.7.9 edb_audit_statement
	22.3.1.3.7.10 edb_audit_tag
	22.3.1.3.7.11 edb_audit_destination
	22.3.1.3.7.12 edb_log_every_bulk_value
	22.3.1.3.8 Client Connection Defaults / Locale and Formatting
	icu_short_form

	22.3.1.3.9 Client Connection Defaults / Statement Behavior
	default_heap_fillfactor
	edb_data_redaction

	22.3.1.3.10 Client Connection Defaults / Other Defaults
	oracle_home
	odbc_lib_path

	22.3.1.3.11 Compatibility Options
	edb_redwood_date
	edb_redwood_greatest_least
	edb_redwood_raw_names
	edb_redwood_strings
	edb_stmt_level_tx
	db_dialect
	default_with_rowids
	optimizer_mode

	22.3.1.3.12 Customized Options
	custom_variable_classes
	dbms_alert.max_alerts
	dbms_pipe.total_message_buffer
	index_advisor.enabled
	edb_sql_protect.enabled
	edb_sql_protect.level
	edb_sql_protect.max_protected_relations
	edb_sql_protect.max_protected_roles
	edb_sql_protect.max_queries_to_save
	edb_wait_states.directory
	edb_wait_states.retention_period
	edb_wait_states.sampling_interval
	edbldr.empty_csv_field
	utl_encode.uudecode_redwood
	utl_file.umask

	22.3.1.3.13 Ungrouped
	nls_length_semantics
	query_rewrite_enabled
	query_rewrite_integrity
	timed_statistics

	22.3.2 Index Advisor
	22.3.2.1 Index Advisor Components
	22.3.2.2 Index Advisor Configuration
	22.3.2.3 Using Index Advisor
	Using the pg_advise_index Utility
	Using Index Advisor at the psql Command Line

	22.3.2.4 Reviewing the Index Advisor Recommendations
	Using the show_index_recommendations() Function
	Querying the index_advisor_log Table
	Querying the index_recommendations View

	22.3.2.5 Index Advisor Limitations
	22.3.3 SQL Profiler
	22.3.4 pgsnmpd
	Configuring pgsnmpd
	Setting the Listener Address
	Invoking pgsnmpd
	Viewing pgsnmpd Help
	Requesting Information from pgsnmpd

	22.3.5 EDB Audit Logging
	22.3.5.1 Audit Logging Configuration Parameters
	22.3.5.2 Selecting SQL Statements to Audit
	Data Definition Language and Data Control Language Statements
	Data Manipulation Language Statements

	22.3.5.3 Enabling Audit Logging
	22.3.5.4 Audit Log File
	22.3.5.5 Using Error Codes to Filter Audit Logs
	22.3.5.6 Using Command Tags to Filter Audit Logs
	22.3.5.7 Redacting Passwords from Audit Logs
	22.3.6 Unicode Collation Algorithm
	Basic Unicode Collation Algorithm Concepts
	International Components for Unicode
	Locale Collations
	Collation Attributes

	Using a Collation

	22.4 EDB Resource Manager
	Creating and Managing Resource Groups
	CREATE RESOURCE GROUP
	ALTER RESOURCE GROUP
	DROP RESOURCE GROUP
	Assigning a Process to a Resource Group
	Removing a Process from a Resource Group
	Monitoring Processes in Resource Groups

	CPU Usage Throttling
	Setting the CPU Rate Limit for a Resource Group
	Example – Single Process in a Single Group
	Example – Multiple Processes in a Single Group
	Example – Multiple Processes in Multiple Groups

	Dirty Buffer Throttling
	Setting the Dirty Rate Limit for a Resource Group
	Example – Single Process in a Single Group
	Example – Multiple Processes in a Single Group
	Example – Multiple Processes in Multiple Groups

	System Catalogs
	edb_all_resource_groups
	edb_resource_group

	22.5 libpq C Library
	Using libpq with EDB SPL
	REFCURSOR Support
	Array Binding
	PQBulkStart
	PQexecBulk
	PQBulkFinish
	PQexecBulkPrepared
	Example Code (Using PQBulkStart, PQexecBulk, PQBulkFinish)
	Example Code (Using PQexecBulkPrepared)

	22.6 Debugger
	Configuring the Debugger
	Starting the Debugger
	The Debugger Window
	Main Debugger Window
	The Program Body Panel
	The Tabs Panel
	The Stack Tab

	Debugging a Program
	Stepping Through the Code
	Using Breakpoints
	Setting a Global Breakpoint for In-Context Debugging
	Exiting the Debugger

	22.7 Performance Analysis and Tuning
	Dynatune
	edb_dynatune
	edb_dynatune_profile

	EDB Wait States
	edb_wait_states_data
	edb_wait_states_queries
	edb_wait_states_sessions
	edb_wait_states_samples
	edb_wait_states_purge

	22.8 EDB Clone Schema
	Setup Process
	Installing Extensions and PL/Perl
	Setting Configuration Parameters
	Performance Configuration Parameters
	Status Logging

	Installing EDB Clone Schema
	Creating the Foreign Servers and User Mappings
	Foreign Server and User Mapping for Local Cloning Functions
	Foreign Server and User Mapping for Remote Cloning Functions

	EDB Clone Schema Functions
	localcopyschema
	localcopyschema_nb
	remotecopyschema
	remotecopyschema_nb
	process_status_from_log
	remove_log_file_and_job

	22.9 Enhanced SQL and Other Miscellaneous Features
	COMMENT
	Output of Function version()
	Logical Decoding on Standby

	22.10 System Catalog Tables
	edb_dir
	edb_all_resource_groups
	edb_policy
	edb_profile
	edb_redaction_column
	edb_redaction_policy
	edb_resource_group
	edb_variable
	pg_synonym
	product_component_version

	22.11 Advanced Server Exceptions
	Advanced Server Keywords

	23 EDB pgAdmin4 Quickstart Linux Guide

